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TLS is the protocol of choice for securing today’s e-commerce and online transactions, but adding TLS to a
web server imposes a significant overhead relative to an insecure web server on the same platform. We perform a
comprehensive study of the performance costs of TLS. Our methodology is to profile TLS web servers with trace-
driven workloads, replace individual components inside TLS with no-ops and measure the observed increase in
server throughput. We estimate the relative costs of each TLS processing stage, identifying the areas for which
future optimizations would be worthwhile. Our results show that while the RSA operations represent the largest
performance cost in TLS web servers, they do not solely account for TLS overhead. RSA accelerators are
effective for e-commerce site workloads since they experience low TLS session reuse. Accelerators appear to
be less effective for sites where all the requests are handled by a TLS server, because they have a higher session
reuse rate. In this case investing in a faster CPU might provide a greater boost in performance. Our experiments
show that having a second CPU is at least as useful as an RSA accelerator. Our results seem to suggest that, as
CPUs become faster, the cryptographic costs of TLS will become dwarfed by the CPU costs of the non-security
aspects of a web server. Optimizations aimed at general-purpose web servers should continue to be a focus of
research and would benefit secure web servers as well.
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formance of Systems]: General—measurement techniques, performance attributes; D.2 [Software Engineer-
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access controls, authentication; D.4.8 [Operating Systems]: Performance—measurements, modeling and pre-
diction
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1. INTRODUCTION

Secure communication is an intrinsic demand of today’s world of online transactions. Two
methods have emerged as Internet standards: IPsec (IP security) and SSL/TLS [Dierks
and Allen 1999]. IPsec is largely transparent to networking applications, running at the
network layer, and is most commonly deployed for virtual private networks.

The most widely used method is SSL/TLS. TLS was originally designed at Netscape for

An earlier version of this paper was published as Coarfa, C., Druschel, P., and Wallach, D. S., Performance
Analysis of TLS Web Servers, Proceedings of the 2002 Network and Distributed System Security Symposium
(February 2002, San Diego, California).
Address: Department of Computer Science, Rice University, 6100 Main St., MS 132, Houston, TX 77005-1892

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies
show this notice on the first page or initial screen of a display along with the full citation. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other
works, requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept,
ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.



2 · C. Coarfa, D. S. Wallach, and P. Druschel

its web browsers and servers, under the name of Secure Socket Layer (SSL) [Freier et al.
1996]. The SSL protocol was designed with four target objectives: cryptographic security,
interoperability, extensibility and relative efficiency. SSL had to provide cryptographic se-
curity (secure connections between parties). SSL is an asymmetric protocol; the parties
involved are classified into client and server. SSL supports both client and server authenti-
cation by using public key methods; however, in most of the practical cases only the server
is authenticated. SSL protects data confidentiality by using ciphers to encrypt messages
exchanged. Finally, it ensures data integrity by computing a digest of the message and
appending it to the message; the receiving party recomputes the digest and checks if the
received message was not tampered with. The second goal of SSL was interoperability: in-
dependent programmers should be able to develop applications utilizing SSL that will then
be able to successfully exchange cryptographic parameters without knowledge of one an-
other’s code. SSL aimed to offer a security solution which was both platform independent
and application independent. The third goal of SSL was extensibility. SSL had to provide
a framework into which new authentication and encryption methods could be incorporated
as necessary; this would prevent the need to create a new protocol, with the inherent risk
of introduction of possible new weaknesses. The fourth goal was relative efficiency. Cryp-
tographic operations tend to be highly CPU intensive, especially public key operations.
The cryptographic parameters of a connection are aggregated into an SSL session, and the
SSL protocol has incorporated an optional session caching scheme to reduce the number
of connections that need to be established from scratch.

SSL runs at the transport layer above existing protocols like TCP. It offers an abstraction
of secure sockets on top of existing TCP/IP sockets, as shown in figure 1. Applications only
have to replace regular read/write calls over the TCP/IP sockets with SSL read /SSL write
over the corresponding secure sockets. This simplicity made SSL attractive to application
developers.
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Fig. 1. TLS offers an abstraction of secure sockets on top of TCP/IP sockets.

The SSL 1.0 protocol was designed and released in 1994. Version 2.0 was released
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in the same year; it fixed some bugs present in version 1.0 and clarified some aspects of
the protocol. SSL version 2.0 was proved vulnerable to several kinds of attacks [Wagner
and Schneier 1996]. The ciphersuite rollback attack allows an active attacker (one who
can change bits in the messages between client and server) to force an SSL session to use
weaker ciphersuites than would ordinarily be negotiated. Another vulnerability allowed an
attacker to compromise the message integrity. Version 3.0 of the SSL protocol was released
at the end of 1995 and fixed the flaws discovered in version 2.0. SSL 3.0 was resistant to
attacks on confidentiality that used eavesdropping and traffic analysis; it was resistant to
attacks on the message integrity, such as replay attacks. Since the flaws of SSL version
2.0 were well-known, SSL 3.0 was also designed to prevent version rollback attacks, in
which attackers would try to force SSL 3.0 servers into using the SSL version 2.0. SSL
has been standardized by the IETF and is now called Transport Layer Security (TLS). The
security offered by TLS was the subject of comprehensive cryptographic analysis [Bradley
and Davies 1995; Wagner and Schneier 1996; Mitchell 1998; Paulson 1999; Halevi and
Krawczyk 1999; Buhler et al. 2000; Dean and Stubblefield 2001; Hess et al. 2002].

To provide secure connections for the rapidly growing field of wireless communica-
tion, a secure connection protocol, WTLS [Wireless Application Protocol Forum 2001;
Shacham and Boneh 2002], based on TLS, has been proposed. Due to the nature of wire-
less transmissions, modifications were made to the TLS protocol in order to accommodate
the low bandwidth communication links, limited processing power and limited memory
capacity characteristic of wireless platforms. Our focus in this paper is on TLS, not on
WTLS.

TLS is used in a variety of application, including secure web servers, secure shell con-
nections and secure mail servers. The goal of this research is to provide a comprehensive
performance analysis of TLS web servers, since TLS is most commonly used for secure
web applications, such as online banking and e-commerce.

TLS is computationally expensive and therefore slow, preventing a web-wide deploy-
ment. Sites delivering general public information, such as home pages, free news sites,
search engines and others, can function without secure communication. However, e-
commerce sites must use secure communication, for the obvious reason: leaks of infor-
mation might eventually lead to loss of money. The same applies to any site that handles
sensitive information, such as e-mail and medical records. For these sites the TLS perfor-
mance problem is relevant.

In its most common usage on web sites, TLS uses 1024-bit RSA authentication [Rivest
et al. 1978], the data privacy is protected using a 128-bit RC4 cipher and the message
integrity is verified by using MD5 as a keyed hash function. Details of these algorithms
can be found in Schneier [1996] and most other introductory cryptography texts.

TLS web servers incur a significant performance penalty relative to regular web servers
running on the same platform. Our experiments showed the performance penalty to range
from as little as a factor of 3.4 to as much as a factor of 9. It is generally known that RSA
operation are particularly expensive. As a result of this cost, a number of hardware accel-
erators are offered by vendors such as nCipher, Broadcom and Compaq’s Atalla division.
These accelerators take the modular exponentiation operations of RSA and perform them
in custom hardware, thus freeing the CPU for other tasks. Researchers have also studied
algorithms and systems to accelerate RSA operations. Boneh and Shacham [2001] have
designed a software system to perform RSA operations together in batches, at a lower cost
than doing the operations individually. Dean et al. [2001] have designed a network ser-
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vice, offloading the RSA computations from web servers to dedicated servers with RSA
hardware. Vendors such as Alteon [2002] and Intel [2002] offer front-end switches that
offload SSL processing and perform web server load balancing.

