
Intro to Redis
A Support Overview

Matt Stancliff
Redis Engineer

NYC
mstancliff@gopivotal.com

Today
What is Redis?

How does Redis work?

How do we configure Redis?

How do Redis commands work?

How do we manage Redis?

How does Redis break?

How do we fix a broken Redis?

What is Redis?

Big Picture Overview

“Disk is the new tape.”

“Memory is the new disk.”

“Memory is the new disk.”
Task: Read 10,000 database records concurrently from a web app

Disk RAM
300 reads per second

(randomly located)

30 seconds to 70 seconds total

(3 ms to 7 ms per read)

36,000,000 reads per second
(randomly located)

0.2 ms to 0.6 ms total

(20 ns to 60 ns per read)

30 s vs 0.0002 s
Task: Read 10,000 database records concurrently from a web app

Disk RAM

150,000x faster
Using RAM-only, you get results

than disk-backed storage.😫

“Memory is [still] the new disk.”
Task: Read 10,000 database records concurrently from a web app

SSD RAM
100,000 reads per second

(randomly located)

100 ms total

(0.1 ms per read)

36,000,000 reads per second
(randomly located)

0.2 ms to 0.6 ms total

(20 ns to 60 ns per read)

500x slower than RAM

300x faster than disk

disk vs. SSD vs. RAM recap

disk SSD RAM
300

reads per second
100,000

reads per second
36,000,000

 reads per second

300x faster than disk 150,000x faster than disk

500x faster than SSD😫

What does Redis do?

Redis is
a data structure server
with replication

persistent storage
async queues

pub/sub

atomic scripting (transactions)
clustering [soon]

Redis is
complementary infrastructure
use with PostgreSQL

MySQL
Hive/Pig/HBase/Hadoop

structured data cache queueing system
pub/sub messaging bus

Redis is
standalone infrastructure

primary datastore for
follwing/friending graphs

timelines

ranking users (top scores)
low latency analytics

newsfeeds

Redis is
in-memory

all storage kept live in RAM
150,000x faster than HDs

500x faster than SSD

Redis is
durable

tunable commit-every-update-to-disk options
loads previous memory state from disk on startup

automatic copying to multiple standby replicas

[soon] clustering data across dozens of hosts

How does Redis work?

How does Redis work?
Startup

redis-server read config file

load existing
data from disklisten for clients

How does Redis work?
asynchronous

single-threaded
event loop

event loop

while (!stopped) {!
!processEvents();!
}

It’s just a basic while(true) loop.
!

while(true) runs 500 million iterations
per second on my 2.6GHz laptop.

!

That’s 2 nanoseconds per loop.
redis handles all operations in this loop.

result:
redis is single threaded.
redis uses only one core.

processEvents()
check for network events

	 	 new clients (IPv4, IPv6, domain sockets)

	 	 connected clients running commands

process scheduled events

	 	 10 times per second:

	 	 	 	 replication sanity check

	 	 	 	 force-expire keys

	 	 	 	 persistence sanity check

	 	 	 	 … and a dozen other things.

How does Redis work?
Data

Redis stores all data in memory
optional backup-to-disk settings for:

append-only journal file
every change appended to a file

complete DB snapshot to disk
writes entire dataset to disk

more compact than append-only file(like binlogs)

Redis is single-threaded
(except for this)

append-only journal:
written using a background thread

(the only thread in Redis)

complete DB snapshot:
forks a new redis-server process
serializes the child’s frozen/“snapshot” memory to disk
can cause performance hiccups on EC2 or large data sets

Redis is single-threaded

advantage:
no locks

disadvantage:
your command is the only one running
“bad” commands can block the server for seconds
poorly designed in-server scripts can block forever

your command is the only one running

How does Redis
configure?

redis.conf

plain text file
sample entries:

# Accept connections on the specified port, default is 6379.	
# If port 0 is specified Redis will not listen on a TCP socket.	
port 6379
save 900 1	
save 300 10	
save 60 10000
# The filename where to dump the DB	
dbfilename dump.rdb

[name] [value]

Top 5 Config Settings
Network

# Accept connections on the specified port, default is 6379.	
# If port 0 is specified Redis will not listen on a TCP socket.	
port 6379	
!

bind 192.168.1.100 10.0.0.1	
bind ::1	
!

unixsocket /tmp/redis.sock	
unixsocketperm 755

Top 5 Config Settings
Persistence

# Save DB if at least <changes> happen in <seconds>:	
#	
save <seconds> <changes>
save 900 1	
save 300 10	
save 60 10000

dir ./

# Directory path to store DB, AOF, and	
# replication/cluster metadata.	
Redis instances *must not* share directories.

Top 5 Config Settings
More Persistence

appendonly yes

# appendfsync always	
appendfsync everysec	
appendfsync no

# Automatically rewrite the log file implicitly calling	
# BGREWRITEAOF when the AOF size grows by percentage.	
auto-aof-rewrite-percentage 100	
auto-aof-rewrite-min-size 64mb

Top 5 Config Settings
Memory Limits

# Don't use more memory than the specified amount of bytes.	
# When the memory limit is reached Redis will try to remove keys	
# accordingly to the eviction policy selected (see maxmemmory-policy).	

maxmemory <bytes>

Top 5 Config Settings
More Memory Limits

# volatile-lru -> remove the key with an expire set using an LRU algorithm	
# allkeys-lru -> remove any key accordingly to the LRU algorithm	
# volatile-random -> remove a random key with an expire set	
# allkeys-random -> remove a random key, any key	
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)	
noeviction -> don't expire at all, just return an error on write operations

maxmemory-policy volatile-lru

safe

also safe
weird

“pretend
memcache”

kinda dumb

Top 5 Config Settings
Replication

# Master-Slave replication.	
# Use slaveof to make a Redis instance a copy of another Redis server.	
!

slaveof <masterip> <masterport>

slave-serve-stale-data yes

slave-read-only yes

min-slaves-to-write 3	
min-slaves-max-lag 10

serves data while
disconnected from master and

while a sync is in progress
!

