

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.8, September 2014 – www.ijais.org

23

Performance Evaluation of NoSQL Systems Using YCSB

in a resource Austere Environment

Yusuf Abubakar
Department of Computer

Science
Nuhu Bamalli Polytechnic,

Zaria - Nigeria

ThankGod S. Adeyi
Department of Mathematics

Ahmadu bello University,Zaria-
Nigeria

Ibrahim Gambo Auta
Waziri Umaru Federal

Polytechnic
Birnin Kebbi

ABSTRACT
NoSQL is a database used to store high volume of data.

NoSQL databases are horizontally scalable, distributed, open

source and non-relational. High performance is a major

concern for practically every data-driven system. NoSQL

databases claim to deliver faster performance than the popular

Relational database systems in various use cases, most

notably those involving huge data. While this is always the

case, it should be understood that not all NoSQL databases are

created alike where performance is concerned. This being the

case, IT professionals works hard to ensure that the database

they select is optimized for the success of their application use

cases. Such selection can be made in-house, based on tests

with academic database benchmarks. We present the Yahoo!

Cloud Serving Benchmark (YCSB) framework, with the goal

of facilitating performance comparisons of the new generation

of NoSQL databases in an environment where resources are

limited. Unlike many previous benchmarks that considered a

cluster or distributed system that NoSQL is known for, we

limit out experiment to a single PC assuming a cluster with a

single node or a distributed system with a single PC. We

define a core set of benchmarks and report results for four

widely used systems: MongoDB, ElasticSearch, Redis, and

OrientDB implementation.

1. INTRODUCTION
While it is always the case that NoSQL stores claim to be

faster in terms of performance than RDBMS systems in

various use cases especially among the big data stores. It

should be noted that not all NoSQL datastores are created

alike where performance is concerned. System architects and

IT managers are wise to compare NoSQL databases in their

own environments using data and user interactions that are

representative of their expected production workloads before

deciding which NoSQL database to use for new application

[11].

Most medium-sized enterprises run their databases on

inexpensive off-the-shelf hardware; they need quick answers

to complex queries [10]. Thus, it is important that the chosen

database system and its tuning be optimal for the specific

database size and design. Such choice can be made in-house,

based on tests with academic database benchmarks. This

paper focuses on measuring the performance of four NoSQL

databases on a Cloud system with just a single node to give a

direction in a situation where resources are limited and

developers have only choice of a single computer system to

deploy application whose requirement is best fit into a

NoSQL data store.

2. BACKGROUND
In this section, we describe some background about the

different data processing systems that we examine in this

paper.

2.1 MongoDB
MongoDB [1] is a popular open-source NoSQL database.

Some of its properties are a document-oriented storage layer,

auto-sharding and asynchronous replication of data between

servers and indexing in the form of B-trees. In MongoDB data

is stored in collections and each collection is made up of

documents. Collections and documents are loosely analogous

to tables and records, respectively, found in relational

databases. MongoDB does not require a rigid database

schema for the documents. Specifically, documents in the

same collection can made up of different structures. Another

important feature of MongoDB is its support for autosharding.

With sharding, data is partitioned between multiple nodes in

an order-preserving manner. Sharding is similar to the

horizontal partitioning technique that is used in parallel

database systems. This feature enables horizontal scaling

across multiple nodes. When some nodes have a

disproportionate amount of data compared to the other nodes

in the cluster, MongoDB redistributes the data automatically

so that the load is equally distributed across the nodes/shards.

2.2 ElasticSearch
Elasticsearch is a horizontally-scalable, open source

distributed database built on Apache’s Lucene that delivers a

full-featured search experience across terabytes of data with a

simple yet powerful API. It is built to handle huge amounts of

data volume with very high availability and to distribute itself

across many machines to be fault-tolerant and scalable, all the

while maintaining a simple but powerful API that allows

applications from any language or framework access to the

database [12].

Mapping is similar to a schema definition in SQL databases.

A mapping is a crucial part of every index in Elasticsearch: it

defines all document types within the index and how each

document and its fields are saved, analyzed, and indexed.

Elasticsearch can work with either implicit or explicit

mapping [12].. If the Elasticsearch server has not been handed

mapping before a document is inserted, the server will try to

infer the type of the document based on the values in the

fields of the document and add this type to the mapping.

