
To Infinity and Beyond: Combined Attack on

ECC Using Points of Low Order�

Junfeng Fan, Benedikt Gierlichs, and Frederik Vercauteren

Katholieke Universiteit Leuven, COSIC & IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be

Abstract. We present a novel combined attack against ECC implemen-
tations that exploits specially crafted, but valid input points. The core
idea is that after fault injection, these points turn into points of very low
order. Using side channel information we deduce when the point at infin-
ity occurs during the scalar multiplication, which leaks information about
the secret key. In the best case, our attack breaks a simple and differ-
ential side channel analysis resistant implementation with input/output
point validity and curve parameter checks using a single query.

Keywords: Fault attack, side channel attack, elliptic curve
cryptography.

1 Introduction

Elliptic curve cryptography (ECC) is a public-key cryptosystem that was inde-
pendently proposed by Miller [33] and Koblitz [29]. In the context of embedded
implementations, ECC is an interesting alternative to systems like RSA [37]
because it allows for more compact and more efficient implementations.

The ubiquity of embedded cryptography in applications such as smart cards,
RFID tags, access control, etc. leads to a new security threat that does not tar-
get the mathematical strength of the cryptographic algorithms but the physical
strength of concrete implementations using side channel and fault attacks. Side
channel attacks (SCAs) were first described by Kocher in [30] and use the fact
that physical devices leak information through measurable quantities such as
power consumption [31], timing behavior [30], electromagnetic radiation [24,36],
etc. Fault attacks (FAs) were introduced by Boneh et al. [10], and rely on the
fact that an adversary can actively inject faults into a device which typically
leads the device to compute an incorrect result. Ways to inject faults include
clock and power glitches [4,6], lasers [38], etc.

� This work was supported in part by the European Commission’s ECRYPT II NoE
(ICT-2007-216676), by the Belgian State’s IAP program P6/26 BCRYPT, by the
K.U. Leuven-BOF (OT/06/40) and by the Research Council K.U. Leuven: GOA
TENSE (GOA/11/007). Benedikt Gierlichs and Frederik Vercauteren are Postdoc-
toral Fellows of the Fund for Scientific Research - Flanders (FWO).

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 143–159, 2011.
c© International Association for Cryptologic Research 2011



144 J. Fan, B. Gierlichs, and F. Vercauteren

Straightforward implementations of ECC can be easily broken by a range
of well known attacks, including simple and differential side channel analysis
(SSCA, DSCA) as shown by Coron [20] and differential fault analysis as demon-
strated by Biehl et al. [9] and later generalized by Ciet and Joye [16]. We refer
to Fan et al. [23] for a comprehensive overview of the existing countermeasures
to thwart these attacks and simply focus on the main ideas.

Resistance against SSCA can be achieved by regular scalar multiplication al-
gorithms [20,28], unified addition and doubling formulae [12,19] or side channel
atomicity [14]. Basically any solution that ensures a constant sequence of opera-
tions in the scalar multiplication algorithm, identical or indistinguishable point
operations, is viable.

DSCA can be thwarted by ensuring that the scalar multiplication algorithm
processes strictly unpredictable, e.g. randomized, data. Typical randomization
techniques include base point blinding [20], randomized projective coordinates
[20], curve isomorphisms [27] and field isomorphisms [27]. Alternative approaches
include key randomization [20] and random key splitting [15] before each scalar
multiplication, but they require that an adversary cannot extract any informa-
tion from a single trace [18]. However, as shown by Goubin [25] most of these
countermeasures can be broken in the chosen message scenario when the curve
admits “special points”, i.e. where one of the coordinates is zero. Smart [40] pro-
vides several easy countermeasures preventing Goubin’s attack: for special points
of low order, cofactor multiplication is proposed and to avoid special points of
large order, all points are first mapped to an isogenous curve, before scalar mul-
tiplication is executed. Note that all NIST curves over large prime fields have
cofactor equal to one.

Due to ECC’s group structure, an elegant and efficient way to detect faults
is to check if the input to and the output of the scalar multiplication algorithm
are valid points on the curve as explained by Biehl et al. [9]. Ciet and Joye point
out that one must additionally check the curve parameters for faults [16], which
in the remainder of the paper we consider to be part of the initial validity check.

In this paper we present a novel attack that combines fault injection with
SSCA (cf. combined attack [3]) and specially crafted, but valid input points P .
The core idea is that, after a single fault injection, P turns into a point P ′ of very
low order � (e.g. � = 2, 3, . . . , 200) with practical probability. Since the point P ′

has low order, the point at infinity will appear during the computation of k ·P ′.
This event can be detected via side channels and leaks information about the
key k. Our attack cannot be prevented by most of the countermeasures men-
tioned above such as input and output validity checks, cofactor multiplication
and isogeny defence (which foil Goubin’s attack), SSCA countermeasures and it
bypasses many DSCA countermeasures.

The paper is organized as follows. In Section 2, we recall the necessary back-
ground on elliptic curves and in Section 3, we describe an effective algorithm
to compute valid points on an elliptic curve that, after a bit-flip in one of their
coordinates turn into points of a given small order. In Section 4, we exploit these
points to derive our new attack and illustrate it on a very basic implementation.