(may have only
partial replica of master)

for reliable installations
 deny writes if fewer than 3 in-

sync replicas are live

Top 5 Config Settings
Cluster

# Normal Redis instances can't be part of a Redis Cluster; only nodes that are	
# started as cluster nodes can. In order to start a Redis instance as a	
# cluster node enable the cluster support uncommenting the following:	
!

cluster-enabled yes

cluster-config-file node-6379.conf

must be a unique file per server.
!

Only the server writes to cluster-config-file.
!

(persists cluster membership information
across restarts)

How Redis program?

Programmer’s View of Redis

language

redis client

redis server

redis client

language

Programmer’s View of Redis

python

redis-py

redis-server

redis-py

python

Programmer’s View of Redis
Two Types of Clients

every-command-is-a-function free command entry fields

r = redis.Redis()!
r.set('bing', 'baz')

r = redis.Redis()!
r.cmd("SET bing baz")

cleaner, has language feel more flexible,
supports arbitrary commands

Programmer’s View of Redis
Two Types of Clients

every-command-is-a-function free command entry fields

r = redis.Redis()!
r.set(‘w’, 34.3)!
c = r.incrbyfloat(‘w’, 0.1)

r = redis.Redis()!
r.cmd(“SET w 34.3”)!
c = r.cmd(“INCRBYFLOAT w 0.1”)

c is now the float 34.4 depending on the client,
c is now the string “34.4”

- or -
c is now the float 34.4

Programmer’s View of Redis
Two Types of Clients

every-command-is-a-function free command entry fields
r = redis.Redis()!
r.set(‘w’, 34.3)!
r.incrbyfloat(‘w’, 0.1)!
c = r.get(‘w’)

r = redis.Redis()!
r.cmd(“SET w 34.3”)!
r.cmd(“INCRBYFLOAT w 0.1”)!
c = r.cmd(“GET w”)

c is now the string 34.4 c is now the string 34.4

Programmer’s View of Redis
Clients

http://redis.io/clients

C: hiredis
!

Java: Jedis
!

Perl: Redis

PHP: Predis
!

Python: redis-py
!

Ruby: redis-rb

Redis commands aren’t always simple

SORT key [BY pattern] [LIMIT offset count] [GET pattern
[GET pattern ...]] [ASC|DESC] [ALPHA] [STORE
destination]

can be represented in languages with optional parameters:
sort(name, start=None, num=None, by=None,

get=None, desc=False, alpha=False, store=None)

MGET key1 key2 key3 key4 …

multi-get

MSET key1 val1 key2 val2 key3 val3 key4 val4

multi-set

SET key value [EX seconds] [PX milliseconds] [NX|XX]

optional
arguments

Redis Command Types

strings lists

sets sorted sets
hashes

pub/sub

scripting
server

management

transactions

key
management

Redis Data Types
Basics

key = value
keys are strings

!

strings are binary safe
!

strings have a max size of 512 MB

values have a type:
 string, list, hash, set, or sorted set

Redis Data Types
Basics

Quick Note:
http://redis.io/ embeds

live redis sessions

Redis Data Types
Strings

127.0.0.1:6379> SET location:kitten "in a tree"	
OK	
127.0.0.1:6379> GET location:kitten	
"in a tree"	
127.0.0.1:6379> STRLEN location:kitten	
(integer) 9

Redis Data Types
More Strings

127.0.0.1:6379> APPEND location:kitten " in the park"	
(integer) 21	
127.0.0.1:6379> GET location:kitten	
"in a tree in the park"	
127.0.0.1:6379> SETRANGE location:kitten 17 mall	
(integer) 21	
127.0.0.1:6379> GET location:kitten	
"in a tree in the mall"

Redis Data Types
Even More Strings

BITCOUNT!
GETBIT!
SETBIT!
BITOP

INCR!
INCRBY!

INCRBYFLOAT!
DECR!

DECRBY

SETNX!
MSETNX

SETEX!
PSETEX

MGET!
MSET

GETSET

Redis Data Types
Lists

hello

LE
FT

RIG
H

T

LPUSH aList hello

Redis Data Types
Lists

hello

LE
FT

RIG
H

T

LPUSH aList howdy

howdy

Redis Data Types
Lists

hello

LE
FT

RIG
H

T

LPUSH aList aloha

howdyaloha

Redis Data Types
Lists

LE
FT

RIG
H

T

Redis Data Types
Lists

127.0.0.1:6379> LPUSH mention:redis redis.io	
(integer) 1	
127.0.0.1:6379> LPUSH mention:redis news.ycombinator.com	
(integer) 2	
127.0.0.1:6379> LPUSH mention:redis github.com/antirez	
(integer) 3	
127.0.0.1:6379> LRANGE mention:redis 0 -1	
1) "github.com/antirez"	
2) "news.ycombinator.com"	
3) "redis.io"

redis.ionewsgithub

Redis Data Types
Lists

127.0.0.1:6379> LPOP mention:redis	
"github.com/antirez"	
127.0.0.1:6379> RPOP mention:redis	
"redis.io"	
127.0.0.1:6379> LPOP mention:redis	
"news.ycombinator.com"

redis.ionewsgithub

Redis Data Types
More Lists

127.0.0.1:6379> LPOP mention:redis	
(nil)	
127.0.0.1:6379> BLPOP mention:redis 3	
(nil)	
(3.66s)

Redis Data Types
Even More Lists

RPOPLPUSH!
BRPOPLPUSH

LPUSHX!
RPUSHX

LLEN

LINDEX!
LINSERT

BLPOP!
BRPOP

LREM!
LSET!
LTRIM

Redis Data Types
Hashes

dictionaries
maps

hash tables
collections

Redis Data Types
Hashes

key =
field1 = val1
field2 = val2
field3 = val3
field4 = val4

.

