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Preface

Information security is of the greatest importance in a world in which communication over open
networks and storage of data in digital form play a key role in daily life. The science of cryptography
provides efficient tools to secure information. In [MEOO+ 1996] one finds an excellent definition
of cryptography as “the study of mathematical techniques related to aspects of information security
such as confidentiality, data integrity, entity identification, and data origin authentication” as well
as a thorough description of these information security objectives and how cryptography addresses
these goals.

Historically, cryptography has mainly dealt with methods to transmit information in a confiden-
tial manner such that a third party (called the adversary) cannot read the information, even if the
transmission is done through an insecure channel such as a public telephone line. This should
not be confused with coding theory, the goal of which is, on the contrary, to add some redundant
information to a message so that even if it is slightly garbled, it can still be decoded correctly.

To achieve secure transmission, one can use the oldest, and by far the fastest, type of crypto-
graphy, secret-key cryptography, also called symmetric-key cryptography. This is essentially based
on the sharing of a secret key between the people who want to communicate. This secret key is
used both in the encryption process, in which the ciphertext is computed from the cleartext and the
key, and also in the decryption process. This is why the method is called symmetric. The current
standardized method of this type is the AES symmetric-key cryptosystem. Almost all methods
of this type are based on bit manipulations between the bits of the message (after the message
has been translated into binary digits) and the bits of the secret key. Decryption is simply done by
reversing these bit manipulations. All these operations are thus very fast. The main disadvantages of
symmetric-key cryptography are that one shared secret key per pair must be exchanged beforehand
in a secure way, and that key management is more tricky in a large network.

At the end of the 1970’s the revolutionary new notion of public-key cryptography, also called
asymmetric cryptography, appeared. It emerged from the the pioneering work of Diffie and Hellman
published 1976 in the paper “New directions in cryptography” [DIHE 1976].

Public-key cryptography is based on the idea of one-way functions: in rough terms these are
functions, whose inverse functions cannot be computed in any reasonable amount of time. If we use
such a function for encryption, an adversary will in principle not be able to decrypt the encrypted
messages. This will be the case even if the function is public knowledge. In fact, having the
encryption public has many advantages such as enabling protocols for authentication, signature,
etc., which are typical of public-key cryptosystems; see Chapter 1.

All known methods for public-key cryptography are rather slow, at least compared to secret-key
cryptography, and the situation will probably always stay that way. Thus public-key cryptography
is used as a complement to secret-key cryptography, either for signatures or authentication, or for
key exchange, since the messages to be transmitted in all these cases are quite short.

There remains the major problem of finding suitable public-key cryptosystems. Many proposals
have been made in the 25 years since the invention of the concept, but we can reasonably say that
only two types of methods have survived. The first and by far the most widely used methods are
variants of the RSA cryptosystem. These are based on the asymmetrical fact that it is very easy to
create at will, quite large prime numbers (for instance 768 or 1024-bit is a typical cryptographic size
for reasonable security), but it is totally impossible (at the time this book is being written), except
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by some incredible stroke of luck (or bad choice of the primes) to factor the product of two primes
of this size, in other words a 1536 or 2048-bit number. The present world record for factoring an
RSA type number is the factoring of the 576-bit RSA challenge integer. The remarkable fact is
that this result was obtained without an enormous effort of thousands of PC’s interconnected via the
Internet. Using today’s algorithms and computer technologies it seems possible to factor 700-bit
numbers. Of course, this is much smaller than the number of bits that we mention. But we will see
in Chapter 25 that there are many subexponential algorithms for factoring which, although not as
efficient as polynomial time algorithms, are still much faster than naïve factoring approaches. The
existence of these subexponential algorithms explains the necessity of using 768 or 1024-bit primes
as mentioned above, in other words very large keys.

The second type of method is based on the discrete logarithm problem (DLP) in cyclic groups
of prime order that are embedded in elliptic curves or more generally Jacobians of curves (or even
general abelian varieties) over finite fields. In short, if G is a group, g ∈ G, k ∈ Z and h = gk,
the DLP in G consists in computing k knowing g and h. In the case where G = (Z/nZ)∗ it can
be shown that the subexponential methods used for factoring can be adapted to give subexponential
methods for the DLP in G, so the security of such methods is analogous to the security of RSA,
and in particular one needs very large keys. On the other hand for elliptic curves no subexponential
algorithm is known for the DLP, and this is also the case for Jacobians of curves of small genus.
In other words the only attacks known for the DLP working on all elliptic curves are generic (see
Chapter 19). This is bad from an algorithmic point of view, but is of course very good news for
the cryptographer, since it means that she can use much smaller keys than in cryptosystems such as
RSA for which there exist subexponential attacks. Typically, to have the same security as 2048-bit
RSA one estimates that an elliptic curve (or the Jacobian of a curve of small genus) over a finite
field should have a number of points equal to a small multiple of a prime of 224 or perhaps 256 bits.
Even though the basic operations on elliptic curves and on Jacobians are more complicated than in
(Z/nZ)∗, the small key size largely compensates for this, especially in restricted environments such
as smart cards (cf. Chapter 27) where silicon space is small.

Aim of the book

The goal of this book is to explain in great detail the theory and algorithms involved in elliptic
and hyperelliptic curve cryptography. The reader is strongly advised to read carefully what follows
before reading the rest of the book, otherwise she may be discouraged by some parts.