The TLS designers knew that RSA was expensive and that web browsers tend to recon-
nect many times to the same web server. To address this, they added a TLS session cache,
allowing subsequent connections to resume an earlier TLS session and thus reuse the result
of an earlier RSA computation. Research has suggested that, indeed, session caching helps
web server performance [Goldberg et al. 1998].

While previous attempts to understand TLS performance have focused on specific pro-
cessing stages, such as the RSA operations or the session cache, we analyze TLS web
servers as systems and measure page-serving throughput under trace-driven workloads.
Our methodology is to replace each individual operation within TLS with a “no-op” and
measure the incremental improvement in server throughput. This methodology measures
the upper-bound that may be achieved by optimizing each operation within TLS, whether
through hardware or software acceleration techniques. We can measure the upper-bound
on a wide variety of possible optimizations, including radical changes like reducing the
number of TLS protocol messages. Creating such an optimized protocol and proving it to
be secure would be a significant effort, whereas our emulations let us rapidly measure an
upper bound on the achievable performance benefit. If the benefit were minimal, we would
then see no need for designing such a protocol.

Our results show that while RSA operations are expensive, they don’t account for the
whole cost of TLS. RSA accelerators are effective, but a second CPU is at least as effective.
Our results seem to suggest that faster CPUs will bridge the performance gap between
secure and insecure web servers. Optimizations aimed at general-purpose web servers
should continue to be a focus of research and would benefit secure web servers as well.

Section 2 presents an overview of the TLS protocol. Section 3 explains how we per-
formed our experiments and what we measured. Section 4 analyzes our measurements in
detail. Section 5 describes future work. We present related work in section 6. Section 7
concludes with a high-level view of our results.

2. TLS PROTOCOL OVERVIEW

The TLS protocol, which encompasses everything from authentication and key manage-
ment to encryption and integrity checking, fundamentally has two phases of operation:
connection setup and steady-state communication.

Connection setup is quite complex. Readers looking for complete details are encouraged
to read the RFC [Dierks and Allen 1999]. The setup protocol must, among other things,
be strong against active attackers trying to corrupt the initial negotiation where the two
sides agree on key material. Likewise, it must prevent “replay attacks” where an adversary
who recorded a previous communication (perhaps one indicating some money is to be
transferred) could play it back without the server’s realizing the transaction is no longer
fresh (and thus, allowing the attacker to empty out the victim’s bank account).

TLS connection setup has the following steps (quoting from the RFC), as shown in
figure 2:

—Exchange hello messages to agree on algorithms, exchange random values (reffered to
as client random and server random), and check for session resumption.

—Exchange certificates and cryptographic information to allow the client and server to
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Fig. 2. New TLS connection handshake.

authenticate themselves. [In our experiments, we do not use client certificates.]

—Exchange the necessary cryptographic parameters to allow the client and server to agree
on a “premaster secret.”

—Generate a “master secret” from the premaster secret chosen by the client and the ex-
changed random values.

—Allow the client and server to verify that their peer has calculated the same security
parameters and that the handshake occurred without tampering by an attacker.

There are several important points here. First, the TLS protocol designers were aware
that performing the full setup protocol is quite expensive, requiring two network round-
trips (four messages) as well as expensive cryptographic operations, such as the 1024-bit
modular exponentiation required of RSA. For this reason, the master secret can be stored
by both sides in a session cache. When a client subsequently reconnects, it need only
present a session identifier. Then, the master secret (known to client and server but not
to any eavesdropper) can be used to create the connection’s encryption keys, message
authentication keys, and initialization vectors. The sequence of messages exchanged is
shown in figure 3.

After the setup protocol is completed, the data exchange phase begins. Prior to trans-
mission, the data is broken into packets of 16KB. Each packet is optionally compressed.
A keyed message authentication code is computed and added to the message with its se-
quence number. Finally the packet is encrypted and transmitted. TLS also allows for a
number of control messages to be transmitted. This processing steps are presented in fig-
ure 4. The receiver follows the same steps, in reverse order. The message authentication
code is computed by the receiver and compared with the received message digest, in order
to ensure the message integrity.

Analyzing the above information, we see a number of operations that may form poten-
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Fig. 3. Resumed TLS connection handshake.

tial performance bottlenecks. Performance can be affected by the CPU costs of the RSA
operations and the effectiveness of the session cache. It can also be affected by the network
latency of transmitting the extra connection setup messages, as well as the CPU latency of
marshaling, encrypting, decrypting, unmarshaling, and verifying packets. This paper aims
to quantify these costs.

3. METHODOLOGY

We chose not to perform “micro-benchmarks” such as measuring the necessary CPU time
to perform specific operations. In a system as complex as a web server, I/O and compu-
tation overlap in complex ways and the system’s bottleneck is never intuitively obvious.
Instead, we chose to measure the throughput of a secure web server under various con-
ditions. To measure the costs of individual operations, we replaced them with no-ops.
Replacing cryptographically significant operations with no-ops is obviously insecure, but
it allows us to measure an upper bound on the performance improvement that would result
from optimizing particular components of the system. In effect, we emulate ideal hardware
accelerators. Based on these numbers, we can estimate the relative cost of each operation
using Amdahl’s Law (section 4 presents this analysis). A similar technique of “nulling
out” calls to hardware, to model infinitely fast hardware, was proposed by [Brendan et al.
1993].

3.1 Platform

Our experiments used two different hardware platforms for the TLS web servers: a generic
500MHz Pentium III clone and a Compaq DL360 server with dual 933MHz Pentium III
CPUs. The Compaq DL360 server was used in both single and dual CPU configurations.
Both machines had 1GB of RAM and a gigabit Ethernet interface. Some experiments
also included a Compaq [2001] cryptography acceleration board, with a throughput of 330
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Fig. 4. TLS processing steps during data exchange.

SSL connections per second. Three generic 800MHz Athlon PCs with gigabit Ethernet
cards served as TLS web clients, and all experiments were performed on a private gigabit
Ethernet.

All computers ran RedHat Linux 7.2. The standard web servers used were Apache
1.3.14 [1999], and the TLS web server was Apache with mod SSL 2.7.1-1.3.14 [1999].
We have chosen the Apache mod SSL solution due to its wide availability and use, as
shown by a March 2001 survey [NetCraft 2001]. The TLS implementation used in our
experiments by mod SSL is the open source OpenSSL 0.9.5a [2002]. The HTTPS traffic
load was generated using the methodology of Banga and Druschel [1999], with additional
support for OpenSSL. As we are interested primarily in studying the CPU performance bot-
tlenecks arising from the use of cryptographic protocols, we needed to guarantee that other
potential bottlenecks, such as disk or network throughput, did not cloud our throughput
measurements. To address this, we used significantly more RAM in each computer than its
working set size, thus minimizing disk I/O when the disk caches are warm. Likewise, to
avoid network contention, we used Gigabit Ethernet, which provides more bandwidth than
the computers in our study can saturate.

We didn’t investigate 4-way or 8-way CPU, limiting ourselves to single and dual CPU
configurations. However, these platforms are relevant because dual CPU servers are com-
mon in dense server farms.

3.2 Experiments performed

We performed six sets of experiments, using two different workload traces against three
different machine configurations.