.

values are
only strings

Redis Data Types
Hashes

Logically:
hash with {field1, field2, … fieldN}

Redis Data Types
Hashes

Same as strings:
string:field1
string:field2

 …
string:fieldN

Redis Data Types
Hashes

Strings
account:3391:field1 value1

Hash

field1
value1
field2
value2
field3
value3
field4
value4
field5
value5
field6
value6

account:3391:field2 value2
account:3391:field3 value3
account:3391:field4 value4
account:3391:field5 value5
account:3391:field6 value6

account:3391

repetition
!

wasted bytes

excess pointers
!

(8 bytes each)
one pointer

!
multiple fields

one key

compact,
pointer-less*

representation

Redis Data Types
Hashes

127.0.0.1:6379> HSET user:matt name Matt	
(integer) 1	
127.0.0.1:6379> HSET user:matt company GoPivotal	
(integer) 1	
127.0.0.1:6379> HGETALL user:matt	
1) "name"	
2) "Matt"	
3) "company"	
4) "GoPivotal"

Redis Data Types
More Hashes

127.0.0.1:6379> HINCRBY user:matt loginCount 1	
(integer) 1	
127.0.0.1:6379> HINCRBY user:matt loginCount 1	
(integer) 2	
127.0.0.1:6379> HGETALL user:matt	
1) "name"	
2) "Matt"	
3) "company"	
4) "GoPivotal"	
5) "loginCount"	
6) "2"

Redis Data Types
More Hashes

127.0.0.1:6379> HMSET user:matt created 2013-10-28 lastSeen 1385393884 geohash dr5rm7w	
OK	
127.0.0.1:6379> HGETALL user:matt	
 1) "name"	
 2) "Matt"	
 3) "company"	
 4) "GoPivotal"	
 5) "loginCount"	
 6) "2"	
 7) "created"	
 8) "2013-10-28"	
 9) "lastSeen"	
10) "1385393884"	
11) "geohash"	
12) "dr5rm7w"

Redis Data Types
Even More Hashes

HDEL

HEXISTS

HINCRBYFLOAT

HSETNX

HKEYS!
HVALS

HGET!
HMGET

Redis Data Types
Sets

A collection of strings
no duplicates allowed

no order preserved

Redis Data Types
Sets

hello

there

hello

again

hello

there

again

Redis Data Types
Sets

127.0.0.1:6379> SADD purpleCircle hello	
(integer) 1	
127.0.0.1:6379> SADD purpleCircle there	
(integer) 1	
127.0.0.1:6379> SADD purpleCircle hello	
(integer) 0	
127.0.0.1:6379> SADD purpleCircle again	
(integer) 1

elements
added

duplicate.
nothing added.

Redis Data Types
Sets

127.0.0.1:6379> SMEMBERS purpleCircle	
1) "there"	
2) "hello"	
3) "again"

Redis Data Types
More Sets

127.0.0.1:6379> SADD circle hello there hello again	
(integer) 3	
127.0.0.1:6379> SMEMBERS circle	
1) "there"	
2) "hello"	
3) "again"

elements
added

duplicate.
nothing added.

Redis Data Types
Even More Sets

SCARD

SDIFF!
SDIFFSTORE

SISMEMBER

SRANDMEMBER

SMOVE!
SPOP

SINTER!
SINTERSTORE

SREM

SUNION!
SUNIONSTORE

Redis Data Types
Sorted Sets

A collection of strings
no duplicates allowed
user-defined ordering

Redis Data Types
Sorted Sets

hello; score=-20.7

there; score=12

hello; score=81

again; score=-300

hello

there

again

Redis Data Types
Sorted Sets

127.0.0.1:6379> ZADD purpleCircle -20.7 hello	
(error) WRONGTYPE Operation against a key holding the wrong kind of value	
127.0.0.1:6379> DEL purpleCircle circle	
(integer) 2

multi-delete

Redis Data Types
Sorted Sets

127.0.0.1:6379> ZADD purpleCircle -20.7 hello	
(integer) 1	
127.0.0.1:6379> ZRANGEBYSCORE purpleCircle -inf +inf	
1) "hello"	
127.0.0.1:6379> ZRANGEBYSCORE purpleCircle -inf +inf WITHSCORES	
1) "hello"	
2) "-20.699999999999999"

elements
added

score element

because floating point

Redis Data Types
More Sorted Sets

127.0.0.1:6379> ZADD purpleCircle 12 there 81 hello -300 again	
(integer) 2

hello already
existed

score got
updated

Redis Data Types
More Sorted Sets

127.0.0.1:6379> ZRANGE purpleCircle 0 -1	
1) "again"	
2) "there"	
3) "hello"	
127.0.0.1:6379> ZRANGE purpleCircle 0 -1 WITHSCORES	
1) "again"	
2) "-300"	
3) "there"	
4) "12"	
5) "hello"	
6) "81"

start
position

end
position

replaced
-20.7

Redis Data Types
Even More Sorted Sets

ZCARD

ZUNIONSTORE

ZRANK!
ZREVRANK

ZINTERSTORE

ZREM!
ZREMRANGEBYRANK!
ZREMRANGEBYSCORE

ZRANGE!
ZRANGEBYSCORE!