The intended audience is broad: our book is targeted both at students and at professionals,
whether they have a mathematical, computer science, or engineering background. It is not a text-
book, and in particular contains very few proofs. On the other hand it is reasonably self-contained,
in that essentially all of the mathematical background is explained quite precisely. This book con-
tains many algorithms, of which some appear for the first time in book form. They have been written
in such a way that they can be immediately implemented by anyone wanting to go as fast as pos-
sible to the bottom line, without bothering about the detailed understanding of the algorithm or its
mathematical background, when there is one. This is why this book is a handbook. On the other
hand, it is not a cookbook: we have not been content with giving the algorithms, but for the more
mathematically minded ones we have given in great detail all the necessary definitions, theorems,
and justifications for the understanding of the algorithm.

Thus this book can be read at several levels, and the reader can make her choice depending on
her interests and background.
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The reader may be primarily interested in the mathematical parts, and how some quite abstract
mathematical notions are transformed into very practical algorithms. For instance, particular men-
tion should be made of point counting algorithms, where apparently quite abstract cohomology
theories and classical results from explicit class field theory are used for efficient implementations
to count points on hyperelliptic curves. A most striking example is the use of p-adic methods. Ked-
laya’s algorithm is a very practical implementation of the Monsky–Washnitzer cohomology, and
Satoh’s algorithm together with its successors are very practical uses of the notion of canonical
p-adic liftings. Another example is the Tate duality of abelian varieties which provides the most
efficient realization of a bilinear structure opening new possibilities for public-key protocols. Thus
the reader may read this book to learn about the mathematics involved in elliptic and hyperelliptic
curve cryptography.

On the other hand the reader may be primarily interested in having the algorithms implemented
as fast as possible. In that case, she can usually implement the algorithms directly as they are
written, even though some of them are quite complex. She even can use the book to look for
appropriate solutions for a concrete problem in data security, find optimal instances corresponding
to the computational environment and then delve deeper into the background.

To achieve these aims we present almost all topics at different levels which are linked by numer-
ous references but which can be read independently (with the exception that one should at least have
some idea about the principles of public-key cryptography as explained in Chapter 1 and that one
knows the basic algebraic structures described in Chapter 2).

Mathematical background

The first level is the mathematical background concerning the needed tools from algebraic geome-
try and arithmetic. This constitutes the first part of the book. We define the elementary algebraic
structures and the basic facts on number theory including finite fields and p-adic numbers in Chap-
ters 2 and 3. The basic results about curves and the necessary concepts from algebraic geometry are
given in Chapter 4. In Chapter 5 we consider the special cases in which the ground field is a finite
field or equal to the complex numbers. In Chapters 6, 7, and 8 we explain the importance of Galois
theory and especially of the Frobenius automorphism for the arithmetic of curves over finite fields
and develop the background for pairings, Weil descent, and point counting.

On the one hand a mathematically experienced reader will find many topics well-known to her.
On the other hand some chapters in this part may not be easy to grasp for a reader not having a
sufficient mathematical background. In both cases we encourage the reader to skip (parts of) Part I
on first reading and we hope that she will come back to it after being motivated by applications and
implementations.

This skipping is possible since in later parts dealing with implementations we always repeat the
crucial notions and results in a summary at the beginning of the chapters.

Algorithms and their implementation

In Part II of the book, we treat exponentiation techniques in Chapter 9. Chapters 10, 11, and 12
present in a very concrete way the arithmetic in the ring of integers, in finite fields and in p-adic
fields. The algorithms developed in these chapters are amongst the key ingredients if one wants to
have fast algorithms on algebraic objects like polynomial rings and so their careful use is necessary
for implementations of algorithms developed in the next part.

In Part III, we give in great detail the algorithms that are necessary for addition in groups con-
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sisting of points of elliptic curves and of Jacobian varieties of hyperelliptic curves. Both generic
and special cases are treated, and the advantages and disadvantages of different coordinate systems
are discussed. In Chapter 13 this is done for elliptic curves, and in Chapter 14 one finds the results
concerning hyperelliptic curves. Chapter 15 is devoted to elliptic and hyperelliptic curves, which
have an extra structure like fast computable endomorphisms. The reader who plans to implement a
system based on discrete logarithms should read these chapters very carefully. The tables counting
the necessary field operations will be of special interest for her, and in conjunction with the arith-
metic of finite fields she will be able to choose an optimal system adapted to the given or planned
environment. (At this place we already mention that security issues must not be neglected, and as a
rule, special structures will allow more attacks. So Part V or the conclusions in Chapter 23 should
be consulted.) Since all necessary definitions and results from the mathematical background are
restated in Part III it can be read independently of the chapters before. But of course we hope that
designers of systems will become curious to learn more about the foundations.

The same remarks apply to the next Chapter, 16. It is necessary if one wants to use protocols
based on bilinear structures like tripartite-key exchange or identity-based cryptography. It begins
with a down-to-earth definition of a variant of the Tate pairing under the conditions that make it
practicable nowadays and then describe algorithms that become very simple in concrete situations.
Again it should be interesting not only for mathematicians which general structures are fundamental
and so a glimpse at Chapter 6 is recommended.