One workload in our experiments simulated the traffic pattern of secure servers at Ama-
zon.com. Normally, an Amazon customer selects goods to be purchased via a normal web
server, and only interacts with a secure web server when submitting credit card informa-
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tion and verifying purchase details. Our other workload was a 100,000-hit trace taken from
our departmental web server, with a total document corpus size of 530MB. While our de-
partmental web server supports only normal, unencrypted web service, we measured the
throughput for running this trace under TLS to determine the costs that would be incurred
if our normal web server was replaced with a TLS web server.

These two workloads represent extremes of the workload spectrum that TLS-secured
web servers might experience. The Amazon workload has a small average file size, 7 KB,
while the CS trace has a large average file size, 46KB. Likewise, the working set size of the
CS trace is 530MB while the Amazon trace’s working set size is only 279KB. Even with
the data stored in RAM buffers, these two configurations provide quite different stresses
upon the system. We expected the CS trace to exhibit a high relative cost of the TLS data
exchange— including bulk ciphers and message digest functions— because it contained
larger files (the average file size was 46KB). The Amazon trace, on the other hand, had
smaller files (the average file size was 7KB); consequently, we expected the relative cost
of the connection setup— including RSA decryption— to be high.

In addition to replacing cryptographic operations, such as RSA, RC4, MD5/SHA-1, and
secure pseudo-random number generation with no-ops1, we also investigated replacing
the session cache with an idealized “perfect cache” that returns the same session every
time (thus avoiding contention costs in the shared memory cache). Simplifying further,
we created a “skeleton TLS” protocol where all TLS operations have been completely
removed; during the “skeleton” TLS handshake the two parties exchange messages of
the same length as the corresponding messages of the original TLS handshake, but no
other TLS-related computation is performed. This emulates an “infinitely fast” CPU that
still needs to perform the same network operations. Finally, we hypothesize a faster TLS
session resumption protocol that removes two messages (one network round-trip), and
measure its performance.

Through each of these changes, we can progressively emulate the effects of “perfect”
optimizations, identifying an upper bound on the benefits available from optimizing each
component of the TLS system.

3.2.1 Amazon-like workload experiments. We were interested in closely simulating the
load that might be experienced by a popular e-commerce site, such as Amazon. While our
experiments do not include the database back-end processing that occurs in e-commerce
sites, we can still accurately model the front-end web server load.

To capture an appropriate trace, we configured a Squid proxy server and logged the
data as we purchased two books from Amazon.com, one as a new customer and one as a
returning customer. The web traffic to browse Amazon’s inventory and select the books
for purchase occurs over a regular web server, and only the final payment and shipping
portion occurs with a secure web server. Of course, the traces we recorded do not con-
tain any plaintext from the secure web traffic, but they do indicate the number of requests
made and the size of the objects transmitted by Amazon to the browser. This is sufficient
information to synthesize a workload comparable to what Amazon’s secure web servers
might experience. The only value we could not directly measure is the ratio of new to
returning Amazon customers. Luckily, Amazon provided this ratio (78% returning cus-

1While TLS also supports operating modes which use no encryption (e.g., TLS_NULL_WITH_NULL_NULL),
our no-op replacements still use the original data structures, even if their values are now all zeros. This results in
a more accurate emulation of “perfect” acceleration.
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A B C A A BBC A

Fig. 5. Trace segment containing requests from users A, B, and C. The arrows represent ordering constraints
for the requests. The order of the requests initiated by the same user is preserved. Requests initiated by different
users can be interleaved.

tomers to 22% new customers) in a recent quarterly report [Amazon.com 2001]. For our
experiments, we assume that returning customers do not retain TLS session state, and will
thus complete one full TLS handshake every time they wish to make a purchase. In this
scenario, based on our traces, the server must perform a full TLS handshake approximately
once out of every twelve web requests. This one-full-handshake-per-purchase assumption
may cause us to overstate the relative costs of performing full TLS handshakes versus
resumed TLS handshakes, but it does represent a “worst case” that could well occur in
e-commerce workloads.

We created files on disk to match the sizes collected in our trace and request those files
in the order they appear in the trace. When replaying the traces, each client process uses
at most four simultaneous web connections, just as common web browsers do. We also
batch together the HTTP requests belonging to the same complete web page (HTML files,
frames and inline images) and do not begin issuing requests for the next page until all the
requests corresponding to current page have been completed. All three client machines run
24 of these processes, each, causing the server to experience a load comparable to 72 web
clients making simultaneous connections.

3.2.2 CS workload experiments. We also wished to measure the performance impact of
replacing our departmental web server with a TLS web server. To do this, we needed to
design a system to read a trace taken from the original server and adapt it to our trace-driven
TLS web client. Because we are interested in measuring maximum server throughput, we
discarded the timestamps in the server and instead replayed requests from the trace as fast
as possible. However, we needed to determine which requests in the original trace would
have required a full TLS handshake and which requests would have reused the sessions
established by those TLS handshakes. To do this, we assumed that all requests in the trace
that originated at the same IP address corresponded to one web browser. The first request
from a given IP address must perform a full TLS handshake. Subsequent requests from
that address could reuse the previously acquired TLS session. This assumption is clearly
false for large proxy servers that aggregate traffic for many users. For example, all requests
from America Online users appear to originate from a small number of proxies. To avoid
an incorrect estimation of the session reuse, we eliminated all known proxy servers from
our traces. The remaining requests could then be assumed to correspond to individual
users’ web browsers. The final trace contained approximately 11,000 sessions spread over
100,000 requests. Another method to differentiate users would have been to use cookies;
however, our departmental web server does not uses cookies, and we couldn’t infer user
identities based on cookies from our server logs.
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Fig. 6. The difference between the trace index of the last request served by the server, LS, and the last request
presented to the server, LP, is bounded by bound. As LS increases, LP increases, too, and more requests are
presented to the server.

In our trace playback system, three client machines ran 20 processes each, generating
60 simultaneous connects, proving sufficient to saturate the server. The complexity of
the playback system lies in its attempt to preserve the original ordering of the web requests
seen in the original trace. Apache’s logging mechanism actually records the order in which
requests complete, not the order in which they were received. As such, we have insufficient
information to faithfully replay the trace requests in their original order. Instead, we derive
a partial ordering from the trace. All requests from a given IP address are totally ordered,
but requests from unrelated IP addresses have no ordering (as shown in figure 5). This
allows the system to interleave requests from different users, but preserves the ordering of
requests coming from the same user.

As a second constraint, we wished to enforce an upper bound on how far the order of
requests presented to the web server may differ from the order of requests in the original
trace. Let LS be the index in the trace of the last request served by the server, and let LP
be the index in the trace of the last request which was presented to the server by our client
programs. The second constraint can then be expressed as follows:

LP−LS <= bound.
The set of requests that can be presented to the server at a particular moment is the set of

requests whose index is between LS and LP. As LS increases, LP also increases and new
requests can be presented to the web server. The set of valid requests intuitively behaves as
a sliding window over the whole trace (as presented in the figure 6); the size of the window
is equal to bound.

If this bound were too small, it would artificially limit the concurrency that the trace
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playback system could exploit. Tight boundaries create situations in which the server is
no longer saturated, and the clients can not begin new requests until some older request,
perhaps for a very large file, completes. If the bound is too large, there would be less
assurance that the request ordering observed by the experimental server accurately reflects
the original behavior captured in the trace. In practice, we determined by trial and error
the minimal boundary for which no client would stall while waiting for request from other
clients to complete. We have determined that a boundary of 10000 requests was enough
for 60 clients playing our trace.