While implicit mapping might be an adequate solution in

some cases, the use of explicit mapping provides an

opportunity to create complex document types and to control

how the Elasticsearch server analyzes each field. Explicit

mapping allows the disabling of indexing of some fields in a

document (by default the Elasticsearch server indexes all

fields), which reduces the amount of the disk space needed

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.8, September 2014 – www.ijais.org

24

and increases the speed of adding new documents. This also

provides a way to store the data that must not be searched but

must be quickly accessible through indexed fields. For

example, if we have a set of commits in a version control

repository, we might want to index fields like author, date,

commit message, etc., but remove the actual change sets from

the index. While change sets remain to be instantly accessible

through other fields, they neither take additional disk space

nor increase the time required to index a document.

Elasticsearch provides its own query language based on JSON

called Query DSL. A given search can be performed in

Elasticsearch in two ways: in a form of a query or in a form of

a filter. The main difference between them is that a query

calculates and assigns each returned document with the

relevance score, while a filter does not. For this reason,

searching via filters is faster than via queries. The official

documentation recommends using queries only in two

situations: for full text searches or when the relevance of each

result in the search is important. For simplicity, we will use

term query to describe both queries and filters; however, our

experience with Elasticsearch is limited to working only with

filters, thus we do not report about use of queries.

The search in ElasticSearch is near real-time [12]. It means

that although documents are indexed immediately after they

are successfully added to an index, they will not appear in the

search results until the index is refreshed. The Elasticsearch

server does not refresh indices after each update, instead it

uses a specified fixed time interval (the default value is 1

second) to perform this operation. Since refreshing is costly in

terms of disk I/O, it might affect the speed of adding new

documents [12]. Therefore, if you need to perform a large

number of updates at once, you might want to temporally

increase the default indexing interval value (or even disable

auto-refresh) and then manually refresh indices after updates

are completed.

ElasticSearch is a Restful server, so the main way of

communication with it is through its REST API.

Communication between the Elasticsearch server and a client

is straight forward. In the majority of cases, a client opens a

connection and submits a request, which is a JSON object,

and receives a response, which is also a JSON object. The

simplicity of this mode of communication places no

restrictions on programming language used to implement

clients or the platforms that they operate on; if a client can

send HTTP requests, it can communicate with the

Elasticsearch server. Moreover, there are libraries for different

languages (e.g.,PyES for Python) that take care of some

mechanics, and can provide better integration with the

language.

2.3 OrientDB
OrientDB is an open source NoSQL database management

system written in Java. It is a document-based database, but

the relationships are managed as in graph databases with

direct connections between records. It supports schema-less,

schema-full and schema-mixed modes. It has a strong security

profiling system based on users and roles and supports SQL as

a query language. OrientDB uses a new indexing algorithm

called MVRB-Tree, derived from the Red-Black Tree and

from the B+Tree; this reportedly has benefits of having both

fast insertions and fast lookups [13].

Features

a) Transactional: supports ACID Transactions. On crash it

recovers pending documents.

b) GraphDB: native management of graphs. 100%

compliant with TinkerPop Blueprints standard for

Graph database.

c) SQL: supports SQL language with extensions to handle

relationships without SQL join, manage trees and

graphs of connected documents

d) Web ready: supports natively HTTP, RESTful protocol

and JSON without use 3rd party libraries and

components.

e) Run everywhere: the engine is 100% pure Java: runs on

Linux, Windows and any system that supports Java

technology.

f) Embeddable: local mode to use the database bypassing

the Server. Perfect for scenarios where the database is

embedded [13].

2.4 Redis
Redis [14] is an open source in-memory key-value store

database that promises very fast performance, and more

flexibility than the basic key-value structure. In Redis, a

database is well-known by a number; the normal database is

number 0. The number of databases can be configured but

default is 16 databases [14]. Basically, a Redis database is a

dictionary of key and value pairs. Nevertheless, apart from the

classic key-value structure where value is a string and users

are responsible to parse it at the application level, Redis offers

more choices of data structures, where a value can be stored

as: A string. A list of strings: Insertions at either the head or

tail of the list are supported. Besides, querying for items near

the two ends of the list is extremely fast, while querying for

one in the middle of a long list is slower. A set of strings: This

is a non-duplicated collection of strings which means adding

the same string repeatedly yields only one single copy. Add

and remove operations only take constant time (O (1)).

A sorted set of strings: Similar to set but in a sorted set, each

string is associated with a score specified by clients. This

score is used as the criteria for sorting and can be the same

among multiple members of the set.