In Part IV of the book, it is more difficult to separate the background from the implementation.
Nevertheless we get as results concrete and effective algorithms to count the number of points on
hyperelliptic curves and their Jacobian varieties over finite fields. We present a complete version of
the Schoof–Elkies–Atkin algorithm, which counts the number of rational points on random elliptic
curves in Section 17.2 in the most efficient version known today. The p-adic methods for elliptic
and hyperelliptic curves over fields with small characteristics are given in Section 17.3 and the
method using complex multiplication is described in Chapter 18 for the relevant cases of curves
of genus 1, 2, and 3. In the end of this part, one finds algorithms in such a detailed manner that
it should be possible to implement point counting without understanding all mathematical details,
but some experience with computational number theory is necessary to get efficient algorithms,
and for instance in Chapter 18 it is advised that for some precomputations like determining class
polynomials a published list should be used. For readers who do not want to go into these details
a way out could be to use standard curves instead of generating their own. For mathematicians
interested in computational aspects this part of the book should provide a very interesting lecture
after they have read the mathematical background part. All readers should be convinced by Part IV
that there are efficient algorithms that provide in abundance instances for discrete logarithm systems
usable for public-key cryptography.

Until now the constructive point of view was in the center. Now we have to discuss security issues
and investigate how hard it is to compute discrete logarithms. In Part V we discuss these methods
in detail. The most important and fastest algorithms rely on the index calculus method which is in
abstract form presented in Chapter 20. In Chapter 21 it is implemented in the most efficient way
known nowadays for hyperelliptic curves. Contrary to the algorithms considered in the constructive
part it has a high complexity. But the computation is feasible even nowadays in wide ranges and
its subexponential complexity has as a consequence that it will become applicable to much larger
instances in the near future — if one does not avoid curves of genus � 4 and if one is not careful
about the choice of parameters for curves of genus 3. In Chapter 22 we describe how results from
the mathematical background like Weil descent or pairings can result in algorithms that transfer
the discrete logarithm from seemingly secure instances to the ones endangered by index calculus
methods. Though the topics of Part V are not as easily accessible as the results and algorithms in
Part III, every designer of cryptosystems based on the discrete logarithm problem should have a
look at least at the type of algorithms used and the complexity obtained by index calculus methods,
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and to make this task easier we have given a digest of all the results obtained until now in the third
level of the book.

Applications

In Part VI of the book we reach the third level and discuss how to find cryptographic primitives
that can be used in appropriate protocols such that the desired level of security and efficiency is
obtained. In Chapter 23 this is done for DL systems, and Chapter 24 deals with protocols using
bilinear structures. Again these chapters are self-contained but necessarily in the style of a digest
with many references to earlier chapters. One finds the mathematical nature of the groups used as
cryptographic primitives, how to compute inside of them, a security analysis, and how to obtain
efficient implementations. Moreover, it is explained how to transfer the abstract protocols, for
instance, signature schemes, from Chapter 1 to real protocols using elliptic and hyperelliptic curves
in a most efficient and secure way. The summary at the end of Chapter 23 is a scenario as to how
this book could be used as an aid in developing a system. At the same time it could give one (a bit
extreme) way how to read the book. Begin with Section 23.6 and take it as hints for reading the
previous sections of this chapter. If an algorithm is found to be interesting or important go to the
corresponding chapters and sections cited there; proceed to chapters in Parts II, III, IV and V but
not necessarily in this order and not necessarily in an exhaustive way. And then, just for fun and
better understanding, read the background chapters on which the implementations rely.

If the reader is interested in applications involving bilinear structures she can use the same recipe
as above but beginning in Chapter 24.

A not so direct but important application of elliptic curves and (at a minor level) hyperelliptic
curves in cryptography is their use in algorithms for primality testing and factoring. Because of the
importance of these algorithms for public-key cryptography we present the state of the art informa-
tion on these topics in Chapter 25.

Realization of Discrete Logarithm systems

Until now our topics were totally inside of mathematics with a strong emphasis on computational
aspects and some hints coming from the need of protocols. But on several occasions we have
mentioned already the importance of the computational environment as basis for optimal choices
of DL systems and their parameters. To understand the conditions and restrictions enforced by the
physical realization of the system one has to understand its architecture and the properties of the
used hardware. In Part VII, mathematics is at backstage and in the foreground are methods used
to implement discrete logarithm systems based on elliptic and hyperelliptic curves in hardware and
especially in restricted environments such as smart cards.

In Chapter 26 it is shown how the arithmetic over finite fields is realized in hardware. In Chap-
ter 27 one finds a detailed description of a restricted environment in which DL systems will have
their most important applications, namely smart cards. The physical realization of the systems
opens new lines of attacks, so called side-channel attacks, not computing the discrete logarithm to
break the system but relying, for instance, on the analysis of timings and power consumption during
the computational processes. The background for such attacks is explained in Chapter 28 while
Chapter 29 shows how mathematical methods can be used to develop countermeasures.

A most important ingredient in all variants of protocols used in public-key cryptography is ran-
domization. So one has to have (pseudo-)random number generators of high quality at hand. This
problem and possible solutions are discussed in Chapter 30. As a side-result it is shown that elliptic
or hyperelliptic curves can be used with good success.
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In this chapter we introduce the basic building blocks for cryptography based on the discrete log-
arithm problem that will constitute the main motivation for considering the groups studied in this
book. We also briefly introduce the RSA cryptosystem as for use in practice it is still an important
public-key cryptosystem.