ZREVRANGE!
ZREVRANGEBYSCORE

How Redis manage?

Running

You can set config parameters:
!

on the command line (as arguments)
or

in the config file (the “normal” way)

Running
You can modify most parameters

live during runtime with CONFIG SET
!

Read settings with CONFIG GET [name]
or

CONFIG GET *!
for all current settings

Running

Redis can update your existing config file
!

CONFIG REWRITE!
!

Comments, ordering, and structure get
preserved.

Stand Alone

redis-server

lonely |ˈlōnlē| adjective (lonelier , loneliest)
sad because one has no friends or company

😿

Stand Alone

matt@ununoctium:/Volumes/matt/repos/redis/src% ./redis-server 	
[17997] 25 Nov 19:13:00.937 # Warning: no config file specified, using the default config. In order to
specify a config file use ./redis-server /path/to/redis.conf	
[17997] 25 Nov 19:13:00.938 * Max number of open files set to 10032	
 . 	
 _.-``__ ''-._ 	
 .-`` `. `. ''-._ Redis 2.9.11 (6f4fd557/0) 64 bit	
 .-`` .-```. ```\/ _.,_ ''-._ 	
 (' , .-` | `,) Running in stand alone mode	
 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379	
 | `-._ `._ / _.-' | PID: 17997	
 `-._ `-._ `-./ _.-' _.-' 	
 |`-._`-._ `-.__.-' _.-'_.-'| 	
 | `-._`-._ _.-'_.-' | http://redis.io 	
 `-._ `-._`-.__.-'_.-' _.-' 	
 |`-._`-._ `-.__.-' _.-'_.-'| 	
 | `-._`-._ _.-'_.-' | 	
 `-._ `-._`-.__.-'_.-' _.-' 	
 `-._ `-.__.-' _.-' 	
 `-._ _.-' 	
 `-.__.-' 	
!
[17997] 25 Nov 19:13:00.979 # Server started, Redis version 2.9.11	
[17997] 25 Nov 19:13:00.979 * The server is now ready to accept connections on port 6379

Replication

Master

Replica

Replica
Replica

of
Replica

Replica
of

Replica

Replication

127.0.0.1:3700> KEYS *	
(empty list or set)	
127.0.0.1:3700> SLAVEOF 127.0.0.1 6379	
OK

On Replica

Replication
127.0.0.1:3700> KEYS *	
 1) "d"	
 2) "abcdef"	
 3) "a"	
 4) "purpleCircle"	
 5) "c"	
 6) "f"	
 7) "location:kitten"	
 8) "user:matt"	
 9) "b"	
10) "abc"	
11) "name"

On Replica

Replication
[17594] 25 Nov 16:45:58.495 # Server started, Redis version 2.9.11	
[17594] 25 Nov 16:45:58.498 * The server is now ready to accept connections on port 3700	
[17594] 25 Nov 16:46:32.946 * SLAVE OF 127.0.0.1:6379 enabled (user request)	
[17594] 25 Nov 16:46:33.802 * Connecting to MASTER 127.0.0.1:6379	
[17594] 25 Nov 16:46:33.802 * MASTER <-> SLAVE sync started	
[17594] 25 Nov 16:46:33.802 * Non blocking connect for SYNC fired the event.	
[17594] 25 Nov 16:46:33.802 * Master replied to PING, replication can continue...	
[17594] 25 Nov 16:46:33.802 * Partial resynchronization not possible (no cached master)	
[17594] 25 Nov 16:46:33.802 * Full resync from master: 2bc50a54a9a532c9be6193341e74ba2af718db73:1	
[17594] 25 Nov 16:46:33.874 * MASTER <-> SLAVE sync: receiving 297 bytes from master	
[17594] 25 Nov 16:46:33.883 * MASTER <-> SLAVE sync: Loading DB in memory	
[17594] 25 Nov 16:46:33.897 * MASTER <-> SLAVE sync: Finished with success

On Replica

Replication

[4752] 25 Nov 16:58:51.099 * Slave asks for synchronization	
[4752] 25 Nov 16:58:51.099 * Full resync requested by slave.	
[4752] 25 Nov 16:58:51.099 * Starting BGSAVE for SYNC	
[4752] 25 Nov 16:58:51.099 * Background saving started by pid 17644	
[17644] 25 Nov 16:58:51.159 * DB saved on disk	
[4752] 25 Nov 16:58:51.173 * Background saving terminated with success	
[4752] 25 Nov 16:58:51.185 * Synchronization with slave succeeded

On Master

Replication

127.0.0.1:3700> SLAVEOF NO ONE	
OK

On Replica

Replication

[17636] 25 Nov 16:55:44.413 * Caching the disconnected master state.	
[17636] 25 Nov 16:55:44.413 * Discarding previously cached master state.	
[17636] 25 Nov 16:55:44.413 * MASTER MODE enabled (user request)