It is impossible to precisely model and replicate the behavior of a web server for a
particular trace; we have attempted to provide a reasonable approximation of that behavior,
so that our throughput measurements are relevant.

3.3 Implementation details

In this section, we describe how particular TLS stages were replaced with no-ops. We start
with a discussion of replacement of stages within the TLS protocol (sections 3.3.1 to 3.3.5),
then we discuss structural modifications of the TLS protocol (section 3.3.6 to 3.3.9). All
of the modifications performed involved both the client and the server side.

3.3.1 Server authentication. The server uses public key cryptography to authenticate
itself to the client. TLS provides authentication using several cryptographic methods, such
as RSA, and Diffie-Hellman [Diffie and Hellman 1976; Rescorla 1999]. We studied the
cost of the RSA key exchange and authentication method.

During connection setup, the client performs the RSA encryption of the premaster secret
using the server’s public key. The server performs the RSA decryption of the premaster
secret using its private key. In our TLS configuration the RSA encryption and decryption
can be optionally replaced by memcpy operations of the 48-bit premaster secret.

3.3.2 Bulk cipher. The TLS protocol already provides a NULL cipher in its supported
ciphersuites. The sequence of steps presented in figure 4 still takes place; the encryption
is replaced by a no-op (and as such behaving as an identity function). The TLS client and
server could be instructed to optionally use the NULL cipher provided by TLS instead of
RC4.

3.3.3 Message authentication code. Message authentication codes are used to ensure
the integrity of the data, both during TLS connection setup and TLS data exchange. TLS
can use several message digest algorithms, such as MD5 and SHA-1. During TLS connec-
tion setup, message digests are used by both sides. The server verifies the client random
and the cryptographic parameters suggested by the client, and also computes a message
digest for the server random and its public key. During TLS data exchange, the message
digest is used to protect the integrity of the message. We have instrumented our TLS
clients and server to optionally replace all the message digest computations and checking
with no-ops.

3.3.4 TLS session cache. The cryptographic parameters of a TLS connection, such as
the bulk cipher, the message digest algorithm and the premaster secret are aggregated in a
TLS session, these can be stored by both sides. The client can use a previous session to
reconnect to the same server and perform an abbreviated TLS connection setup. mod SSL
provides a shared memory cache (using an external shared memory library [Engelschall
2000]), a DBM session cache (using a simple database implementation), and can also
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function without any TLS session cache at all.
We wanted to emulate a perfect TLS session cache, with zero-cost search and insert

operations. A basic TLS client performs one connection to the server and the resulting
TLS session, which we will call the “universal session”, is saved by both parts. The server
is then restarted and the universal session is loaded in memory by all Apache processes.
The TLS clients also load the universal session in memory. Whenever a client would
normally perform a full TLS handshake, it performs one; at the server side the cache insert
operation is replaced with a no-op. Whenever the client would normally use a saved TLS
session it instead uses the universal session, which the server retrieves from memory. The
cache insert and lookup times are thus zero. The TLS clients and servers can optionally
revert between a regular TLS cache and our perfect cache.

3.3.5 Randomness computations. The TLS protocol doesn’t require the TLS implemen-
tations to use a particular random number generator; instead it requires that the pseudo-
random number generator used is cryptographically secure. The pseudorandom number
generator present in OpenSSL applies a sequence of message digest computations, such
as MD5 and SHA-1, to an initial “random” state such as the current date. In our imple-
mentation we used a 1 byte counter incremented modulo 256 to generate the random bytes
required for the server and the client random; this is no longer cryptographically secure
but is low cost. In our TLS configuration the clients and servers can choose between the
secure random number generator and our low cost version. However, in order to use the
low cost generator the two parties also have to use the perfect TLS session cache, because
otherwise the server might generate identical session IDs for connections from different
clients.

3.3.6 Plain data exchange. As presented in section 2 the TLS data exchange requires
a series of steps to process the message. We are replacing these steps with regular read
and write I/O calls. The TLS clients and servers can choose between regular TLS data
exchange and plain data exchange, independently of other choices of modified TLS stages.

3.3.7 Skeleton TLS. Designed as a catch-all of all the costs involved in the TLS connec-
tion setup, skeleton TLS doesn’t perform any computation at all during connection setup.
The size of the messages exchanged during regular connection setup was recorded, and
skeleton TLS simply sends and receives messages of the same size. The subsequent TLS
data exchange is replaced by plain data exchange (as described in section 3.3.6). Skeleton
TLS is used together with plain data exchange, since no security parameters are negotiated.

3.3.8 Abbreviated session resumption. We wanted to estimate the performance benefits
of a modified TLS protocol, that removes one roundtrip delay and sends less data during
session resumption. New connections (full TLS handshakes) proceed in the same fashion.
For a connection which uses a previously saved session (resumed TLS handshakes), the
client sends its Hello message along with the HTTP GET request. If the server accepts the
session, then it will send its server random and Finished message (see figure 3) along with
the first part of the response. If the server does not accept the session, a full TLS handshake
occurs. Our implementation is not secure, but it helps us evaluate the performance benefit
of such a protocol.

3.3.9 Minimal TLS connection setup. We wanted to measure the total cost of all the
connection setup (both full and abbreviated TLS handshakes). The TLS connection setup
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processing was replaced with a minimal initialization of the data structures needed during
the TLS data exchange. The symmetric keys used for the TLS communication were set
to zero. Since the security parameters of the connection are preestablished, the TLS client
and server do not need any negotiation in this case. The data exchange can then proceed as
regular TLS data exchange.

4. ANALYSIS OF EXPERIMENTAL RESULTS

Figures 7 and 8 show the main results of our experiments with the Amazon trace and
the CS trace, respectively. The achieved throughput is shown on the y-axis. For each
system configuration labeled along the x-axis, we show two bars, corresponding to the
result obtained with the 500MHz system, the 933MHz single CPU system and 933MHz
dual CPU system (from left to right).

Three clusters of bar graphs are shown along the x-axis. The left cluster shows three con-
figurations of a complete, functional web server: the Apache HTTP web server (Apache),
the Apache TLS web server (Apache+TLS), and the Apache TLS server using an AXL300
RSA accelerator (Apache+TLS AXL300).

The center cluster of bar graphs shows results obtained with various experimental TLS
configurations, where basic primitives within the TLS protocol were replaced with no-ops.
Each configuration is labeled to indicate the key exchange method, bulk encryption algo-
rithm, message authentication code, and caching strategy used. Rather than measuring all
possible variations, we measured the configuration where all attributes were replaced by
their no-ops alternatives, followed by configurations where each operation was enabled
individually. We also measured a few additional configurations discussed below. For in-
stance, we measured “PKX, RC4, MD5, shm cache,” a configuration where all RSA op-
erations have been replaced with no-ops, but other operations ran normally, to expose the
performance limits of RSA acceleration techniques.

The right cluster of bar graphs shows measurements of TLS configurations where non
crypto-related TLS functions were removed and the session resume protocol was simpli-
fied. These measurements allow us to understand the costs of the remaining operations in
TLS session setup and data exchange.