Assume a situation where two people, called Alice and Bob in the sequel (the names had been
used since the beginning of cryptography because they allow using the letters A and B as handy
abbreviations), want to communicate via an insecure channel in a secure manner. In other words, an
eavesdropper Eve (abbreviated as E) listening to the encrypted conversation should not be able to
read the cleartext or change it. To achieve these aims one uses cryptographic primitives based on a
problem that should be easy to set up by either Alice, or Bob, or by both, but impossible to solve for
Eve. Loosely speaking, infeasibility means computational infeasibility for Eve if she does not have
at least partial access to the secret information exploited by Alice and Bob to set up the problem.

Examples of such primitives are RSA, cf. [PKCS], which could be solved if the integer factor-
ization problem was easy, i.e., if one could find a nontrivial factor of a composite integer n, and the
discrete logarithm problem, i.e., the problem of finding an integer k with [k]P = Q where P is a
generator of a cyclic group (G,⊕) and Q ∈ G. These primitives are reviewed in Sections 1.4.3

1
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and 1.5. They are applied in a prescribed way given by protocols. We will only briefly state the
necessary problems and hardness assumptions in Section 1.6 but not go into the details.

Then we go briefly into issues of primality proving and integer factorization. The next section
is devoted to discrete logarithm systems. This is the category of cryptographic primitives in which
elliptic and hyperelliptic curves are applied. Finally, we consider protocols, i.e., algorithms using
the cryptographic primitive to establish a common key, encrypt a message for a receiver, or sign
electronically.

1.1 Cryptography

In ancient times, the use of cryptography was restricted to a small community essentially formed by
the military and the secret service. The keys were distributed secretly by a courier and the same key
allowed to encipher and, later, decipher the messages. These symmetric systems include the ancient
Caesar’s cipher, Enigma, and other rotor machines. Today’s standard symmetric cipher is the AES
(Advanced Encryption Standard) [FIPS 197]. Symmetric systems still are by far the fastest means
to communicate secretly – provided that a joint key is established.

In order to thrive, e-commerce requires the possibility of secure transactions on an electronically
connected global network. Therefore, it is necessary to rely on mechanisms that allow a key ex-
change between two or more parties that have not met each other before. One of the main features
of public-key cryptography is to relax the security requirement of the channel used to perform a
key exchange: in the case of symmetric cryptography it must be protected in integrity and confiden-
tiality though integrity suffices in public-key cryptography. It allows for building easier-to-set-up
and more scalable secured networks. It also provides cryptographic services like signatures with
non-repudiation, which are not available in symmetric cryptography. The security of public-key
cryptography relies on the evaluation of the computational difficulty of some families of mathemat-
ical problems and their classification with respect to their complexity.

1.2 Complexity

The aim of complexity theory is to define formal models for the processors and algorithms that we
use in our everyday computers and to provide a classification of the algorithms with respect to their
memory or time consumption.

Surprisingly all the complex computations carried out with a computer can be simulated by an au-
tomaton given by a very simple mathematical structure called a Turing machine. A Turing machine
is defined by a finite set of states: an initial state, a finite set of symbols, and a transition function. A
Turing machine proceeds step-by-step following the rules given by the transition function and can
write symbols on a memory string. It is then easy to define the execution time of an algorithm as
the number of steps between its beginning and end and the memory consumption as the number of
symbols written on the memory string. For convenience, in the course of this book we will use a
slightly stronger model of computation, called a Random Access Machine because it is very close to
the behavior of our everyday microprocessors. Then determining the execution time of an algorithm
boils down to counting the number of basic operations on machine words needed for its execution.
For more details, the reader should refer to [PAP 1994].

The security of protocols is often linked to the assumed hardness of some problems. In the theory
of computation a problem is a set of finite-length questions (strings) with associated finite-length
answers (strings). In our context the input will usually consist of mathematical objects like integers
or group elements coded with a string. The problems can be loosely classified into problems to
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compute something, e.g., a further group element and problems that ask for a yes or no answer.

Definition 1.1 A problem is called a decision problem if the problem is to decide whether a state-
ment about an input is true or false.

A problem is called a computation problem if it asks to compute an output maybe more elaborate
than true or false on a certain set of inputs.

One can formulate a computation problem from a decision problem. Many protocols base their
security on a decision problem rather than on a computation problem.

Example 1.2 The problem to compute the square root of 16 is a computation problem whereas the
question, whether 4 is a square root of 16, is a decision problem. Here, the decision problem can be
answered by just computing the square 42 = 16 and comparing the answers.

A further decision problem in this context is also to answer whether 16 is a square. Clearly this
decision problem can be answered by solving the above computation problem.

Example 1.3 A second important example that we will discuss in the next section is the problem to
decide whether a certain integer m is a prime. This is related to the computation problem of finding
the factorization of m.

Given a model of computation, one can attach a certain function f to an algorithm that bounds
a certain resource used for the computations given the length of the input called the complexity
parameter. If the resource considered is the execution time (resp. the memory consumption) of the
algorithm, f measures its time complexity (resp. space complexity). In fact, in order to state the
complexity independently from the specific processor used it is convenient to express the cost of an
algorithm only “up to a constant factor.” In other words, what is given is not the exact operation
count as a function of the input size, but the growth rate of this count.

The Schoolbook multiplication of n-digit integers, for example, is an “n2 algorithm.” By this it is
understood that, in order to multiply two n-digit integers, no more than c n2 single-digit multiplica-
tions are necessary, for some real constant c — but we are not interested in c. The “big-O” notation
is one way of formalizing this “sloppiness,” as [GAGE 1999] put it.