SLAVEOF NO ONE = MASTER MODE

On Replica

Failed Replication
[17636] 25 Nov 16:59:08.900 * Caching the disconnected master state.	
[17636] 25 Nov 16:59:09.244 * Connecting to MASTER 127.0.0.1:6379	
[17636] 25 Nov 16:59:09.244 * MASTER <-> SLAVE sync started	
[17636] 25 Nov 16:59:09.244 # Error condition on socket for SYNC: Connection refused	
.	
.	
.	
[17636] 25 Nov 16:59:50.559 * Connecting to MASTER 127.0.0.1:6379	
[17636] 25 Nov 16:59:50.559 * MASTER <-> SLAVE sync started	
[17636] 25 Nov 16:59:50.559 # Error condition on socket for SYNC: Connection refused	
[17636] 25 Nov 16:59:51.567 * Connecting to MASTER 127.0.0.1:6379	
[17636] 25 Nov 16:59:51.567 * MASTER <-> SLAVE sync started	
[17636] 25 Nov 16:59:51.568 * Non blocking connect for SYNC fired the event.	
[17636] 25 Nov 16:59:51.568 * Master replied to PING, replication can continue...	
[17636] 25 Nov 16:59:51.568 * Trying a partial resynchronization (request
2bc50a54a9a532c9be6193341e74ba2af718db73:1052).	
[17636] 25 Nov 16:59:51.568 * Full resync from master: 48e4a31e11913b52b6f6816b116e16774cac3e7e:1	
[17636] 25 Nov 16:59:51.568 * Discarding previously cached master state.	
[17636] 25 Nov 16:59:51.675 * MASTER <-> SLAVE sync: receiving 297 bytes from master	
[17636] 25 Nov 16:59:51.687 * MASTER <-> SLAVE sync: Loading DB in memory	
[17636] 25 Nov 16:59:51.698 * MASTER <-> SLAVE sync: Finished with success

On Replica; Master Down

Replication Management

Beta since June 2012, rewritten November 2013.
!

Manages redis replication and availability with redis.
!

Provides auto-promotion of replicas.
Provides a service where you ask for the current redis master servers.

!

SENTINEL GET-MASTER-ADDR-BY-NAME userDB

Sentinel

Replication Management

Alternative to hard-coding database IPs in your config files.
!

Just ask Redis Sentinel for the current write master address.
!

Sentinel auto-notifies all clients about replica promotions to master.
!

Direct knowledge of DB state.
!

No waiting for timeouts or load balancers to switch over.

Sentinel

Replication

That’s it for replication.
!

Replicas can replicate other replicas.
!

The replica instance stays in-sync (async) with its master node.
!

The replica is an exact copy of its master as long as slave-read-only yes

previewAlmost ready.
!

Under development for three years.
!

Distributes keys across master instances.
!

Each master instance has multiple identical replicas.
!

Replicas sanely promote to master if failure is detected.

Clustering

memory network

diskcpu

Capacity Planning
(and capacity-related failure scenarios)

🐮 memory
Capacity Planning

⽜牛
COW

Copy On Write

🐮 memory
Capacity Planning

⽜牛
64 GB

RAM DB
64 GB

RAM DB

BGSAVE

serializes
memory to

disk

references
all data at time

of BGSAVE
uses negligible
space since it

only references
original
memory

during BGSAVE
DB write/update
operations copy

their original
values to BGSAVE

memory

🐮 memory
Capacity Planning

⽜牛
NEW
4K

OLD 4K

NEW
4K

OLD 4K

copied from

copied from

Something writes 4K to DB during BGSAVE

🐮 memory
Capacity Planning

⽜牛
Implications

OS must enable memory overcommit
!

64 GB usage + 64 GB fork != 128 GB physical usage

[5358] 14 Nov 11:25:09.466 # WARNING overcommit_memory is set to 0! Background save may fail
under low memory condition. To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf
and then reboot or run the command 'sysctl vm.overcommit_memory=1' for this to take effect.

🐮 memory
Capacity Planning

⽜牛
Implications

High-write DBs near memory limits can break
!

64 GB usage + 1 GB/sec updates + 2 sec BGSAVE!
!

64 GB memory + 2 GB 🐮 = 66 GB = OOM Killer

🐮 memory
Capacity Planning

⽜牛
Note

Xen has horrible forking performance.
!

Hardware fork latency: 80ms
VMware fork latency: 77ms
Xen fork latency: 1460ms

☁️

🐮 memory
Capacity Planning

⽜牛
Note

A process is blocked until fork returns.
!

Normally a tiny less-than-100ms hiccup.
!

On Xen, you can notice a multiple second “outage.”

☁️

network
Capacity Planning

Recommendations
Have a network.

!

Know where you are in your network.!
!

Try to at least be in the same building as your DBs.

network
Capacity Planning

Protocol

*[argument count]\r\n!
$[byte count of argument]\r\n!
[data]\r\n!
.!
.!
$[byte count of last argument]\r\n!
[data]\r\n

network
Capacity Planning

Protocol

SET name Matt

*3!
$3!
SET!
$4!
name!
$4!
Matt!

network
Capacity Planning

Protocol

SET name Matt

*3\r\n$3\r\nSET\r\n$4\r\nname\r\n$4\r\nMatt\r\n

33 bytes

network
Capacity Planning

Protocol

SADD names Matt!
SADD names GoPivotal!
SADD names Ireland!
SADD names Barcelona

network
Capacity Planning

Protocol
SADD names Matt!
SADD names GoPivotal!
SADD names Ireland!
SADD names Barcelona

*3\r\n$4\r\nSADD\r\n$5\r\nnames\r\n$4\r\nMatt\r\n

*3\r\n$4\r\nSADD\r\n$5\r\nnames\r\n$9\r\nGoPivotal\r\n

*3\r\n$4\r\nSADD\r\n$5\r\nnames\r\n$7\r\nIreland\r\n

*3\r\n$4\r\nSADD\r\n$5\r\nnames\r\n$9\r\nBarcelona\r\n

34
bytes

39
bytes

37
bytes

39
bytes149 bytes total

network
Capacity Planning

Protocol
SADD names Matt!
SADD names GoPivotal!
SADD names Ireland!
SADD names Barcelona

78 bytes total

SADD names Matt GoPivotal Ireland Barcelona

*6\r\n$4\r\nSADD\r\n$5\r\nnames\r\n$4\r\nMatt\r\n$9\r
\nGoPivotal\r\n$7\r\nIreland\r\n$9\r\nBarcelona\r\n

network
Capacity Planning

Protocol

SADD names Matt!
SADD names GoPivotal!
SADD names Ireland!
SADD names Barcelona

78 bytes totalvs.