Redis databases can be replicated using the master-slave

model. However, it does not support automatic failover,

which means if the master crashes, a slave has to be manually

promoted to replace it. A slave can have other slaves of its

own, so it can also accept write requests, though a slave is in

read-only mode by default. At the time being, sharding is not

officially supported, although it is provided by some

particular drivers [14].

3. RELATED WORK
Database benchmarking is an often discussed topic in the

research area of relational databases. In this section we give

an overview of the current research state of topics related to

our intended goal to test performance of some NoSQL and

SQL databases on a single machine.

[8] Proposed a workbench tool to efficiently run numerous

benchmark tests to achieve high self-reliance results. Their

tool interfaces with a workload generator, like the YCSB

Client, to execute each run. They provided a good background

for our work as they provide us an alternative benchmark tool

to consider.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.8, September 2014 – www.ijais.org

25

[9] argue that many micro and macro benchmarks do not

model real workloads effectively. One approach they propose

is to measure the performance of system operations, and

compute the expected performance for a given application that

uses some specified combination of those operations.

[10] Presents Transaction Processing Performance Council

(TPC) database benchmark that measures the performance of

ad-hoc Decision Support (DSS) queries. They present the

benchmark and the steps that a non-expert must take to run

the tests and report their own benchmark tests, comparing an

open-source and a commercial database server running on off-

the-shelf hardware when varying parameters that affect the

performance of DSS queries. Their work is limited to a TPC

databases only.

[5] Presents the Yahoo Cloud Serving Benchmark (YCSB)

framework to facilitate performance comparisons of the new

generation of cloud data serving systems. They define a core

set of benchmarks and report results for four widely used

systems: Cassandra, HBase, Yahoo!’s PNUTS, and asimple

sharded MySQL implementation. They work do not address a

situation where resources are limited and do not consider

some popular NoSQL databases like Mongodb, Redis, e.tc in

their experiment.

4. DETAILS OF THE BENCHMARK

TOOL
We used an existing tool provided by Yahoo, called the

YCSB Client, to execute these benchmarks. A key design goal

of this tool is extensibility as it can be used to benchmark new

cloud database systems. We have used this tool to measure

the performance of four NoSQL systems, as we report in the

next section. This tool is available under an open source

license. It has ready adapters for different NoSQL Databases.

YCSB tool allows benchmarking multiple systems and

comparing them by creating “workloads”. Using this tool, one

can install multiple systems on the same hardware

configuration, and run the same workloads against each

system. The architecture of YCSB is as shown in figure 1.

Figure 1: The YCSB Architecture [4]

4.1 Workloads
In this section we describe the set of workloads used for the

experiment in this paper.

The YCSB framework contains a core set of workloads to

evaluate different aspects of a system’s performance, called

the YCSB Core Package. In YCSB, a package is a collection

of related workloads. The workload defines the data that will

be loaded into the database during the loading phase, and the

operations that will be executed against the data set during the

transaction phase, and can be used to evaluate systems at one

particular point in the performance space. A package, which

includes multiple workloads, examines a broader slice of the

performance space. While the core package examines several

interesting performance axes, YCSB have not attempted to

exhaustively examine the entire performance space. It is

developed in such a way that users of can develop their own

packages either by defining a new set of workload parameters,

or if necessary by writing Java code. The following

Workloads were considered in this report;

4.1.1 Workload A – 100% Insert
This workload writes 1000, 20000, 40000, 80000 and 100000

thousand one kilobyte (1KB) record into an empty database in

each case recording the performance measurements in a text

file.

4.1.2 Workload B – 100% Read
This is read intensive workload, i.e. it retrieves 1000, 20000,

40000, 80000 and 100000 thousand one kilobyte (1KB)

record from a populated database in each case recording the

performance measurements in a text file.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.8, September 2014 – www.ijais.org

26

4.1.3 Workload C – 100% Update
Workload C changes a single field in a record size of 1000,

20000, 40000, 80000 and 100000 thousand one kilobyte

(1KB) from a populated database in each case recording the

performance measurements in a text file.

4.2 Overview of the Test
Each workload was validated with 10 client threads combined

with overall records of 1000, 20000, 40000, 60000, 80000 and

100000; And each of these combinations repeated 20 times.

YCSB by default creates 1k size records. The Execution time

vs number of records using 10 client threads was measured.