Definition 1.4 Let f and g be two real functions of s variables. The function g(N1, . . . , Ns) is of
order f(N1, . . . , Ns) denoted by O

(
f(N1, . . . , Ns)

)
if for a positive constant c one has

|g(N1, . . . , Ns)| � cf(N1, . . . , Ns),

with Ni > N for some constant N . Sometimes a finite set of values of the tuples (N1, . . . , Ns) is
excluded, for example those for which the functions f and g have no meaning or are not defined.

Additional to this “big-O” notation one needs the “small-o”notation.
The function g(N1, . . . , Ns) is of order o

(
f(N1, . . . , Ns)

)
if one has

lim
N1,...,Ns→∞

g(N1, . . . , Ns)
f(N1, . . . , Ns)

= 0.

Finally we write f(n) =Õ
(
g(n)

)
as a shorthand for f(n) = O

(
g(n) lgk g(n)

)
for some k.

Note that we denote by lg the logarithm to base 2 and by ln the natural logarithm. As these ex-
pressions differ only by constants the big-O expressions always contain the binary logarithm. In
case other bases are needed we use loga b to denote the logarithm of b to base a. This must not be
confused with the discrete logarithm introduced in Section 1.5 but the meaning should be clear from
the context.
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Example 1.5 Consider g(N) = 10N2 + 30N + 5000. It is of order O(N2) as for c = 5040 one
has g(N) � cN2 for all N . We may write g(N) = O(N2). In addition g(N) is o(N3).

Example 1.6 Consider the task of computing the n-fold of some integer m. Instead of computing
n × m = m + m + · · · + m (n-times) we can do much better reducing the complexity of scalar
multiplication from O(n) to O(lg n). We make the following observation: we have 4m = 2(2m)
and a doubling takes about the same time as an addition of two distinct elements. Hence, the number
of operations is reduced from 3 to 2. This idea can be extended to other scalars: 5m = 2(2m) + m
needing 3 operations instead of 4. In more generality let n =

∑l−1
i=0 ni2i, ni ∈ {0, 1} be the binary

expansion of n with l − 1 = �lg n�. Then

n × m = 2(2(· · · 2(2(2m + nl−2m) + nl−3m) + · · · + n2m) + n1m) + n0m.

This way of computing n × m needs l − 1 doublings and
∑l−1

i=0 ni � l additions. Hence, the
algorithm has complexity O(lg n). Furthermore, we can bound the constant c from above by 2.
Algorithms achieving a smaller constant are treated in Chapter 9 together with a general study of
scalar multiplication.

An algorithm has running time exponential in N if its running time can be bounded from above
and below by ef(N) and eg(N) for some polynomials f, g. In particular, its running time is of order
O
(
ef(N)

)
. Its running time is polynomial in N if it is of order O

(
f(N)

)
. Algorithms belonging

to the first category are computationally hard, those of the second are easy. Note that the involved
constants can imply that for a certain chosen small N an exponential-time algorithm may take less
time than a polynomial-time one. However, the growth of N to achieve a certain increase in the
running time is smaller in the case of exponential running time.

Definition 1.7 For the complexity of algorithms depending on N we define the shorthand

LN (α, c) := exp
(
(c + o(1))(ln N)α(ln ln N)1−α

)
with 0 � α � 1 and c > 0. The o(1) refers to the asymptotic behavior of N . If the second parameter
is omitted, it is understood that it equals 1/2.

The parameter α is the more important one. Depending on it, LN (α, c) interpolates between poly-
nomial complexity for α = 0 and exponential complexity for α = 1. For α < 1 the complexity is
said to be subexponential.

One might expect a cryptographic primitive to be efficient while at the same time difficult to
break. This is why it is important to classify the hardness of a problem — and to find instances of
hard problems. Note that for cryptographic purposes, we need problems that are hard on average,
i.e., it should be rather easy to construct really hard instances of a given problem. (The classification
of problems P and not P must therefore be considered with care, keeping in mind that a particular
problem in NP can be easy to solve in most cases that can be constructed in practice, and there need
to be only some hard instances for the problem itself to let it be in NP.)

In practice, we often measure the hardness of a problem by the complexity of the best known
algorithm to solve it. The complexity of an algorithm solving a particular problem can only be
an upper bound for the complexity of solving the problem itself, hence security is always only “to
our best knowledge.” For some problems it is possible to give also lower bounds showing that an
algorithm needs at least a certain number of steps. It is not our purpose to give a detailed treatment
of complexity here. The curious reader will find a broader and deeper discussion in [GRKN+ 1994,
Chapter 9], [SHP 2003], and [BRBR 1996, Chapter 3].
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1.3 Public-key cryptography

In public-key cryptography, each participant possesses two keys — a public key and a private key.
These are linked in a unique manner by a one-way function.

Definition 1.8 Let Σ∗ be the set of binary strings and f be a function from Σ∗ to Σ∗. We say that
f is a one-way function if

• the function f is one-on-one and for all x ∈ Σ∗, f(x) is at most polynomially longer or
shorter than x

• for all x ∈ Σ∗, f(x) can be computed in polynomial time
• there is no polynomial-time algorithm which for all y ∈ Σ∗ returns either “no” if

y /∈ Im(f) or x ∈ Σ∗ such that y = f(x).