Additionally, we wish to estimate the relative costs of each operation performed by the
TLS web server. To do this, we use Amdahl’s Law:

Speedup =
1

(1− fractionenhanced)+
fractionenhanced
speedupenhanced

For each TLS processing component, we have emulated infinite or almost infinite
speedup, either by removing the component (e.g., for the key exchange method, stream
cipher and message authentication code), or by replacing the component with a much
cheaper alternative (e.g., the “perfect” cache and the predicted randomness). Thus, Am-
dahl’s Law can be simplified as follows:

Speedup =
1

1− fractionenhanced

Since we measured speedups experimentally, we can estimate the cost of individual
operations by solving this equation for fractionenhanced. The results of these calculations
are shown in Figure 9.
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Label Description of server configuration

Apache Apache server
Apache+TLS Apache server with TLS

Apache+TLS AXL300 Apache server with TLS and AXL300
RSA RSA protected key exchange
PKX plain key exchange

NULL no bulk cipher (plaintext)
RC4 RC4 bulk cipher

noMAC no MAC integrity check
MD5 MD5 MAC integrity check

no cache no session cache
shmcache shared-memory based session cache

perfect cache idealized session cache (always hits)
no randomness no pseudo-random number generation (also: NULL, noMAC)

plain no bulk data marshaling (plaintext written directly to the network)
fast resume simplified TLS session resume (eliminates one round-trip)

Skeleton TLS all messages of correct size, but zero data
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Fig. 7. Throughput for Amazon trace and different server configurations, on 500MHz, 933MHz and dual
933MHz servers.
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Label Description of server configuration

Apache Apache server
Apache+TLS Apache server with TLS

Apache+TLS AXL300 Apache server with TLS and AXL300
RSA RSA protected key exchange
PKX plain key exchange

NULL no bulk cipher (plaintext)
RC4 RC4 bulk cipher

noMAC no MAC integrity check
MD5 MD5 MAC integrity check

no cache no session cache
shmcache shared-memory based session cache

perfect cache idealized session cache (always hits)
no randomness no pseudo-random number generation (also: NULL, noMAC)

plain no bulk data marshaling (plaintext written directly to the network)
fast resume simplified TLS session resume (eliminates one round-trip)

Skeleton TLS all messages of correct size, but zero data
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Fig. 8. Throughput for CS trace and different server configurations, on 500MHz, 933MHz and dual 933MHz
servers.
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CS trace
Experiment 500 MHz 933 MHz dual 933 MHz

Apache + TLS 151 (21%) 268 (26%) 467 (37%)
Full setup, plain communication 228 (32%) 367 (36%) 594 (47%)
Minimal setup, encrypted communication 406 (56%) 629 (62%) 850 (67%)

Amazon trace
Experiment 500 MHz 933 MHz dual 933 MHz

Apache + TLS 159 (11%) 271 (12%) 517 (16%)
Full setup, plain communication 167 (12%) 283 (13%) 531 (17%)
Minimal setup, encrypted communication 772 (53%) 1086 (49%) 1501 (47%)

Fig. 10. Throughput in hits/sec for Apache+TLS, full setup with plain communication, and minimal setup with
encrypted communication, for the CS trace and the Amazon trace, using 500 MHz, 933 MHz and dual 933 MHz
servers. Percentages show the throughput relative to non-TLS Apache on the same platform.

In order to directly determine the relative costs of RSA, RC4, and MD5, we replaced
each stage individually with a no-op and measured the corresponding server throughput.
Other TLS components, such as the TLS session cache, the randomness processing and
TLS packet marshaling cannot be replaced without also affecting other TLS components.
For these cases, we were forced to run some experiments with multiple TLS stages simul-
taneously disabled. We still estimate the relative cost of each component using Amdahl’s
Law.

4.1 Impact of TLS on server performance

The Apache server, without TLS enabled, achieves between 720 hits/sec and 1268 hits/sec
with the CS trace, and between 1447 hits/sec and 3216 hits/sec with the Amazon trace.
The difference in throughput for the two workloads is due to the increased average file
size: 46KB for the CS trace and only 7KB for the Amazon trace, as well as to the increased
working set size. Increasing the CPU speed from 500MHz to 933MHz leads to a substantial
increase in throughput in each case. The same effect is observed when going from a single
933MHz to a dual 933MHz system.

Apache TLS without the AXL300 served between 151 hits/sec and 467 hits/sec for the
CS trace, and between 159 hits/sec and 517 hits/sec for the Amazon trace. This confirms
that TLS incurs a substantial CPU cost and reduces the throughput by 63 to 89% relative
to the insecure Apache. Apache+TLS with the AXL300 served between 188 hits/sec and
521 hits/sec for the CS trace, and between 336 hits/sec and 757 hits/sec for the Amazon
trace. This shows that, with the use of the AXL300 board, the throughput loss is now only
58 to 77% relative to the insecure Apache.

4.2 Impact of increased CPU speed

Consider the impact of the available server CPU cycles on the relative cost of TLS. In the
configurations with a complete, functional TLS implementation, the 933MHz Pentium III
achieves a sizeable increase in throughput (55-71%) relative to the 500MHz Pentium III.

Increasing the CPU speed will not lead to a similar increase in the overall system per-
formance. However, ”back of the envelope” estimates lead to us to believe that neither
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the PCI bus nor the memory were saturated. The maximum throughput of actual content
provided by the servers was around 400Mb/s, for regular Apache server experiments. Our
server machine was a DL360 dual 933MHz with a 64-bit/33MHz PCI bus and a Gbit NIC;
such a PCI bus should not be limited before reaching content transfer rates around 1.2Gb/s
for regular HTTP, as described by [Kim et al. 2002]. At 400Mb/s HTTP content, one-third
of the 1.2Gb/s HTTP content throughput, we have reason to believe that we didn’t saturate
the PCI bus. The memory of the DL360 dual 933MHz server is PC133, which on a 64-bit
PCI bus should achieve a theoretical bandwidth of 8.5Gb/s; our 400Mb/s throughput of
actual HTTP content should not saturate the memory.

Another factor in the Web server performance is the CPU cache reuse. While we didn’t
measure the CPU cache reuse during our experiments, it is unlikely that the CS trace, with
a size of the document corpus of 530MB, will generate CPU cache reuse. The Amazon
trace, with a size of the document corpus of around 300KB, might generate cache reuse.

We conclude that the performance of the various TLS processing steps scales well with
increased availability of CPU cycles. In the long run, this implies that the performance loss
associated with the use of TLS should diminish as CPUs get faster. Of course, faster CPUs
can potentially be used to attack cryptosystems more effectively. As a result, stronger, and
potentially more CPU intensive, cryptography may become necessary in the future as well.

4.3 Impact of a second CPU

Consider the impact of dual CPU systems on the relative cost of TLS. In the configuration
with a complete, functional TLS implementation, the dual 933MHz Pentium III achieves
an increase in throughput (44-61%) relative to the single 933MHz Pentium III. While the
increase is smaller then the one noticed when going from the 500MHz Pentium III to the
933MHz Pentium III, it is still significant. Part of the cost of using dual CPUs is increased
operating system overhead. Our servers are running RedHat Linux 7.2. It can be expected
that further versions of the operating system will reduce the additional performance over-
head between incurred when moving from single to dual CPU servers.

4.4 Effectiveness of accelerator hardware

The use of the AXL300 accelerator yields a noticeable throughput improvement with the
CS trace (11 to 24%) relative to the normal TLS Apache, and a substantial gain with the
Amazon trace (46 to 111%) relative to the normal TLS Apache. The reason that the Ama-
zon workload benefits more from the accelerator is that the average session is shorter. As
a result, more requests in the Amazon trace require the full TLS handshake with its corre-
sponding RSA operations. The CS trace, with its longer sessions, benefits from the session
cache, lowering the effectiveness of accelerated RSA operations. Another contributing
factor in the performance difference is the average file size. In the CS trace, with files
averaging 46KB, the server spends proportionally more time transmitting files versus per-
forming connection setup when compared to the Amazon trace, which has an average file
size of 7KB.