Combined Attack on ECC Using Points of Low Order 145

In Section 5, we discuss the assumptions underlying our attack and analyze its
applicability when the basic implementation is enhanced with common counter-
measures. Finally, Section 6 concludes the paper.

2 Background on Elliptic Curves

In this section we briefly review the necessary background on elliptic curves over
Fp. An elliptic curve E over Fp with p > 3 can always be given by a short
Weierstrass equation y2 = x3 + ax + b, with a, b ∈ Fp and 4a3 + 27b2 �= 0. For
every finite field K containing Fp one now considers the set of K-rational points

E(K) := {(x, y) ∈ K ×K | y2 = x3 + ax+ b} ∪ {O}
where O denotes the point at infinity.

2.1 Group Law

The use of elliptic curves in cryptography stems from the fact that E(K) natu-
rally possesses the structure of an abelian group. It is common practice to denote
the group operations in an additive way (i.e. using + and − symbols), as opposed
to the multiplicative notation when dealing with groups like F

∗
p. The group law

is defined by the following general rules: O is the zero element, and any three
points that lie on a line add up to zero.

Group Law Formulae. Working this out yields the following explicit rules for
adding two points P = (xP , yP ) and Q = (xQ, yQ). If Q = −P , i.e. if xP = xQ

and yP = −yQ, then P +Q = O. If P �= ±Q, we obtain the following addition
formula: R = (xR, yR) = P +Q with

xR =
(
yQ − yP

xQ − xP

)2

− xP − xQ and yR =
(
yQ − yP

xQ − xP

)
(xP − xR)− yP . (1)

If P = Q, we obtain the doubling formula: R = (xR, yR) = 2 · P with

xR =
(

3x2
P + a

2yP

)2

− xP − xQ and yR =
(

3x2
P + a

2yP

)
(xP − xR)− yP . (2)

Note that the above formula for addition does not depend on the curve equation
at all and that the formula for doubling only involves the parameter a. This
simple fact has been exploited in several attacks before [9] and will also be
crucial in our attack.

Since inversions are typically much more expensive than multiplications, sev-
eral types of projective coordinate systems have been developed. Standard pro-
jective coordinates [5] represent an elliptic curve point P = (x, y) by (X,Y, Z)
where x = X/Z and y = Y/Z, whereas Jacobian projective coordinates [5] use
x = X/Z2 and y = Y/Z3. The above addition/doubling formulae can easily be
reformulated using projective coordinates, but the resulting formulae will also
depend on a only.



146 J. Fan, B. Gierlichs, and F. Vercauteren

Group Law Implementation. An implementer of an elliptic curve system is
not only faced with the choice of the elliptic curve model to use, such as short
Weierstrass, Montgomery [34], Edwards [7,8], Hessian [39], etc., and the choice
of an appropriate coordinate system like projective [5] or Jacobian [5], but also
with the handling of borderline cases. Indeed, the above addition formula (1)
can only handle the cases where P �= ±Q, P �= O and Q �= O. Similarly, the
doubling formula (2) will fail when P is a point of order two or P = O.

The way in which the implementation handles these borderline cases leads
to the following classification: full and partial domain correctness. In the full
domain correctness case, the implementation computes P +Q and 2 ·P correctly
for all P,Q. In the partial domain correctness case the implementation either
stops working (e.g. division by zero occurs), computes on invalid points or ends
in a fixed point (both cases occur when using the above formulae in projective
or Jacobian coordinates, see Table 1).

Table 1. Borderline cases for projective and Jacobian coordinates

E(Fp): y2 = x3 + ax + b

Coordinate System Operation Using a Using b Input Output

Projective
PA(P1P1P1,P2P2P2)

P1P1P1=P2P2P2 (0,0,0)
- - P1P1P1=-P2P2P2 (0,*,0)

P1P1P1=(0,*,0) (0,0,0)

PD(P1P1P1) + -
Order(P1P1P1)=2 (0,*,0)
P1P1P1=(0,*,0) (0,0,0)

Jacobian

PA(P1P1P1,P2P2P2) - -

P1P1P1=P2P2P2 (0,0,0)
P1P1P1=-P2P2P2 (*,*,0)

P1P1P1=(*,*,0) (*,*,0)
P1P1P1=(0,0,0) (0,0,0)

PD(P1P1P1) + -
Order(P1P1P1)=2 (*,*,0)
P1P1P1=(*,*,0) (*,*,0)
P1P1P1=(0,0,0) (0,0,0)

2.2 Scalar Multiplication

The basic operation in classical cryptosystems such as RSA and ECC is expo-
nentiation in the underlying group. For elliptic curves, this exponentiation is
called scalar multiplication since given a point P and a scalar k, it computes
k · P by repeatedly using the double/add operations.