Remark 1.9 So far, there is no proof of the existence of a one-way function. In fact, it is easy
to see that it would imply that P �= NP, which is a far reaching conjecture of complexity theory.
This means in particular that the security of public-key cryptosystems always relies on the unproven
hypothesis of the hardness of some computational problem. But in the course of this book, we are
going to present some families of functions that are widely believed to be good candidates for being
a one-way function and we now give an example of such a function.

Example 1.10 Let Σ = {0, 1, �} be the alphabet with three letters. Note that even if a computer
manipulates only bits of information, that is an alphabet with two letters, it is easy by grouping the
bits by packets of �lg |Σ|� to simulate computations on Σ. The character � will serve as separator in
our data structure. Let s be the function that assigns to each integer n ∈ N its binary representation.
It is then possible to define a function f from Σ∗ to Σ∗ such that for all couples of prime numbers
(p, q) the function evaluates as f

(
s(p) ||� || s(q)

)
= s(pq) with || the concatenation. As there exists

a polynomial-time algorithm to multiply two integers, f satisfies clearly the two first conditions of
a one-way function. It is also widely believed that there is no polynomial-time algorithm to invert
f but up to now there is no proof of such an assumption. The next section gives some details on the
complexity of the best algorithms known in order to invert this function.

Given a one-way function one can choose as the private key an a ∈ Σ∗ and obtains the public
key f(a). This value can be published since it is computationally infeasible to defer a from it.
Complexity theory considered in the previous section gives a mathematical measure to define what
is meant by “computationally infeasible.” For some applications it will be necessary to have a
special class of computational one-way functions that can be inverted if one possesses additional
information. These functions are called trapdoor one-way functions.

If an encrypted message is transmitted, the cryptographic framework has to ensure that no other
party can obtain any information on the message or change it without being noticed. To map the
paper and pencil based world to electronic processes, other issues have to be solved in order to
allow electronic commerce and contracts. Just as a handwritten signature is bound to the signer by
the uniqueness of his handwriting, the message as signature and text are linked by physical means,
and any change of the message would be visible, an electronic signature needs to guarantee the
following:

• Reliability: The signature is bound uniquely to the signer.
• Non-repudiation: The signer cannot deny his signature.
• Unforgeability: The signature is bound to the signed text.

More details for all material treated in this section can be found in [MEOO+ 1996, STI 1995,
SCH 1996].
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1.4 Factorization and primality

This section is devoted to prime numbers. We need them to construct finite fields and the cryp-
tosystems in which we are interested are designed around groups of prime order. The prime number
theorem gives an estimate on the number π(x) of primes less than x.

Theorem 1.11 (Prime number theorem) Asymptotically there exist

π(x) ∼
∫ x

2

dy

ln y

prime numbers less than x. A slightly worse estimate that is easier to remember is

π(x) ∼ x

ln x
·

1.4.1 Primality

In the applications we envision we must be sure that a given integer N is prime. The most obvious
way is to try for all integers n �

√
N whether N ≡ 0 (mod n) in which case one even has found a

divisor of N . However, this method requires O(
√

N) modular reductions, which is far too large for
the size of N encountered in practice.

In fact, it is too time-consuming to prove primality, or for that matter compositeness, of a given
integer by failing or succeeding to find a proper factor of it. The best primality test algorithms
described in Chapter 25 will only prove N to be prime and will not output any divisor in case it is
not. Most algorithms will be probabilistic in nature in the sense that one output is always true while
the other is only true with a certain probability. Iterating this algorithm allows us to enlarge the
probability that the answer that was given only with a certain probability actually holds true. These
techniques offer quite good performance.

To prove primality using probabilistic algorithms one usually starts with some iterations of an
algorithm whose output “nonprime” is always correct while the output “prime” is true only with a
certain probability. After passing some rounds one uses an algorithm that is correct when it outputs
“prime.”

The reason for this order is that usually the algorithms of the first type have a shorter running
time and allow us to detect composite integers very efficiently. Factoring algorithms, on the other
hand, are usually much slower.

1.4.2 Complexity of factoring

Even though we shall return to this matter in Chapter 25 we briefly recall the complexity of finding
factors of composite numbers.

By brute force one can check divisibility by 2, 3, 5, 7, 11, and so on in succession. Even if N
is 1000 decimal digits long (about 3222 bits), it takes only a few seconds on a modern personal
computer to divide it by all integers up to 107. Checking whether a large number N is divisible
by n (where N is much larger than n) by trial division requires at most O

(
lg(n) lg(N)

)
operations

assuming simple techniques and

O

(
lg(n)1+ε lg(N)

lg(n)

)
= O

(
lg(n)ε lg(N)

)
asymptotically.
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The elliptic curve method (ECM) of factorization given in Section 25.3.3 has expected complexity
Lp(1

2
,
√

2) for finding the smallest prime factor p of N . It is expected that in the near future this
method will be able to find 60-digits, i.e., 200-bit factors.

Boosted by RSA challenges [RSA] (see below) there has been a lot of research on the number
field sieve methods for factoring integers. In theory the number field sieve should be able to factor
any number in heuristic expected time

LN

(
1
3

,
(

64
9

)1/3
)

where
(

64
9

)1/3 ≈ 1.923.

This algorithm was long thought not to be practical, but recent years have seen tremendous success
in its implementation and its improvements. The largest RSA modulus factored so far is the 200-
digit RSA challenge integer, a feat achieved by Franke and Kleinjung [WEI 2005, CON 2005].