The accelerator used for our experiments was a PCI card; typically, going to a PCI card
incurs costs such as bus latencies, transfer overheads and forced cache flushes. We don’t
know exactly the behavior of the driver since it’s close source.
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4.5 Comparative impact of accelerator hardware versus faster CPU

The next question we wish to pose is whether it is more advantageous to invest in accel-
eration hardware, or in a faster CPU. The answer depends strongly on the workload. With
the CS trace, using a faster CPU is more effective than using an accelerator board. How-
ever, with the Amazon trace, the opposite is true. We conclude that sites that only use
TLS servers for a small part of their user interaction, as Amazon does for its final purchase
validation and payment, will benefit from hardware RSA acceleration. Whereas, web sites
that do use TLS for all of their user interaction and have a high session reuse rate or large
objects to transmit, may be better served by investing in faster general purpose CPUs.

4.6 Comparative impact of accelerator hardware versus a second CPU

Another question we can answer using our methodology is whether it is more profitable to
invest in a second CPU or in an RSA accelerator. For the CS trace the system throughput
for a fully functional Apache TLS server on the dual CPU platform is 467 hits/sec, while
the performance of Apache TLS on the single CPU platform and with the RSA decryption
turned off is 332 hits/sec. Since we are emulating ideal RSA acceleration, no real accel-
erator will help the server achieve more than 332 hits/sec. In this case it is clear that a
second CPU always yields more performance improvement than an RSA accelerator. It is
important to notice that the performance of the dual CPU server with the RSA accelerator
is 521 hits/sec; if cost is no object, one can use both a second CPU and an RSA accelerator.

The picture is somewhat different for the Amazon trace. The performance of the dual
CPU server is 517 hits/sec, while the performance of the single CPU TLS server without
the RSA decryption is 588 hits/sec. The single CPU TLS server with the RSA accelerator
yields 523 hits/sec. Even though this performance is only marginally better than the per-
formance of the dual CPU server, it can be argued that future accelerators will be closer to
the ideal performance. At this point it is important to remember our assumption that the
secure server only provides static content. However, a real server machine will perform
some other computation besides the secure web server, such as CGIs or running a database
server. It is obvious that the increased computing power will be beneficial to this other
computation, whereas an RSA accelerator will have no effect on this additional workload.
We thus argue that for a trace similar to the Amazon trace, a second CPU and an RSA
accelerator have roughly the same value. As before, when cost is no object, the dual CPU
server with the RSA accelerator yields a better performance, namely 757 hits/sec.

4.7 Impact of session caching

Our results confirm the findings of prior work [Goldberg et al. 1998] that session caching
substantially improves server throughput. The main reason for this gain is a reduction in
the number of RSA operations as a result of session reuse. However, even in configura-
tions where the RSA operations are assumed to be infinitely fast, session caching is still
beneficial, avoiding the extra network traffic and other computations required by the full
TLS handshake. The TLS session cache improved throughput by a factor of 2.4-2.7 for our
workloads.

4.8 Relative cost and impact of crypto operations

Figures 7, 8, and 9 quantify the costs of various TLS processing steps. The RSA operations
have the dominant cost, as expected. Among the remaining operations, the “other TLS”
operations stand out, as do the MD5 MAC computation and the RC4 stream cipher in the
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case of the CS trace workload. However, these costs are sufficiently balanced that there is
no obvious single candidate for optimization. We note that, even when MD5 is the message
integrity function, both MD5 and SHA-1 are used in conjunction in several portions of the
TLS protocol, such as the “pseudo-random function,” used when generating key material.
In our experiments, “no MAC” replaces all MD5 and SHA-1 computations with no-ops,
throughout the entire TLS protocol, with the exception of the MD5 and SHA-1 operation
used in the pseudo-random number generator. The cost of the pseudo-random number
generator is considered below.

4.9 Miscellaneous TLS operations

Starting with a server in which we replaced RSA, RC4, pseudo-randomness computations
(which use the SHA-1 hash function), and the session cache with no-ops (labeled “PKX,
no randomness, perfect cache” on the bar charts), we still observed a significant perfor-
mance deficit relative to the original Apache performance. Removing TLS packet mar-
shaling costs (which involve message fragmentation, memory copy of message fragments
into TLS records and sequence number computation) and performing regular write calls on
the plaintext (labeled “PKX, no randomness, perfect cache, plain”) resulted in only modest
gains, so we decided to try something more radical. We created a “Skeleton TLS” system
that transmitted network messages of the same length as genuine TLS, but otherwise per-
forms no TLS processing whatsoever (see section 3.3.7). The difference between “PKX,
NULL, no MAC, no randomness, perfect cache, plain text communication” and skeleton
TLS covers between 8% and 11% of the total performance cost. Since we have already re-
placed the data exchanging TLS operations with plain text, the above difference indicates
a “catch all” of every other connection setup related TLS cost.

Once the “other TLS” costs have been measured, the remainder must be from sources
outside the computation associated with TLS. This includes the cost of the underlying
Apache web server, the Linux costs associated with the static content movement and the
Linux costs associated with the extra network traffic required during the TLS handshake.

4.10 Overall costs of TLS connection setup and data exchange

To determine the relative cost of connection setup we have modified the TLS protocol to
perform a minimal connection setup and regular encrypted data exchange, as described
in section 3.3.9. This involves establishing a generic TCP connection between the client
and server, then initializing the data structures used by TLS with the session keys set to
zero. We can then compare this with the the full setup/plain data exchange described in
section 3.3.6. The results are presented in figure 10.

Again using Amdahl’s Law, we show the cost of the TLS connection setup ranges from
45% to 62% of the total cost for the CS trace and ranges from 65% to 79% of the total cost
for the Amazon trace. Replacing the connection setup with a minimal initialization of the
data structures yields a throughput improvement of 82 to 168% for the CS trace and 190 to
385% for the Amazon trace.

Likewise, we show that the cost of the encrypted TLS data exchange ranges from 21
to 33% from the total cost for the CS trace and ranges from 3 to 5% from the total cost
for the Amazon trace. Replacing the encrypted TLS data exchange with plain commu-
nication yields a throughput improvement of 27 to 50% for the CS trace and of 3 to 5%
for the Amazon trace. We note that, in this experiment, replacing the encrypted TLS data
exchange with plain data exchange only eliminates a portion of the costs associated with
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RC4 and MD5, which are also used as part of the connection setup protocol.
These measurements imply that optimizations aimed at the connection setup phase of

TLS will have a more significant impact on system performance than optimizations aimed
at the data exchange phase. It is important to mention that the results could be different for
different cipher suites. For example, if RC4 is replaced with a more expensive cipher such
as DES, the relative cost of the bulk cipher would increase significantly.

4.11 Potential impact of protocol changes

When considering optimizations for the TLS connection setup phase, we wish to explore
potential changes to the TLS protocol aimed at reducing the amount of network traffic. To
do this, we used a straw-man implementation of a “fast resume” TLS variant that optimizes
the session resume protocol phase in such a way that two messages and one round-trip net-
work delay are eliminated. The results indicate that the potential throughput improvement
of such a hypothetical protocol change is minimal (the server throughput improved by 1 to
3% between “PKX, no randomness, perfect cache, plain” and “PKX, no randomness, per-
fect cache, plain, fast resume”). Therefore, optimizations aimed at reducing the volume of
network traffic will have little effect on TLS server throughput. However, such optimiza-
tions could have other benefits, particularly for bandwidth-limited clients. Shacham and
Boneh [2002] propose a fast-track TLS handshake mechanism that performs TLS session
resuming with fewer messages.