The most basic scalar multiplication algorithm is the binary double-and-
add algorithm, which computes k · P according to the binary expansion of
k =

∑n−1
i=0 ki2i. Depending on the direction in which the bits of k are scanned,

we obtain a left-to-right or right-to-left variant.
The left-to-right variant is described in Algorithm 1 and will be used to illus-

trate our attack. The applicability of our attack to SSCA and DSCA resistant
scalar multiplication algorithms will be discussed in Section 5.



Combined Attack on ECC Using Points of Low Order 147

Algorithm 1. Double and Add Left-to-Right

Input: PPP , k = (kn−1, kn−2, . . . , k0)2
Output: QQQ = k ·PPP
RRR← P ;
for i← n− 2 down to 0 do

RRR← 2 ·RRR ;
if (ki = 1) then RRR← RRR + PPP ;

end
return RRR

3 Elliptic Curve Points with Low Order Neighbours

In this section, we consider the following problem, the solution of which is crucial
for our attack: given an elliptic curve E : y2 = x3 + ax+ b over Fp, two integers
� and Δ, is it possible to construct a point P := (xP , yP ) in E(Fp) with the
following properties:

– there exists a curve E′ : y2 = x3 + ax+ b′ over Fp

– with a point P ′ = (xP ′ , yP ′) ∈ E′(Fp) of order �
– such that the Hamming distance of the bit-representations xP ||yP and xP ′ ||yP ′

equals Δ.

When Δ = 1, i.e. the coordinates differ in a single bit, we call the points P
and P ′ neighbours. We will describe an effective construction of points P with
neighbours P ′ of a given order � and with xP = xP ′ , i.e. the bit-flip occurred
in the y-coordinate only. The construction can be easily extended to encompass
bit-flips in xP , and indirect neighbours, i.e. Δ > 1.

In Section 3.1 we first show how to construct points of given order and in
Section 3.2 we adapt this method to find points with low order neighbours.

3.1 Constructing Points of Given Order

Given an elliptic curve E over Fp, we can consider the points on E of order
dividing n, i.e. points P ∈ E(Fp) with n ·P = O, where the coordinates of P can
lie in any extension field of Fp. These points can be characterized explicitly using
the so called division polynomials [5]. For n ∈ N define polynomials ψn(x, y)
recursively as follows:

ψ0 = 0, ψ1 = 1, ψ2 = 2y, ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1,m ≥ 2,

ψ2m =
ψm(ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1)

2y
,m ≥ 3 .

For any point P ∈ E(Fp) with P �= O, we then have that n ·P = O if and only if
ψn(xP , yP ) = 0. Furthermore, one can show by induction on n that ψn for n odd
and ψn/2y for n even, are polynomials in x only. We denote these polynomials
by φn(x). It is easy to see that n ·P = O and 2 ·P �= O if and only if φn(xP ) = 0.



148 J. Fan, B. Gierlichs, and F. Vercauteren

3.2 Constructing Points with Low Order Neighbours

Given an elliptic curve E over Fp and an integer �, we want to construct a point
P = (xP , yP ) in E(Fp) with neighbour P ′ = (xP , yP ⊕ ε) with ε = 2k for some
k < log2(p) and � · P ′ = O. For � > 2, the points P and P ′ therefore have to
satisfy the following non-linear system of equations:

⎧⎨
⎩
yyyP

2 − xxxP
3 − a · xxxP − b = 0 P ∈ E(Fp)

(yyyP ⊕ ε)2 − xxxP
3 − a · xxxP − bbb′ = 0 P ′ ∈ E′(Fp)

φa,bbb′
� (xxxP ) = 0 � · P ′ = O,

where the unknown variables are printed in bold face. Since the ⊕-operation is
not very algebraic, we will consider the following two cases that lead to equivalent
results, namely we replace yp⊕ε by yp±ε and then verify afterwards if an actual
bit-flip occurred, i.e. that there was no carry.

Subtracting the first two equations expresses b′ as a function of yP , namely,
b′ = ±2εyP + ε2 + b. Substituting this expression in the last equation leads to a
bivariate polynomial in xP and yP , which we call Υ�(xP , yP ). The points P for
the given � and ε therefore are solutions of E(xP , yP ) = 0 and Υ�(xP , yP ) = 0.
These solutions can be easily found by a Groebner basis [13] computation or by
taking the resultant

R(xp) = ResultantyP (E(xP , yP ), Υ�(xP , yP )) ,

finding all possibilities for xP as roots of R over Fp and the corresponding yP

from E(xP , yP ) = 0. A final check is then necessary to only retain those (xP , yP )
where the ± operation actually caused a bit-flip, in particular, in the +ε-case
(resp. −ε-case) we only retain those results where the k-th bit is zero (resp. one).

To analyze the complexity of solving the above system, we simply need to
figure out the degree of φa,b′

� in xP and b′. The degree in xP is easily seen to
be (�2 − 1)/2 since the full �-torsion contains �2 points. The degree in b′ can be
seen to be upperbounded by (�2 − 1)/6 since the same recursion holds and the
degree in b′ is three times smaller than for xP in the initializations. This leads
to a resultant of degree �2 − 1 and an overall complexity of Õ(�4) to solve the
non-linear system of equations.