1.4.3 RSA

We give only the schoolbook method here. It is understood that one should not implement RSA this
way. The RSA cryptosystem [RISH+ 1978] uses an integer N = pq which is the product of two
primes p and q. The system uses the modular relation m(p−1)(q−1) ≡ 1 (mod pq), which holds for
every m coprime to N . This relation will be proved in Section 2.1.2 in a more general context.

Alice’s public and secret keys are two integers e and d such that ed ≡ 1 (mod (p − 1)(q − 1))
(this alone implies that e must be relatively prime to p − 1 and q − 1). If Bob wants to send a
message m to Alice, where we assume that m is a natural number smaller than pq, he computes
c = me mod n. To recover the message, Alice simply computes

cd = med = m1+k(p−1)(q−1) ≡ m (mod N)

by the relation above. In the RSA cryptosystem, the one-way function is thus m �→ me mod N .
The security is based on the RSA assumption, namely the assumption that given e, me mod N

and N one cannot recover m. This would be easy if one were able to compute d from the given
information, e.g., if (p − 1)(q − 1) would be known. Apparently this could be done if one could
factor N . However, factoring is not easy as shown in the previous section.

The primes p and q are usually chosen of similar bit length, in order to prevent as much as
possible attacks arising from future development of algorithms whose complexity depends on the
smallest prime. At the same time p and q cannot be too close, otherwise if p = �

√
N� + a, q =

�
√

N�− b for some small a, b one has N = pq = �
√

N�2 +(a− b)�
√

N�− ab. From this one gets
N −�

√
N�2 = (a− b)�

√
N�− ab. Performing a division with remainder by �

√
N� one obtains ab

and a − b provided they are smaller than �
√

N�.
It is not clear whether the RSA problem, which can be loosely formulated as inverting the function

m �→ me mod N , is equivalent to the factorization problem. It is possible, in theory, that there is
some way of computing m from me that does not involve determining p and q. In the original RSA
paper, the authors say:

“It may be possible to prove that any general method of breaking our scheme yields
an efficient factoring algorithm. This would establish that any way of breaking our
scheme must be as difficult as factoring. We have not been able to prove this conjecture,
however.”

However, as of today, if p and q are large enough, the cryptosystem can be considered secure. Large
enough currently means that the two numbers are of at least 500 bits and that their product has about
1024 bits.
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1.5 Discrete logarithm systems

In this section we introduce a second kind of problem where hard instances can be constructed. In
practice a discrete logarithm (DL) system is usually based on a cyclic group of prime order. For
some protocols considered later on, a commutative semigroup would be enough.

In this book, we are mainly concerned with cryptographic use of elliptic and hyperelliptic curves
and there one works in a group, hence, we restrict our attention to this case here as well. For the
definition of a group and the examples used in the sequel, we refer to Chapter 2.

1.5.1 Generic discrete logarithm systems

Let (G,⊕) be a cyclic group of prime order  and let P be a generator of G. The map

ϕ : Z → G

n → [n]P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n-times

has kernel Z, thus ϕ leads to an isomorphism between (G,⊕) and (Z/Z, +). The problem of
computing the inverse map is called the discrete logarithm problem (DLP) to the base of P . It is
the problem given P and Q to determine k ∈ Z such that Q = [k]P , i.e., to find k ∈ N such that
ϕ(k) = Q. The discrete logarithm of Q to the base of P is denoted by logP (Q). Note, that it is
unique only modulo the group order . The complexity of this problem depends on the choice of G
and ⊕. To show the dependency on the generator P of G we speak of the DL system (G,⊕, P ).

Example 1.12 Let (G,⊕) = (Z/Z, +) with generator 1 + Z. The discrete logarithm of n + Z
is simply given by n. Also, if the generator is chosen to be a + Z for some integer a, this problem
is easy to solve as it is nothing but computing the inverse modulo . In Chapter 10 this is shown to
have complexity polynomial in the size of the operands, i.e., in lg .

Hence, this group cannot be used in cryptographic applications.

Example 1.13 Choose a prime p such that  divides p − 1. Choose ζ �= 1 in Z/pZ with ζ� = 1
(i.e., ζ is a primitive -th root of unity). Then (G,⊕) = (〈ζ〉,×) and ϕ(n) = ζn.

In Chapter 19, we will show that this DLP is of subexponential complexity, thus harder than in
the previous example but not optimal.

An obvious generalization is to work in extension fields Fq , with q = pd,  | pd − 1 for p prime.
To represent the finite field Fpd one fixes an irreducible polynomial m(X) ∈ Fp[X ] of degree
d and uses the isomorphism Fpd � Fp[X ]/

(
m(X)

)
. For an introduction to finite fields and their

arithmetic see Chapters 2 and 11.
Systems based on the DLP in the multiplicative group of finite fields are easy to construct. Start-

ing with a prime  of appropriate size one searches for p and d such that  | pd − 1. For appro-
priately chosen subgroups, compression methods based on traces such as LUC [SMSK 1995] and
XTR [LEVE 2000] can be used to represent the subgroup elements. These groups additionally
allow faster group operations.

The groups associated to elliptic and hyperelliptic curves of small genus that will be studied in the
sequel of the book are believed to have a DLP of exponential complexity.