4.12 Dynamic content generation

A common question is how to apply performance measurements, such as those performed
in this paper with static content, to the relatively common case of dynamic content genera-
tion, which often involves running custom server plug-in code that makes database queries
and assembles HTML on the fly. Our experiments focus on TLS web servers that serve
static content, discerning among the TLS and non-TLS costs. If the TLS web server is
generating dynamic HTML, then the new load will obviously impact server throughput.
In the pie charts of Figure 9, this additional overhead should be reflected in the non-TLS
sections of the pie charts, which could be increased appropriately, scaling down the TLS
sections of the pie chart such that their relative costs remain the same.

4.13 Summary of results

We can summarize the result of our experiments as follows:

—TLS imposes a factor of 3.4 to 9 overhead over an insecure web server.

—The largest performance cost in the TLS web server is the public key cryptography (13%
to 58%).

—Non-TLS performance costs range from 19 to 45% of the total cost. These costs reflect
the Apache and Linux kernel involvement in serving the static content, but also include
the kernel costs of the extra network traffic needed by the TLS connection setup. How-
ever, these costs don’t cover any computation associated with TLS. The “Skeleton TLS,
fast resume” represents a stripped version of the TLS protocol in which the server re-
ceives a single message from the client, and then the regular HTTP protocol takes place.
By removing this single message necessary to “establish” a connection, we achieved the
same performance as the regular HTTP server.
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—The costs of marshaling TLS data structures, computing connection keys from the pre-
master secret, and executing other miscellaneous operations within TLS consumes be-
tween 6% and 15% of the total performance cost. Reducing the session resumption
protocol by two messages and one round-trip delay had a negligible impact on perfor-
mance (1 to 3%).

—Adding an RSA accelerator, a common commercial approach to addressing TLS server
performance issues, has widely different effects on server throughput depending on the
session reuse rate of the requests seen by the TLS server. For low session reuse rates
and with smaller web objects, the RSA accelerator can result in a 46-111% performance
improvement (a factor of two improvement in hit rate). For high session reuse rates
and with larger web objects, however, the RSA accelerator only resulted in a 11-24%
performance improvement.

—This improvement is bounded at 78-137% (for the Amazon trace) or 15-27% (for the CS
trace), regardless of how fast the RSA accelerator can run.

—The TLS session cache is effective; it improved throughput by a factor of 2.4-2.7 for the
CS trace and 2.2-2.4 for the Amazon trace, relative to a server with no cache.

—The costs of the non-RSA cryptographic operations, such as RC4, MD5 and pseudo-
random number generation, performed by TLS are relatively balanced. Hardware ac-
celeration for any individual operation would yield only modest performance improve-
ments.

—TLS appears to be purely CPU bound, as optimizations intended to reduce network
traffic have little effect on server throughput. Such optimizations might have an impact
for faster CPUs or for network with large delays and packet losses.

—The CPU costs associated with TLS connection setup have a more significant impact on
TLS server throughput than the CPU costs associated with TLS data exchange.

—As CPUs become faster, the relative cost of cryptographic components of TLS (RSA,
MD5, RC4) decreases, shifting the load to non-TLS components such as the web server
and the operating system kernel. This implies that faster CPUs will eventually bridge the
gap between secure and non-secure web servers. In the long term, as CPU performance
continues to grow, TLS overhead will diminish. Even before then, TLS web perfor-
mance is strongly related to the performance of unencrypted web servers. Faster regular
web servers make for faster TLS web servers.

—If given the choice between a dual CPU server and a single CPU server with an RSA
accelerator, the dual CPU server often dominates, and at worst equals, the performance
of the single CPU server with an RSA accelerator. If adding a cryptographic card costs
at least as much as the second CPU, than investing in faster or additional CPUs seems
to be a preferable strategy for maximizing TLS web server throughput.

5. FUTURE WORK

This paper has studied the performance of TLS web service from a single server. It has
not considered the larger environment that often occurs in an e-commerce site, such as
load-balancing front end switches, with replicated clusters of web servers and a database
back-end. There have already been some efforts to study these environments. For exam-
ple, the Zeus web server performance tuning guide [Zeus Technology 2001] mentions the
importance of sharing TLS sessions across web servers in a cluster. We plan to study the
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interaction of different cluster load-balancing strategies (such as used in LARD [Pai et al.
1998]) with TLS web servers.

This paper also presents data that predicts what might happen to TLS performance as
CPUs become faster in the coming years. Rather than our no-op approach to performance
measurement, a more accurate technique would be to measure TLS performance using a
precise machine simulator such as SimOS [Rosenblum et al. 1997] or RSIM [Pai et al.
1997]. Such simulators would allow us to predict the effects of future architectural trends
on TLS performance. Likewise, many web servers such as Zeus and Flash [Pai et al.
1999a] are known to radically outperform Apache. As the available CPU increases and
cryptographic operations are no longer the primary performance bottleneck, these other
server architectures may also prove to be faster at TLS web service than Apache.

6. RELATED WORK

The related work falls into two main categories:

—TLS performance analysis and optimizations

—Benchmarking and improvements of underlying web server technology

6.1 TLS performance analysis and optimizations

We have measured the performance of our TLS web servers using home-brew work-
loads. Efforts toward the standardization of SSL benchmarks have resulted in
SPECweb99 SSL [2002]. SPECweb99 SSL is an extension of SPECweb99 [1999]. While
we are measuring server throughput for a fixed number of clients (enough to saturate the
server CPU), SPECweb99 SSL measures the maximum number of simultaneous connec-
tions requesting the predefined benchmark workload that a secure web server is able to sup-
port while still meeting specific throughput and error rate requirements. The SPEC99 SSL
workload includes both static and dynamic content, while our workload only includes static
files. Under the session resumption scheme used by the SPEC benchmark, the TLS web
server performs a full handshake approximately once out of every five web requests. This
means that under the SPEC workload the server is performing twice as many full TLS
handshakes as either of the Amazon or CS workloads.

Researchers have studied algorithms and systems to accelerate RSA operations. Boneh
and Shacham [2001] have designed a software system to perform RSA operations together
in batches, at a lower cost than doing the operations individually. Batching b RSA opera-
tions yields good results for b = 4 (a speedup improvement of 2.5) and b = 8 (a speedup
improvement of 5). The speedups are relative to the RSA decryption only. Integrating the
RSA operations batching with TLS web servers involves changes similar to adding support
for a hardware accelerator. While a batching factor of 8 yields better results, it imposes an
increased latency on TLS handshakes to collect the batches for processing.

Dean et al. [2001] have designed a network service, offloading the RSA computations
from web servers to dedicated cryptoservers with RSA hardware. The connections be-
tween the clients of the cryptoserver and the cryptoserver itself are protected by symmetric
key encryption. The costs of the cryptoserver operations can be amortized among a large
number of clients.

A more global approach was to distribute TLS processing stages among multiple ma-
chines. Mraz [2001] has designed an architecture for high volume TLS web servers that
offloads the RSA processing and bulk ciphering to dedicated servers. The TLS hand-
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shakes are performed by array of SSL Handshake Protocol specific servers. The actual
encryption/decryption processing is offloaded to a dedicated and scalable array of In-Line
Encryption Engines. The In-Line Encryption Engine is architected such that requests and
responses flowing to and from the Transaction Servers are in clear text. Similar approaches
are taken by Intel [2002], Alteon [2002] and others.