SADD names Matt GoPivotal Ireland Barcelona

149 bytes total

vs.

55% less network traffic

network
Capacity Planning

ProtocolPipelining
SISMEMBER names Matt!
!
!
!
SISMEMBER names GoPivotal!
!
!
!
SISMEMBER names Croatia!
!
!
!
SISMEMBER names Barcelona

1

1

0

1

8 network
round trips

network
Capacity Planning

Protocol

SISMEMBER names Matt!
SISMEMBER names GoPivotal!
SISMEMBER names Croatia!
SISMEMBER names Barcelona

Pipelining

1!
1!
0!
1

2 network round trips

results returned
in execution

order

cpu
Capacity Planning

Redis uses one thread for data manipulation.
!

Redis uses one thread for background AOF writes.!
!

Redis forks for BGSAVE.

cpu
Capacity Planning

Run one redis-server instance per core.
!

Leave a few cores free for AOF and BGSAVE scheduling.
!

Cluster will make running multiple instances per host simpler.

cpu
Capacity Planning

Each Redis command has individual performance
characteristics.

!

The Big-Oh of each command is listed in the documentation.

cpu
Capacity Planning

Redis provides excellent performance and latency for: !
!

1) O(1) operations. !
2) Logarithmic operations (most basic sorted sets operations,
including ZRANK). !
3) O(N) seek + O(M) work (for example LTRIM) every time you can make
sure to take M small. Example: capped collections implementation. !
4) Log(N) seek + O(M) work (for example removing ranges of elements
from a sorted set).

disk
Capacity Planning

Disks are useful for saving data and storing configs.
!

AOF and BGSAVE and redis.conf and!
sentinel.conf and cluster.conf

disk
Capacity Planning

Redis needs to own a directory with write access.
!

The dir config parameter.
!

Redis saves AOF/BGSAVE/cluster state to the dir.

How Redis fail?

Failure Scenarios

Failure Scenarios
memory corruption

!

configuration not matching expectations
!

coding errors
!

users abusing the DB

Failure Scenarios

=== REDIS BUG REPORT START: Cut & paste starting from here ===  
[2285] 04 Nov 15:19:02.148 # Redis 2.7.104 crashed by signal: 11  
[2285] 04 Nov 15:19:02.148 # Failed assertion: (:0)  
[2285] 04 Nov 15:19:02.148 # --- STACK TRACE  
redis-rdb-bgsave *:6379(logStackTrace+0x3e)[0x443c1e]  
redis-rdb-bgsave *:6379(rdbSaveStringObject+0x0)[0x42c2d0]!

.!

.!

.!

=== REDIS BUG REPORT END. Make sure to include from START to END. ===

the error report

Failure Scenarios
the error report

sections:
server
clients

memory
persistence

stats
replication

CPU
command stats

cluster
keyspace

list of clients
list of client state
register contents

Failure Scenarios

cause:
not using ECC memory

!

these days nobody knows
what hardware they use.

memory corruption

Failure Scenarios

symptoms:
unexplained segfaults

gibberish in error reports
!

usually at the same time

memory corruption

Failure Scenarios

used_memory:18374686491318515000  
used_memory_human:рk!D  
used_memory_rss:14293835776  
used_memory_peak:11877760896  
used_memory_peak_human:11.06G  
used_memory_lua:47104  
mem_fragmentation_ratio:0.00  
mem_allocator:libc

memory corruption

what’s that?

not even
regular p

memory c
orru

ption
what’s that?

Failure Scenarios

actions:
If Redis crashes and memory is suspected,

without rebooting after the crash,
redis-server —test-memory [MB]

memory corruption

`

example:
redis-server —test-memory 16384

memory corruption

Failure Scenarios

check dmesg for memory errors
!

if available, check ipmi output:
ipmitool sel list

memory corruption

Memory #0x01 | Correctable ECC!
Memory #0x01 | Correctable ECC!
Memory #0x01 | Correctable ECC!
Memory #0x01 | Correctable ECC!
Memory #0x02 | Uncorrectable ECC

Failure Scenarios

better test:
if user has hardware access, run MemTest86

!

pre-boot memory testing
!

http://www.memtest86.com/

memory corruption

Failure Scenarios

Most reported Redis crashes are due to
hardware memory corruption.

!

Always recommend running with ECC memory.

memory corruption

Failure Scenarios

BGSAVE degrading performance
!

AOF corruption

persistence problems

Failure Scenarios

BGSAVE = binary, compressed, DB snapshot
!

AOF = command-by-command DB reconstruction

persistence problems

Failure Scenarios

BGSAVE = fork() latency varies by platform.
hardware = 10ms per GB.

xen = 250ms per GB.
!

AOF = flushes to disk every second
(or always or never)

persistence problems

Failure Scenarios

fork latency reported as:
latest_fork_usec in INFO output

persistence problems

Failure Scenarios

if AOF gets corrupted, you can edit it
!

remove the end-of-file corruption
(lose or recover the last key)

persistence problems

Failure Scenarios

BGSAVE = faster restarts
(writes DB to disk based on usage)

!