The probability that a given curve admits a point with neighbour of order � and
bit-flip in positionk (note that both � and k are fixed) canbe roughly approximated
as follows. Denote byP (n, p) the probability that a random polynomial of degreen
has at least one root in Fp. Assuming we can consider the resultantR as a random
polynomial, then the probability is roughly the product of:

– the probability P (�2 − 1, p) that R has at least one root xP in Fp,
– the probability 1/2 that the corresponding yP is in Fp (and when it does,

there are two roots yP ),
– the probability 3/4 that of these two roots, at least one has a bit-flip in

position k.

Note that we only analyze the case of +ε and not also −ε, since the solvability
of both systems of equations is not really independent. The overall probability



Combined Attack on ECC Using Points of Low Order 149

Table 2. Points with neighbours of low order on NIST P-192 curve

Order P bit-flip

2
xP = 0x6D9D789820A2C19237C96AD4B8D86B87FB49D4D6C728B84F
yP = 0x1

0

3
xP = 0x8E1AEBDD6009F114490C7BC2C02509F8E432ED15F10C2D33
yP = 0x7A568946EFA602B3624A61E513E57869CAF2AE854E1A17B

2

4
xP = 0xB317D7BBD023E6293F1506221F5BC4A23D4BE2E05328C5F7
yP = 0xC70D48794F409831097620C0865B7D567329728C634CA6AE

0

5
xP = 0xCC9BCC0061F64371E3C3BDE165DAD5380A7DC1919765940
yP = 0xCC8B36B37928334B8AFD7A9FCCFB4B0773E94A4178093458

8

6
xP = 0xC3F76445E6A52138E283E485092F005BE0821C3F9E96B05E
yP = 0x535DBCCB593D72E7885B66E57FD13A8FF9C57A8F8B91CE48

1

7
xP = 0x5C003567728CCBC9F4C06620B9973193837BAEC67A29E43A
yP = 0x408D0C3135006B03EFF80961394D890F0E86D9FD1BA4EEC6

3

8
xP = 0x74FD6A1AD39479C75A85305FA786E1DBDC845E03754E723E
yP = 0x6EF58ABFC0B71047BA4F425652B3EC1746EBE8FE16FEA1F5

1

therefore is roughly 3/8 ·P (�2 − 1, p). A closed expression for P (n, p) exists [32]
and this can easily be shown to satisfy P (n, p) > 1/2, which leads to a lower
bound of 3/16. Note that this high probability stands in stark contrast with the
probability that a given fixed point has a neighbour of order �, which we expect
to be in O(1/p).

The above algorithm can be easily extended to any given fixed error pattern,
such as multiple bit-flips, or setting certain bits to zero/one. Furthermore, errors
in the x-coordinate can also be dealt with.

To illustrate the effectiveness of the above procedure, in Table 2 we pro-
vide several example points with low order neighbours for the NIST P-192
curve [35], i.e. the curve over Fp with p = 2192 − 264 − 1, a = −3 and b =
0x64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1. For each small in-
teger �, the table gives a P with neighbour of order � when a specific bit of the
y-coordinate is flipped (bit 0 is the LSB). Each of these examples was generated
in less than a second using Magma [11] on a standard laptop.

4 Combined Attack Using Low Order Neighbours

In this section we introduce a new combined attack using points with low order
neighbours. The system under attack is the following: we have access to a target
implementation that on input an elliptic curve point P computes k ·P for some
unknown secret k. The goal is to recover the secret k.

The basic version of our attack requires the following two assumptions. The
realistic nature of these assumptions and the applicability of our attack will be
analyzed in Section 5.

1. It is possible, e.g. using side channel information, to determine when an
intermediate result in the computation becomes O.



150 J. Fan, B. Gierlichs, and F. Vercauteren

2. It is possible to inject a fault immediately after initial validity checks, re-
sulting in a bit-flip in a predetermined position.

The attack then proceeds as follows: we input a point P with low order neighbour
P ′ and, after the initial validity checks have passed, inject a fault that turns P
into P ′. The implementation then tries to compute k · P ′. Since P ′ has low
order, it is highly likely that an intermediate computation will result in O. This
corresponds to the fact that the part of the secret scalar k that has been processed
up to that point is divisible by the order of P ′.

If and how the implementation continues to run depends solely on how the
elliptic curve group operations are implemented, i.e. whether the implementation
is full or partial domain correct.

4.1 Full Domain Correctness

The implementation will compute the scalar multiplication k · P ′ until the final
validity checks, at which point it will abort since k · P ′ is not on the curve E.
During the computation however, we will obtain a huge amount of information of
the following form: assume the order of P ′ is �, then every time an elliptic curve
addition/doubling results in O, we know that the part of the scalar processed
up to that point is divisible by �. Note that we also obtain extra information
when O does not appear, since then the corresponding part of the scalar is not
divisible by �.

This attack is extremely powerful since in most cases one trace will suffice to
recover (almost all of) k. In Section 5.3 we will show that the attack can recover
ephemeral keys, blinded keys and randomly split keys.