Apostolopoulos et al. [1999] studied the cost of TLS connection setup, RC4 and MD5,
and proposed TLS connection setup protocol changes. The methodology employed fo-
cused on the time spent during the TLS connection and on the maximal throughput of the
RC4 and MD5 stage rather than on the impact of that particular stage in the throughput of
the whole server. One optimization of the TLS handshake protocol involves the caching
of server certificates by clients which obviates the need for the server to send its certificate
to the client. The second approach reverses the roles of client and server with respect to
generating the premaster secret.

Research has suggested that, indeed, session caching helps web server performance.
Goldberg et al. [1998] have shown that TLS session caching can reduce TLS interaction
time (connection setup and data exchange time) by 15% to 50% to geographically diverse
U.S. sites. In the real Internet, characterized by delays and packet losses, reducing the
number of messages also reduces the TLS connection setup latency.

For the emerging wireless Internet, even small reductions in the number of messages
needed for TLS connection establishment might have a significant impact. Shacham and
Boneh [2002] propose a fast-track handshake mechanism for TLS connection resumption,
which might be beneficial in such low-bandwidth and high-latency environments.

The cost of the IPsec protocol was investigated by [Miltchev and Ioannidis 2002]. Their
experiments showed that using cryptographic cards was effective for large packet sizes,
but less effective for small (up to 40 bytes) packets; they proposed using a hybrid solution
(software encryption for small packets, hardware encryption for large packets), or integrat-
ing cryptographic functionality into the network interface.

6.2 Web servers benchmarking and design

Considerable work has been done on improving the raw I/O processing speed of operating
systems. Most of this work has focused on improving message latency and on deliver-
ing the network’s full bandwidth to application programs [McKenney and Dove 1992;
Anderson and Pasquale 1995; Bas et al. 1995; Chen and Bershad 1993; Druschel 1994;
Druschel et al. 1993; Druschel et al. 1994; Druschel and Peterson 1993; Druschel et al.
1992; Thadani and Khalidi 1995; Montz et al. 1994; Mosberger et al. 1996; Pai et al.
1999b; Banks and Prudence 1993; Brendan et al. 1993; Smith and Traw 1993; Edwards
et al. 1994].

More recently, researchers have started to look specifically at the performance of Internet
servers on general-purpose operating systems. There has been considerable prior work in
performance analysis and benchmarking of conventional web servers. A study [Nahum
et al. 2001] showed that a useful metric for server performance is the maximum throughput
(capacity); packet loss in wide-area networks could reduce server capacity by 50%.

The Standard Performance Evaluation Corporation proposed SPECweb99 [1999] as a
standardized workload that measures simultaneous connections rather than HTTP opera-
tions. Its workload contains both static and dynamic files. Banga and Druschel [1999]
propose and evaluate a new method for web traffic generation that can generate bursty
traffic, with peak loads that exceed the capacity of the server.
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One early experience that lead to published results was the 1994 California election
server [Mogul 1995]; the study showed that the use of a new TCP connection for each
HTTP request was wasting server resources. This problem was addressed by HTTP 1.1, in
which several HTTP requests can be served over the same TCP connection. Another early
study was performed at NCSA showed that servers using pre-forked processes perform
better than servers that fork a new process for each request [McGrath 1995].

Web server developers also provide tuning guides for their systems [Laurie and Laurie
1999]. One suggestion for BSD and SunOS operating systems is to increase SOMAX-
CONN, the kernel parameter that specifies the maximum number of unaccepted socket
connections that can be waiting in queue (SOMAXCONN is often referred to as the lis-
ten() queue limit).

Also, there have been some proposals for enhancing the Unix system call interface to
support I/O in Internet servers more efficiently. These proposals address support for zero-
copy I/O [Pai et al. 1999b; Thadani and Khalidi 1995; Chu 1996], and reducing the number
of system calls in the typical I/O path [Hu et al. 1997]. Experimental results [Nahum et al.
2002] have also shown that reducing the number of TCP packets improves web server
performance.

In response to observations about the large context-switching overhead of process-per-
connection servers, recent servers [Chankhunthod et al. 1996; Network Appliance, Inc.
2002; Wessels 2002; Poskanser 2002; Zeus Technology 2002; Pai et al. 1999a] have used
event-driven architectures. Measurements of the servers under laboratory conditions indi-
cate an order of magnitude performance improvement [Chankhunthod et al. 1996; Schechte
and Sutaria 1997]. However, some studies of such servers under real workloads, e.g.
[Maltzahn et al. 1997; Fox et al. 1997], indicate significant state-management overhead
and poor scalability. A study [Banga et al. 1998; Banga and Mogul 1998] discovered that
event-driven web servers suffer a throughput decrease and poor scalability under delays
characteristic to wide area networks, caused by an inefficient implementation of the se-
lect system call. A scalable implementation of select [Banga et al. 1999] was proposed
and evaluated; results show that it improves both server throughput and scalability. Welsh,
Culler, and Brewer [2001] proposed a robust, high-performance platform for building mas-
sively concurrent Internet services.

7. CONCLUSIONS

We have presented a systematic analysis of the performance of the Apache web server
with the mod SSL extension for secure TLS delivery of web pages. Our methodology was
to exercise the web server with a trace-based workload while selectively replacing TLS
operations with no-ops. By measuring the differences in the resulting server throughput,
our measurements are more accurate than results that could otherwise be obtained through
traditional CPU profilers or microbenchmarks.

Our measurements show that RSA computations are the single most expensive opera-
tion in TLS, consuming 13-58% of the time spent in the web server. Other TLS costs
are balanced across other the various cryptographic and protocol processing steps. Op-
timizations aimed at improving RSA operation throughput, whether through algorithmic
enhancements, cryptographic co-processors, or simply increasing raw CPU speed, will
continue to be profitable. However, even with ideal zero-cost RSA operations, there is still
a large gulf between TLS server performance and insecure server performance.

Hardware acceleration is fairly effective in absorbing the cost of the RSA operations.
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Our results indicate that accelerators have a significant impact on the throughput of dedi-
cated secure servers for e-commerce sites since such sites minimize the number of requests
to secure servers and therefore experience relatively low session reuse rates. Acceleration
appears to be less effective for sites for which all requests are handled by a TLS server;
these sites experience higher session reuse rates. For such sites, investing in a faster CPU
may prove more effective.

If given the choice between a dual CPU server and a single CPU server with an RSA
accelerator, the dual CPU server often dominates and at worst equals the performance
of the single CPU server with an RSA accelerator. Dollar for dollar, investing in faster
or additional CPUs seems to be a preferable strategy for maximizing TLS web server
throughput.

Our results suggest that future efforts to optimize TLS server throughput should focus
on reducing the CPU costs of the TLS connection setup phase, rather than working on the
TLS data exchange phase. Likewise, efforts to redesign or extend the TLS protocol should
consider the CPU costs of all operations performed during connection setup, not just the
RSA operations.

However, it should be noted that as CPUs become faster, the relative cost of crypto-
graphic components of TLS (RSA, MD5, RC4) decreases, shifting the load to non-TLS
components such as the web server and the operating system kernel. This means that
faster CPUs will eventually bridge the gap between secure and non-secure web servers. In
the long term, as CPU performance continues to grow, TLS overhead will diminish, and
research should focus on designing more efficient web servers. Even today, TLS web per-
formance is strongly related to the performance of unencrypted web servers; faster regular
web servers make for faster TLS web servers.
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