AOF = more up-to-date persistence
(flushes to disk once a second)

persistence problems

Failure Scenarios

Redis is telling me I can’t write.
!

Did BGSAVE fail while you’re running with
stop-writes-on-bgsave-error yes

configuration delusions

Failure Scenarios

Redis is telling me I can’t write.
!

Are you running with disconnected
replicas and these configs set
min-slaves-to-write 3	
min-slaves-max-lag 10

configuration delusions

Failure Scenarios

Redis is telling me I can’t write.
!

Did you overrun your memory limit?
maxmemory 16GB

configuration delusions

Failure Scenarios

Redis is telling me I can’t connect.
!

Did you overrun your client limit?
maxclients 10000

configuration delusions

Failure Scenarios

Redis is telling me I can’t read.
!

Are you reading a disconnected replica with
slave-serve-stale-data no

configuration delusions

Failure Scenarios

Redis is intermittently stalled.
!

CONFIG SET slowlog-log-slower-than [μs]!
CONFIG SET slowlog-max-len [entries]!

!

SLOWLOG GET 10!
SLOWLOG RESET

users abusing the DB

Failure Scenarios

Redis is stalled.
!

Did someone run KEYS * on a large DB?

users abusing the DB

(KEYS is deprecated in favor of the Redis 2.8 SCAN interface)

Failure Scenarios

Redis is stalled.
!

Is a poorly behaved script running?
lua-time-limit 5000

users abusing the DB

Failure Scenarios

lua-time-limit does not kill scripts.
!

After lua-time-limit is reached,
the server accepts commands again, but only
allows SCRIPT KILL or SHUTDOWN NOSAVE

users abusing the DB

Failure Scenarios

Watch out for latency complaints when Redis
is paging out to swap space.

users abusing the DB

Failure Scenarios

For serious, production-level DB usage:
!

Run dedicated DB hardware with swap off.

users abusing the DB

Failure Scenarios

Check how much of Redis is paged to disk:
!

cat /proc/<pid of redis-server>/smaps

users abusing the DB

Failure Scenarios

Servers should not swap.
!

Servers should not have swap enabled.
!

If your server is mis-sized,
you deserve the OOM Killer.

users abusing the DB

How Redis debug?

Automated data collection

Debug Info

If you failed, you have an error report.

Debug Info
=== REDIS BUG REPORT START: Cut & paste starting from here ===  
[2285] 04 Nov 15:19:02.148 # Redis 2.7.104 crashed by signal: 11  
[2285] 04 Nov 15:19:02.148 # Failed assertion: (:0)  
[2285] 04 Nov 15:19:02.148 # --- STACK TRACE  
redis-rdb-bgsave *:6379(logStackTrace+0x3e)[0x443c1e]  
redis-rdb-bgsave *:6379(rdbSaveStringObject+0x0)[0x42c2d0]!

.!

.!

.!

=== REDIS BUG REPORT END. Make sure to include from START to END. ===

Debug Info

If you aren’t failed, grab INFO

Debug Info
[::1]:4003> INFO	
# Server	
redis_version:2.9.11	
redis_git_sha1:6f4fd557	
.	
.	
.	
# CPU	
used_cpu_sys:3.49	
used_cpu_user:2.65	
used_cpu_sys_children:0.00	
used_cpu_user_children:0.00	
!

# Keyspace	
db0:keys=12,expires=0,avg_ttl=0

Debug Info

Quick Overview of INFO Fields

Debug Info
Sections

 • server: General information about the Redis server

 • clients: Client connections section

 • memory: Memory consumption related information

 • persistence: RDB and AOF related information

 • stats: General statistics

 • replication: Master/slave replication information

 • cpu: CPU consumption statistics

 • commandstats: Redis command statistics

 • cluster: Redis Cluster section

 • keyspace: Database related statistics

Debug Info
Server

 • redis_version: Version of the Redis server

 • redis_git_sha1: Git SHA1

 • redis_git_dirty: Git dirty flag

 • os: Operating system hosting the Redis server

 • arch_bits: Architecture (32 or 64 bits)

 • multiplexing_api: event loop mechanism used by Redis

 • gcc_version: Version of the GCC compiler used to compile the Redis server

 • process_id: PID of the server process

 • run_id: Random value identifying the Redis server (to be used by Sentinel and Cluster)

 • tcp_port: TCP/IP listen port

 • uptime_in_seconds: Number of seconds since Redis server start

 • uptime_in_days: Same value expressed in days

 • lru_clock: Clock incrementing every minute, for LRU management

Debug Info
Clients

 • connected_clients: Number of client connections (excluding connections from slaves)

 • client_longest_output_list: longest output list among current client connections

 • client_biggest_input_buf: biggest input buffer among current client connections

 • blocked_clients: Number of clients pending on a blocking call (BLPOP, BRPOP,

BRPOPLPUSH)

Debug Info
Memory

 • used_memory: total number of bytes allocated by Redis using its allocator (either
standard libc, jemalloc, or an alternative allocator such as tcmalloc)

 • used_memory_human: Human readable representation of previous value

 • used_memory_rss: Number of bytes that Redis allocated as seen by the operating

system (a.k.a resident set size). This is the number reported by tools such as top and ps.

 • used_memory_peak: Peak memory consumed by Redis (in bytes)

 • used_memory_peak_human: Human readable representation of previous value

 • used_memory_lua: Number of bytes used by the Lua engine

 • mem_fragmentation_ratio: Ratio between used_memory_rss and used_memory

 • mem_allocator: Memory allocator, chosen at compile time.