Example. To illustrate the effectiveness of this attack in the full domain cor-
rectness case, we apply it to an implementation using Algorithm 1. If we choose
to input a point P with neighbour P ′ of order 2, all occurring computations
(2 ·P ′, 2 ·O,O+P ′) are borderline cases, which may not be desirable. Therefore,
we choose a point P with neighbour P ′ of order 4.

The computation of RRR← 2 ·RRR then either consists of 2 ·P ′, 2 · (2P ′), 2 · (3P ′)
or 2 · O. Note that the cases 2 · (2P ′) and 2 · O are borderline cases, and thus
distinguishable from the cases 2 ·P ′ and 2 · (3P ′), which are ordinary doublings.
The crucial point to note is that point addition always generates odd multiples
of P ′ and thus will never result in O. Furthermore, since P ′ has order 4, the
point O will only occur after two consecutive doublings. Therefore, if O occurs
during the processing of bit ki, we know that bit ki+1 must have been zero. This
uniquely identifies the zero key bits (except for possibly the LSB), which implies
that the other key bits have to be one. As such, we easily obtain all of k with
one trace only.

Table 3 shows the intermediate results for the computation of k · P ′ where
k = 5405 and � = 4. Note that we assume that distinguishing point addition from
point doubling is not possible. As such, the adversary sees a sequence of normal
operations (additions or ordinary doublings), denoted by Op, and occurrences of



Combined Attack on ECC Using Points of Low Order 151

Table 3. Intermediate results in the computation of 5405 · P ′ with � = 4 and view of
the adversary when attacking the scalar multiplication

i 11 10 9 8 7 6 5 4 3 2 1 0

ki 0 1 0 1 0 0 0 1 1 1 0 1

RRR 2P ′ O,P ′ 2P ′ O,P ′ 2P ′ O O O,P ′ 2P ′,3P ′ 2P ′,3P ′ 2P ′ O,P ′

view Op O Op Op O Op Op O O O Op Op Op Op Op Op O Op

step 1 0 0 0 0 0 0

step 2 0 1 0 1 0 0 0 1 1 1 0 1

O as shown in the fourth row of Table 3. To recover the secret key, the adversary
proceeds as follows: in step one, he puts a 0 in each cell to the left of an O. Then
in step two, he groups the empty cells in pairs of two, from left to right, merges
them and writes a 1 in the resulting cell. If there is a single cell left in the end,
he writes a zero in it.

4.2 Partial Domain Correctness

Partial domain correctness implies that we can only gather information up to the
first occurrence of the point O. Indeed, either the implementation simply crashes
during the computation of O or it performs some nonsensical computations
thereafter. The result is that for each point submitted, we can only obtain partial
information about k. When k is fixed over several invocations, this is not a real
problem since we can submit many points with neighbours of different order and
then deduce all bits of k from this information. Note that due to the behavior of
the implementation, i.e. no further information after occurrence of O, the orders
of the neighbouring points submitted do not have to be coprime.

The type of information gathered will be of the following form: let k =∑n−1
i=0 ki2i, then for each small integer � we will obtain the index I(�) such

that the leftmost (or rightmost) I(�) bits of k form an integer divisible by �. By
definition we set I(�) = 0 when no part of k is divisible by �. As such we obtain
a list of positive information PosInfo, consisting of pairs [�, I(�)], and a list of
negative information NegInfo containing those � for which each I(�) = 0. The
list PosInfo will be sorted according to I(�).

A very simple incremental search algorithm is given in Algorithm 2. The algo-
rithm keeps a list PartialKeys containing all possibilities for the BitsScanned
leftmost bits of k. The procedure ExpandPartialKeys expands all partial keys
in the list by appending (on the right) all possible bit sequences of length
PosInfo[j][2] - BitsScanned and then only keeps those candidates divisi-
ble by PosInfo[j][1]. It furthermore updates BitsScanned to PosInfo[j][2].
The function PrunePartialKeys simply removes all elements from PartialKeys
that violate one of the non-divisibility conditions for any of the integers in
NegInfo.

We implemented this algorithm in Magma and ran several tests to evaluate
its behaviour for the NIST P-192 curve. Given a fixed secret random k, we



152 J. Fan, B. Gierlichs, and F. Vercauteren

computed for each integer � smaller than an upper bound B the value I(�) and
then tried to recover k from PosInfo and NegInfo. The tests show that even for
B � 100 we can typically recover a large part of the secret k (much more than
100 bits on average) and that for larger values of B like 192 or 384 we recover
most of k bar a few least significant bits.

5 Analysis of the Attack

In this section we discuss the assumptions made in the previous section and
analyze the attack for a wide range of implementation choices, such as coordinate
systems and curves used, scalar multiplication algorithms and finally, common
countermeasures against SSCA and DSCA attacks and validity checks against
fault attacks.

5.1 Analysis of Assumptions

Chosen Input Point. The target implementation is assumed to compute k ·P
for any given input point P , where k is supposed to be secret. This setting arises
for instance in ElGamal decryption [22], ECIES [1] and in static Diffie-Hellman
key agreement [21]. In the latter case, one of the ephemeral keys is simply the
long term public key. We note that the attack does not apply to ECDSA [41],
where the ephemeral key is computed on a fixed base point P (unless P has
neighbours of low order).