This utilizes all the cores of the test system and describes how

increasing the number of records affects the average response

time of a database operation.

5. RESULTS
In this section, we present benchmarking an experimental

evaluation of the four NoSQL Systems using the various

workload described in section 4.

Execution Time (INSERT Operation)

Figure 2: Graph of Execution time Against Number of records for Insert Operation.

Redis has the best performance, followed by MongoDB,

ElasticSearch and OrientDB respectively based on the time

they take to perform insertion. Redis is obviously optimized

for writes and can perform them faster than reads even when

the database is not heavily contended. Operations in Redis are

fast enough because of its in-memory nature [6].

Execution Time (Update Operation)

Figure 3: Graph of Execution time Against Number of records for Update Operation.

0

100000

200000

300000

400000

500000

600000

1000 20000 40000 60000 80000 100000

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Number of records

INSERT Operation

ElasticSearch OrientDB Redis MongoDB

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1000 20000 40000 60000 80000 100000

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Number of records

UPDATE Operation

ElasticSearch OrientDB Redis MongoDB

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.8, September 2014 – www.ijais.org

27

The above graph shows the speed of updating 1000, 20000,

40000, 60000, 80000 and 100000 records from the tested

databases.

MongoDB is poorer followed by OrientDB for Update

operation. Redis has the best performances especially at

lower workload, but compete with ElasticSearch at higher

workload (60000 records and above)

Execution Time (READ Operation)

Figure 4: Graph of Execution time Against Number of records for Read Operation

The above graph shows the performance of the tested

databases while reading 1000, 20000, 40000, 60000, 80000

and 100000 records.

The graph shows that the four database system tested have no

consistent graphic pattern while performing the read

operation.

6. CONCLUSION
 IT professionals need to do their best to ensure that the

database they select is appropriate and targeted for their

application use cases as fast performance is important for

nearly every data-driven system.. One of the ways to do this is

to conduct a Benchmark test in the environment in which the

database will run and under the expected data and concurrent

user workloads. Benchmarks such as those contained in this

paper can be useful as well in that they give database users a

good idea of what the core strengths and weaknesses of the

database they intend to use possesses.

7. REFERENCES
[1] MongoDB. http://www.mongodb.org/

[2] MongoDB – Replica Sets.

http://www.mongodb.org/display/DOCS/Replica+Sets

[3] Sematext. Elasticsearch refresh interval vs indexing

performance. http://bit.ly/1iZoPGc, July 2013.

[4] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data serving

platform. In VLDB, 2008.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,

and R. Sears, “Benchmarking cloud serving systems with

YCSB,” in Proceedings of the 1st ACM symposium on

Cloud computing, ser. SoCC ’10. New York, NY, USA:

ACM, 2010, pp. 143–154. [Online]. Available:

http://doi.acm.org/10.1145/1807128.1807152

[6] N. Hurst. (2010, March) Visual guide to NoSQL

systems. [Online]. Available:

http://blog.nahurst.com/visual-guide-to-nosql-systems.

[7] B. White et al. An integrated experimental environment

for distributed systems and networks. in OSDI, 2002.

[8] P. Shivam et al. Cutting corners: Workbench automation

for server benchmarking. In Proc. USENIX Annual

Technical Conference, 2008.

[9] M. Seltzer, D. Krinsky, K. A. Smith, and X. Zhang. The

case for application-specific benchmarking. In Proc.

HotOS, 1999.

[10] A. Thanopoulou, P. Carreira, and H Galhards.

Benchmarking with TPC-H on off-the-shelf Hardware.

AN Experiments Report.

[11] Datastax. Benchmarking Top NoSQL Databases:A

Performance Comparison for Architects and IT

Managers. White Paper BY DATASTAX

CORPORATION, FEBRUARY 2013

[12] Oleksii K., Olga B, Reid H., and Michael W.G. Mining

Modern Repositories with Elasticsearch. Cheriton School

of Computer Science University of Waterloo, Waterloo,

ON, Canada

[13] OrientDB. http://en.wikipedia.org/wiki/OrientDB.

[14] Karl Seguin. The little redis book. Karl Seguin, 2010.

0

5000

10000

15000

20000

25000

30000

1000 20000 40000 60000 80000 100000

Ex
ec

u
ti

o
n

 T
im

e
 (

m
s)

Number of records

READ Operation

ElasticSearch OrientDB Redis MongoDB