Debug Info
Persistence I (General)

 • loading: Flag indicating if the load of a dump file is on-going

 • rdb_changes_since_last_save: Number of changes since the last dump

 • rdb_bgsave_in_progress: Flag indicating a RDB save is on-going

 • rdb_last_save_time: Epoch-based timestamp of last successful RDB save

 • rdb_last_bgsave_status: Status of the last RDB save operation

 • rdb_last_bgsave_time_sec: Duration of the last RDB save operation in seconds

 • rdb_current_bgsave_time_sec: Duration of the on-going RDB save operation if any

 • aof_enabled: Flag indicating AOF logging is activated

 • aof_rewrite_in_progress: Flag indicating a AOF rewrite operation is on-going

 • aof_rewrite_scheduled: Flag indicating an AOF rewrite operation will be scheduled once the on-

going RDB save is complete.

 • aof_last_rewrite_time_sec: Duration of the last AOF rewrite operation in seconds

 • aof_current_rewrite_time_sec: Duration of the on-going AOF rewrite operation if any

 • aof_last_bgrewrite_status: Status of the last AOF rewrite operation

Debug Info
Persistence II (AOF)

 • aof_current_size: AOF current file size

 • aof_base_size: AOF file size on latest startup or rewrite

 • aof_pending_rewrite: Flag indicating an AOF rewrite operation will

be scheduled once the on-going RDB save is complete.

 • aof_buffer_length: Size of the AOF buffer

 • aof_rewrite_buffer_length: Size of the AOF rewrite buffer

 • aof_pending_bio_fsync: Number of fsync pending jobs in

background I/O queue

 • aof_delayed_fsync: Delayed fsync counter

Debug Info
Persistence III (Loading)

 • loading_start_time: Epoch-based timestamp of the start of the load
operation

 • loading_total_bytes: Total file size

 • loading_loaded_bytes: Number of bytes already loaded

 • loading_loaded_perc: Same value expressed as a percentage

 • loading_eta_seconds: ETA in seconds for the load to be complete

Debug Info
Stats

 • total_connections_received: Total number of connections accepted by the server

 • total_commands_processed: Total number of commands processed by the server

 • instantaneous_ops_per_sec: Number of commands processed per second

 • rejected_connections: Number of connections rejected because of maxclients limit

 • expired_keys: Total number of key expiration events

 • evicted_keys: Number of evicted keys due to maxmemory limit

 • keyspace_hits: Number of successful lookup of keys in the main dictionary

 • keyspace_misses: Number of failed lookup of keys in the main dictionary

 • pubsub_channels: Global number of pub/sub channels with client subscriptions

 • pubsub_patterns: Global number of pub/sub pattern with client subscriptions

 • latest_fork_usec: Duration of the latest fork operation in microseconds

Debug Info
Replication

 • role: Value is "master" if the instance is slave of no one, or "slave" if the instance is
enslaved to a master. Note that a slave can be master of another slave (daisy chaining).

• connected_slaves: Number of connected slaves

Debug Info
Replication (if replica/slave)

 • master_host: Host or IP address of the master

 • master_port: Master listening TCP port

 • master_link_status: Status of the link (up/down)

 • master_last_io_seconds_ago: Number of seconds since the last interaction with

master

 • master_sync_in_progress: Indicate the master is SYNCing to the slave

Debug Info
Replication (if currently SYNCing)

 • master_sync_left_bytes: Number of bytes left before SYNCing is complete

 • master_sync_last_io_seconds_ago: Number of seconds since last transfer I/O

during a SYNC operation

Debug Info
Replication (if master unreachable)

 • master_link_down_since_seconds: Number of seconds since the
link is down

Debug Info
CPU

 • used_cpu_sys: System CPU consumed by the Redis server

 • used_cpu_user:User CPU consumed by the Redis server

 • used_cpu_sys_children: System CPU consumed by the background processes

 • used_cpu_user_children: User CPU consumed by the background processes

Debug Info
Commandstats (for each command)

 • cmdstat_XXX:calls=XXX,usec=XXX,usec_per_call=XXX

Debug Info
Keyspace

For each database, the following line is added:

 • dbXXX:keys=XXX,expires=XXX

Debug Info

Details about each INFO field:
http://redis.io/commands/info

Manual data collection

Manual Data Collection
Node topology

Master
172.16.4.12

Replica
172.16.4.13

Replica
172.16.4.14

in a different
region/az/datacenter

from the others

writes
reads

reads

Replica
172.16.4.15

reads

Manual Data Collection

Make pictures
!

Config file from each instance
!

INFO or error report from each instance

Node Info

Manual Data Collection

Programming language version
!

Redis client and its version
!

Direct communication to Redis?
 Using a proxy? Sharding? Hashing?

Client Info

Manual Data Collection

OS vendor with version
!

Memory information
Linux: vmstat -SM 1 10; vmstat -SM -s;!

 free -m; top -b -d 3 -n 3 -M -m; df -h; iostat -k 1 12 !
OS X: memory_pressure; vm_stat -c 10 1;!

 top -o rsize -i 3 -l 3; df -h; iostat -c 12

System Info

Manual Data Collection

On-site vs. hosted vs. VPS?
!

ping -c 20 [redis server]!
redis-cli --latency -h [host] -p [redis port]!

!

Any VPN or ssh tunneling?
(including, but not limited to: stunnel, stud, spiped)

Network Info

Figure it out

Figure it out

http://redis.io/documentation
!

Explains specific Redis details
 with proper usage examples

(and fixes)

Figure it out

http://redis.io/commands
!

Detailed, accurate
!

Notes changes across versions

Figure it out

Ask Google

Figure it out

Ask Us