Recognizing O via Side Channels. In the case of partial domain correctness,
the implementation either crashes during the computation of O or it ends up
in O and remains there. We assume that either event can be detected through
side channels. Indeed, if the implementation crashes it can for example stall or
exit the scalar multiplication routine early, which should be clearly visible e.g.
in power traces. If the implementation continues to run it will get stuck in O,
which should be visible as a repetitive pattern.

In the case of full domain correctness, the implementation does not crash
because it correctly deals with all borderline cases. Most textbooks on ECC, e.g.
Hankerson et al. [26], use checks and conditional branches in their code examples
to ensure full domain correctness. It is well known that conditional branches can
leak through side channels [31,17] and so it is clear that the occurrence of any
borderline case can be easily detected. Even if we assume that these checks and

Algorithm 2. Recovering private key from PosInfo and NegInfo

PartialKeys ← ∅, BitsScanned ← 0
for j from 1 upto # PosInfo do

ExpandPartialKeys (& PartialKeys, PosInfo[j], & BitsScanned)

PrunePartialKeys (& PartialKeys, NegInfo)

end
return PartialKeys, BitsScanned.



Combined Attack on ECC Using Points of Low Order 153

branches are implemented with side channel resistance in mind (which is highly
unlikely) the actual occurrence of O (a point with at least one coordinate equal
to zero) in a point operation should be visible [2].

Fault Injection. The assumption that an adversary can flip a single chosen bit
in an implementation is certainly strong. We can relax this assumption greatly
using a trivial approach: by repeatedly faulting a specified byte (resulting in a
random byte), after an average of 256 trials, the fault will be precisely the fault
required. With overwhelming probability only the required fault will lead to a
point of low order, thus the good case is easily distinguished from undesired
faults. However, we still have to assume that an adversary can inject a fault
with sufficiently precise timing, in this case after initial validity checks.

The construction of points with low order neighbours is also flexible enough
to accommodate a more accurate fault model for the target implementation.
Assume we have extra information on the most likely state of a byte after fault
injection, then we can compute points specially crafted for this fault pattern.

Group Law Formulae. An implicit assumption, which is automatically sat-
isfied when using the formulae given in Eqs. (1) and (2), is that the group law
formulae do not depend on all coefficients of the curve equation. More formally,
assume the elliptic curve equation E(a1, . . . , ak) depends on k coefficients, but
that only the first m < k appear in the group law formulae. Then the implemen-
tation can also be used to compute correctly on all elliptic curves with the same
a1, . . . , am, but differing am+1, . . . , ak. Note that for all elliptic curve forms, it
is always possible to write down group law formulae with m < k. However, for
the most efficient formulae used in practice, our assumption seems only valid
for Weierstrass forms, which are most widely used, and Hessian forms. In fact,
using group law formulae involving all coefficients of the curve combined with
initial and final validity checks, is a possible combination of countermeasures to
our attack.

5.2 Scalar Multiplication

Many scalar multiplication algorithms have been proposed, either to speed up
the computation or to aid resistance against simple side channel analysis. In this
section we focus on scalar recoding [5], the Montgomery powering ladder [28],
unified formulae [12,19] and side channel atomicity [14].

Scalar Representation. Apart from the usual binary representation of the
scalar k =

∑n−1
i=0 ki2i, several other representations are frequently used. The

non-adjacent form (NAF) represents k =
∑n−1

i=0 ki2i, where ki ∈ {0,±1}. More
generally, a width w-NAF of an integer k is an expression k =

∑n−1
i=0 ki2i with

each nonzero ki odd, |ki| < 2w−1, kn−1 �= 0 and at most one of any w consec-
utive digits nonzero. In all cases, we still obtain a similar type of information
as in the basic attack: when O is encountered, we know that the part of the
scalar processed up to that point is divisible by �. However, since the number



154 J. Fan, B. Gierlichs, and F. Vercauteren

of intermediate points computed during the scalar multiplication is no longer n
but n/w, the probability of hitting O is lower.

Montgomery Powering Ladder. The Montgomery powering ladder given in
Algorithm 3 is a popular choice because it provides speed and a highly regular
structure.

Algorithm 3. Montgomery powering ladder

Input: PPP , k = (kn−1, kn−2, . . . , k0)2
Output: QQQ = k ·PPP
RRR0 ← P , RRR1 ← 2 · P ;
for i← n− 2 down to 0 do

RRR¬ki ←RRRki + RRR¬ki , RRRki ← 2 ·RRRki ;
end

return RRR0

Attacking the Montgomery ladder is a bit more tricky because the sequence of
operations is fixed and independent of the key. Nevertheless, the attack applies
since it does not exploit the sequence of operations but the evolution of the
intermediate values. Assume we input a point P with neighbour P ′ of order 4
and inject a fault after initial validity checks. The implementation will then try
to compute k ·P ′. Note that if two consecutive bits of k are equal, then the same
point (either RRR0 or RRR1) will be doubled twice by the operation RRRki ← 2 · RRRki

resulting in O. On the other hand, if two consecutive bits differ, an ordinary
doubling 2 · P ′ or 2 · (3P ′) will be computed. Finally, note that O can never
be the result of the addition operation RRRki +RRR¬ki , since this is always an odd
multiple of P ′. As such, we obtain (almost all of) k with one trace only in the
full domain correctness case.

