
A10: INSUFFICIENT LOGGING & MONITORING

Lack of proper logging, monitoring, and alerting let attacks go
unnoticed.

USE CASES
• Lack of logging, monitoring, alerting allow attackers to

go unnoticed
• Logs are not protected for integrity
• Logs are not integrated into Security Information and Event

Management (SIEM) systems
• Logs and alerts are poorly designed
• Companies rely on manual rather than automated systems

HOW TO PREVENT
• Log failed attempts, denied access, input validation failures,

any failures in security policy checks
• Ensure that logs are formatted to be consumable by

other tools
• Protect logs as highly sensitive
• Include enough detail to identify attackers
• Avoid having sensitive data in logs - If you need the information

for debugging purposes, redact it partially.
• Integrate with SIEMs and other dashboards, monitoring,

alerting tools

A1: BROKEN OBJECT LEVEL AUTHORIZATION

Attacker substitutes ID of their resource in API call with an ID of a
resource belonging to another user. Lack of proper authorization
checks allows access. This attack is also known as IDOR (Insecure
Direct Object Reference).

USE CASES
• API call parameters use IDs of resourced accessed by the API
• /api/shop1/financial_details
• Attackers replace the IDs of their resources with a different,

which they guessed
• /api/shop2/financial_details
• The API does not check permissions and lets the call through
• Problem is aggravated if IDs can be enumerated
• /api/123/financial_details

HOW TO PREVENT
• Implement authorization checks with user policies

and hierarchy
• Don’t rely on IDs sent from client. Use IDs stored in the session

object instead.
• Check authorization each time there is a client request to

access database
• Use random non-guessable IDs (UUIDs)

A2: BROKEN AUTHENTICATION

Poorly implemented API authentication allowing attackers to
assume other users’ identities.

USE CASES
• Unprotected APIs that are considered “internal”
• Weak authentication not following industry best practices
• Weak, not rotating API keys
• Weak, plain text, encrypted, poorly hashed, shared/default

passwords
• Susceptible to brute force attacks and credential stuffing
• Credentials and keys in URL
• Lack of access token validation (including JWT validation)
• Unsigned, weakly signed, non-expiring JWTs

HOW TO PREVENT
• Check all possible ways to authenticate to all APIs
• Password reset APIs and one-time links also allow users to get

authenticated and should be protected just as seriously
• Use standard authentication, token generation, password

storage, MFA
• Use short-lived access tokens
• Authenticate your apps (so you know who is talking to you)
• Use stricter rate-limiting for authentication, implement lockout

policies and weak password checks

A3: EXCESSIVE DATA EXPOSURE

API exposing a lot more data than the client legitimately needs,
relying on the client to do the filtering. Attacker goes directly to the
API and has it all.

USE CASES
• APIs return full data objects as they are stored by the database
• Client application shows only the data that user needs to see
• Attacker calls the API directly and gets sensitive data

HOW TO PREVENT
• Never rely on client to filter data
• Review all responses and adapt responses to what the API

consumers really need
• Define schemas of all the API responses
• Don’t forget about error responses
• Identify all the sensitive or PII info and justify its use
• Enforce response checks to prevent accidental data and

exception leaks

A4: LACK OF RESOURCES & RATE LIMITING

API is not protected against an excessive amount of calls or
payload sizes. Attackers use that for DoS and brute force attacks.

USE CASES
• Attacker overloading the API
• Excessive rate of requests
• Request or field sizes
• “Zip bombs”

HOW TO PREVENT
• Rate limiting
• Payload size limits
• Rate limits specific to API methods, clients, addresses
• Checks on compression ratios
• Limits on container resources

A5: BROKEN FUNCTION LEVEL AUTHORIZATION

API relies on client to use user level or admin level APIs. Attacker
figures out the “hidden” admin API methods and invokes
them directly.

USE CASES
• Some administrative functions are exposed as APIs
• Non-privileged users can access these functions if they

know how
• Can be a matter of knowing the URL, using a different

verb or parameter

/api/users/v1/user/myinfo
/api/admins/v1/users/all

HOW TO PREVENT
• Don’t rely on app to enforce admin access
• Deny all access by default
• Grant access based on specific roles
• Properly design and test authorization

A6: MASS ASSIGNMENT

USE CASES
• API working with the data structures
• Received payload is blindly transformed into an object

and stored

NodeJS:
var user = new User(req.body);
user.save();

Rails:
@user = User.new(params[:user])

• Attackers can guess the fields by looking at the GET
request data

HOW TO PREVENT
• Don’t automatically bind incoming data and internal objects
• Explicitly define all the parameters and payloads you

are expecting
• For object schemas, use the readOnly set to true for all

properties that can be retrieved via APIs but should never
be modified

• Precisely define at design time the schemas, types, patterns
you will accept in requests and enforce them at runtime

A7: SECURITY MISCONFIGURATION

Poor configuration of the API servers allows attackers to exploit
them.

USE CASES
• Unpatched systems
• Unprotected files and directories
• Unhardened images
• Missing, outdated, misconfigured TLS
• Exposed storage or server management panels
• Missing CORS policy or security headers
• Error messages with stack traces
• Unnecessary features enabled

HOW TO PREVENT
• Repeatable hardening and patching processes
• Automated process to locate configuration flaws
• Disable unnecessary features
• Restrict administrative access
• Define and enforce all outputs including errors

A8: INJECTION

Attacker constructs API calls that include SQL-, NoSQL-, LDAP-, OS-
and other commands that the API or backend behind it
blindly executes.

USE CASES
Attackers send malicious input to be forwarded to an internal
interpreter:
• SQL
• NoSQL
• LDAP
• OS commands
• XML parsers
• Object-Relational Mapping (ORM)

HOW TO PREVENT
• Never trust your API consumers, even if internal
• Strictly define all input data: schemas, types, string patterns -

and enforce them at runtime
• Validate, filter, sanitize all incoming data
• Define, limit, and enforce API outputs to prevent

data leaks

A9: IMPROPER ASSETS MANAGEMENT

Attacker finds non-production versions of the API: such as staging,
testing, beta or earlier versions - that are not as well protected, and
uses those to launch the attack.

USE CASES
• DevOps, cloud, containers, K8S make having multiple

deployments easy (Dev, Test, Branches, Staging, Old versions)
• Desire to maintain backward compatibility forces to leave old

APIs running
• Old or non-production versions are not properly maintained
• These endpoints still have access to production data
• Once authenticated with one endpoint, attacker may switch

to the other

HOW TO PREVENT
• Inventory all API hosts
• Limit access to anything that should not be public
• Limit access to production data. Segregate access to

production and non-production data.
• Implement additional external controls such as API firewalls
• Properly retire old versions or backport security fixes
• Implement strict authentication, redirects, CORS, etc.

OWASP
API Security Top 10

C H E A T S H E E T

4 2 C R U N C H . C O M

API Security Info & News
APIsecurity.io

42Crunch API Security Platform
42Crunch.com

VS Code OpenAPI Extension
http://bit.ly/42vscode