Unified Formulae and Side Channel Atomicity. These countermeasures
render point additions and doublings indistinguishable to prevent SSCA, and
they can be implemented together with a possibly faster, irregular scalar mul-
tiplication algorithm like double-and-add (at the cost of leaking the Hamming
weight of the exponent). It is clear that our attack is not affected by coun-
termeasures of this kind because it does not require point operations to be
distinguishable.

5.3 Common DSCA and FA Countermeasures

Random Scalar Splitting [15]. With this countermeasure, the scalar k is
randomly split into two parts: k = k1 + k2. As such, Q = k ·P can be computed
as k1 ·P + k2 ·P by two consecutive scalar multiplications and addition of their
results. In the case of full domain correctness, (almost all of) k1 and k2 can
be revealed (assuming that only the final output point is checked for validity),
which immediately results in (a small number of candidates for) k. Otherwise the



Combined Attack on ECC Using Points of Low Order 155

situation is similar to that of partial domain correctness. In the partial domain
correctness case, the attack will no longer work, since we will only be able to
recover a part of k1 or k2, but not both at the same time. Indeed, typically the
implementation will stop working the first time it hits O.

Scalar Randomization [20]. In this case, the scalar is blinded using a multiple
of the curve order, i.e. k is replaced by k′ = k+ r ·#E. It is easy to see that this
countermeasure is useless in the full domain correctness case, where only a single
trace is needed. For partial domain correctness, we do get partial information on
k′, but currently have no method to exploit this. Note that the same conclusion
applies for ephemeral keys.

Coordinate Randomization [20]. This countermeasure assumes that some
form of projective coordinates are being used and that the coordinates of the
input point P are randomized before the scalar multiplication is started. For
instance, when using projective coordinates, P = (rXP , rYP , rZP ) with r ran-
domly chosen is used. It is easy to see that our attack remains valid if initial
checks are performed before point randomization.

Random Elliptic Curve Isomorphisms [27]. This method first applies a
random isomorphism of the form ψ : (x, y) 	→ (r2x, r3y) and then proceeds by
computing Q = k · ψ(P ) and outputting ψ−1(Q). Since an isomorphism does
not change the order of a point, it is clear that the attack still applies if initial
checks are performed before ψ is applied.

Isogeny Defence [40]. To prevent Goubin’s attack using special points of
large order, Smart proposed to use an isogeny I to map the input points to an
isogenous curve without special points. Furthermore, for each curve in the main
standards Smart provides a fixed isogeny that works for that curve. It is clear
that our attack still applies if we look for points P with low order neighbours
on the isogenous curve instead of on the original curve. The input to the target
device will then be the points I−1(P ) and the fault will be injected after initial
checks and isogeny have been applied.

Point Blinding [20]. With this countermeasure, the implementation contains
a random point R and the corresponding multiple k ·R. The scalar multiplication
k ·P is computed by first computing k · (P +R) and then subtracting k ·R from
the result. Since we have no control over the point R, we cannot compute an
appropriate point P such that we can fault the point P +R into a point of low
order. As such, this countermeasure does thwart our attack, both in the full and
partial domain correctness case. Point blinding can be seen as an instance of
infective computation [42].

Cofactor Multiplication [40]. To prevent small subgroup attacks, most proto-
cols can be reformulated using cofactor multiplication. For instance, the



156 J. Fan, B. Gierlichs, and F. Vercauteren

Diffie-Hellman protocol can be adapted as follows: a user first computesQ← h·P
and then R← k ·Q if Q �= O. It is easy to see that our attack still applies when
we input a point with neighbour of order different from h.

Validity Checks [9,15]. To prevent fault attacks, Biehl et al. [9] and Ciet and
Joye [15] recommend input/output point validity checks and curve parameter
checks. These recommendations were part of the original motivation for our
work and do not prevent the attack.

5.4 Curves over Finite Fields of Characteristic Two

Although the attack has mainly been described for elliptic curves in Weierstrass
form over fields of large characteristic, we briefly touch on the characteristic two
case. The short Weierstrass form is given by E : y2 + xy = x3 + ax2 + b. The
applicability of our attack then depends on the coordinate system being used.
For affine and standard projective coordinates, the attack applies since only the
a-coefficient is used in the group law formulae. For Jacobian coordinates the
attack does not apply since both a and b are used in the group law formulae. For
Lopez-Dahab formulae, only b is used in the group law formulae, but changing a
only results in an isomorphic curve or its quadratic twist. As such it is impossible
to find a point of given low order, since both the curve and its twist should not
have many small subgroups.

6 Conclusions

We have described a novel attack that combines three ideas: fault injection, sim-
ple side channel analysis, and specially crafted, but valid input points that after
a single fault injection have very low order. Our attack breaks ECC implemen-
tations that are protected by many of the known countermeasures such as initial
and final point validity checks, curve parameter checks, cofactor multiplication
check, SSCA countermeasures and bypasses many DSCA countermeasures. A
secondary yet irritating result of our analysis is that proper, i.e. full domain
correct implementations are more vulnerable to the attack and can be broken
using one successful fault injection.

The attack does not apply to protocols that use a fixed point P (with no near
neighbours of low order). For other applications, the attack can be prevented
by physical fault injection sensors, concurrent point validity checks, using group
law formulae that involve all curve coefficients, using randomized coordinates
or randomized curve isomorphisms with randomization before the initial point
validity check and by point blinding.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHAES: An encryption scheme based on the
Diffie-Hellman problem. Submission to P1363a: Standard specifications for Public-
Key-Cryptography: Additional techniques (2000)



Combined Attack on ECC Using Points of Low Order 157

2. Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003)

3. Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and active combined attacks:
Combining fault attacks and side channel analysis. In: FDTC 2007, pp. 92–102.
IEEE Computer Society, Los Alamitos (2007)

4. Anderson, R., Kuhn, M.: Tamper resistance - a cautionary note. In: The Second
USENIX Workshop on Electronic Commerce Proceedings, pp. 1–11. USENIX As-
sociation (1996)

5. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. In: Discrete Math-
ematics and Its Applications. Chapman & Hall/CRC (2006)

6. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

7. Bernstein, D.J., Lange, T.: Faster Addition and Doubling on Elliptic Curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

8. Bernstein, D.J., Lange, T., Farashahi, R.R.: Binary edwards curves. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 244–265. Springer, Heidelberg
(2008)

9. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000)

10. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

11. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

12. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer,
Heidelberg (2002)

13. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Universität
Innsbruck (1965)

14. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: Side-channel atomicity. IEEE Trans. Computers 6(53), 760–
768 (2004)

15. Ciet, M., Joye, M.: (Virtually) free randomization techniques for elliptic curve
cryptography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS,
vol. 2836, pp. 348–359. Springer, Heidelberg (2003)

16. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and
transient faults. Designs, Codes and Cryptography 36(1), 33–43 (2005)

17. Clavier, C., Coron, J.-S.: On the implementation of a fast prime generation algo-
rithm. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
443–449. Springer, Heidelberg (2007)

18. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal cor-
relation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.)
ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)



158 J. Fan, B. Gierlichs, and F. Vercauteren

19. Clavier, C., Joye, M.: Universal exponentiation algorithm. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg
(2001)

20. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

21. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inform.
Theory 22(6), 644–654 (1976)

22. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

23. Fan, J., Guo, X., De Mulder, E., Schaumont, P., Preneel, B., Verbauwhede, I.:
State-of-the-art of secure ECC implementations: A survey on known side-channel
attacks and countermeasures. In: HOST 2010, pp. 76–87 (2010)

24. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

25. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–210. Springer, Heidelberg
(2002)

26. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

27. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve
cryptography. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 377–390. Springer, Heidelberg (2001)

28. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

29. Koblitz, N.: Elliptic curve cryptosystem. Math. Comp. 48, 203–209 (1987)
30. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

31. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

32. Leontév, V.K.: Roots of Random Polynomials over a Finite Field. Mat. Za-
metki 80(2), 313–316 (2006)

33. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

34. Montgomery, P.L.: Speeding up the Pollard and elliptic curve methods for factor-
izations. Mathematics of Computation 48, 243–264 (1987)

35. National Institute of Standards and Technology (NIST). Digital signature standard
(DSS), FIPS PUB 186-3 (2009)

36. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

37. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

38. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)



Combined Attack on ECC Using Points of Low Order 159

39. Smart, N.P.: The Hessian Form of an Elliptic Curve. In: Koç, Ç.K., Naccache, D.,
Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg
(2001)

40. Smart, N.P.: An analysis of goubin’s refined power analysis attack. In: Walter, C.D.,
Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 281–290. Springer,
Heidelberg (2003)

41. Vanstone, S.: Responses to NIST’s proposal. Communications of the ACM 35,
50–52 (1992)

42. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: RSA speedup with residue num-
ber system immune against hardware fault cryptanalysis. In: Kim, K.-c. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 397–413. Springer, Heidelberg (2002)


	To Infinity and Beyond: Combined Attack on ECC Using Points of Low Order
	Introduction
	Background on Elliptic Curves
	Group Law
	Scalar Multiplication

	Elliptic Curve Points with Low Order Neighbours
	Constructing Points of Given Order
	Constructing Points with Low Order Neighbours

	Combined Attack Using Low Order Neighbours
	Full Domain Correctness
	Partial Domain Correctness

	Analysis of the Attack
	Analysis of Assumptions
	Scalar Multiplication
	Common DSCA and FA Countermeasures
	Curves over Finite Fields of Characteristic Two

	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