To efficiently implement a DL system one needs to find good instances of groups in which the
DLP is hard: in order to put aside easy instances this implies in particular that the group size can
be efficiently computed to ensure that there exists a large prime order subgroup (G,⊕, P ). We also



§ 1.6 Protocols 9

need to have a short representation of group elements needing O(lg ) space and the group operation
Q ⊕ R needs to be performed efficiently for any input Q, R ∈ G. The complexity of computing
the DL is studied in Chapter 19. Note that the computation of the order of P is a special instance
for the DLP, namely ord(P ) = logP 1, where 1 is the neutral element in G. Techniques for scalar
multiplication are studied in Chapter 9. For groups based on elliptic and hyperelliptic curves, see
Chapters 13 and 14.

1.5.2 Discrete logarithm systems with bilinear structure

Some groups have an additional structure that can either be considered a weakness, as it allows
transfers (see below), or an advantage, as it can be used constructively in special protocols (cf.
Section 24.1.2).

Definition 1.14 Assume that a DL system is given by (G,⊕) a group of prime order  and that
there is a group (G′,⊕′) of the same order  in which we can compute “as fast” as in G. Assume
moreover that (H, �) is another DL system and that a map

e : G × G′ → H

satisfies the following requirements:

• the map e is computable in polynomial time (this includes that the elements in H need
only O(lg ) space),

• for all n1, n2 ∈ N and random elements (P1, P
′
2) ∈ G × G′ we have

e([n1]P1, [n2]P ′
2) = [n1n2]e(P1, P

′
2),

• the map e is nondegenerate. Hence, for random P ′ ∈ G′ we have e(P1, P
′) = e(P2, P

′)
if and only if P1 = P2 .

Then we call (G, e) a DL system with bilinear structure.

There are two immediate consequences:

• Assume that G = G′ and hence
e(P, P ) �= 0.

Then for all triples (P1, P2, P3) ∈ 〈P 〉3 one can decide in time polynomial in lg 
whether

logP (P3) = logP (P1) logP (P2).

• The DL system G is at most as secure as the system H . Even if G �= G′ one can transfer
the DLP in G to a DLP in H , provided that one can find an element P ′ ∈ G′ such that
the map P → e(P, P ′) is injective, i.e., it induces an injective homomorphism of G into
a subgroup of H . Hence, instead of solving the DLP in G one transfers the problem to
H where it might be easier to solve.

1.6 Protocols

This book is concerned with cryptographic applications of elliptic and hyperelliptic curves. So far
we have described DL systems in an abstract setting. In this section we motivate that groups are a
good choice and show how two or more parties can agree on a joint secret key, exchange encrypted
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data, and sign electronically. We also show how the identity of a participant can be used to form his
public key.

But this book is not mainly concerned with protocols. We just show the bare-bones schoolbook
protocols. Their use is twofold: they should motivate the reader to consider DL systems in more
detail and at the same time highlight which computational problems need to be solved in order to
get fast cryptographic systems. For an actual implementation one needs to take care not to weaken
the system in applying a flawed protocol. For a great overview consider [MEOO+ 1996].

1.6.1 Diffie–Hellman key exchange

The publication of Diffie and Hellman’s seminal paper New directions in cryptography [DIHE 1976]
can be seen as the start of public-key cryptography in public. We describe the Diffie–Hellman
(DH)protocol for an abstract group (G,⊕). In their paper they proposed the multiplicative group of
a finite prime field (cf. Example 1.13).

The two parties Alice (A) and Bob (B) have the public parameters (G,⊕, P ) and want to agree
on a joint key that is a group element. Once they are in the possession of such a joint secret Pk they
can use a key derivation function to derive a bit-string useful as a key in a symmetric system. To
this aim A secretly and randomly chooses aA ∈R N (∈R means choosing at random) and computes
PA = [aA]P while B ends up with PB = [aB]P . They publicly exchange these intermediate
results. If the DLP (cf. Section 1.5) is hard in G one cannot extract aA from PA or aB from PB.
Upon receiving PB, A computes Pk = [aA]PB = [aAaB]P . Now B can obtain the same result as
[aB]PA = [aBaA]P , thus they are both in possession of a group element Pk , which should not be
computable from the public values PA and PB.

Clearly, this last assumption does not hold if the DLP in (G,⊕) is easy. The problem of comput-
ing [aAaB]P given [aA]P and [aB]P is called the computational Diffie–Hellman problem (CDHP).

Maurer and Wolf [MAWO 1999] study the equivalence of the CDHP and the DLP. An important
tool in their proof are elliptic curves of split group order. They show that if such curves can be
found, then an oracle to solve the CDHP can be used to solve DLP in polynomially many steps. For
groups related to elliptic curves this question is studied in [MUSM+ 2004].

In most DL systems it is also hard to verify whether a proposed solution to the CDHP is correct.
The problem given [aA]P, [aB]P and [c]P to decide whether [c]P = [aAaB]P is called the decision
Diffie–Hellman problem (DDHP). Obviously, it is no harder than CDHP. For the DLP a decision
version is not useful to consider as one could simply try the pretended solution.

If (G,⊕) is a DL system with bilinear structure (Section 1.5.2), the DDHP can easily be solved
by comparing e([aA]P, [aB]P ) = [aAaB](e(P, P )) to e(P, [c]P ) = [c](e(P, P )). Groups in which
the CDHP is assumed to be hard while the DDHP is easy are called Gap-Diffie–Hellman groups.

As usual the presented version is not ready to implement. An eavesdropper Eve (E) could inter-
cept the communication and act as Bob for Alice sending [aE]P to her and as Alice for Bob sending
her key to him as well. Then she would have a joint key Pk,A with Alice and one with Bob Pk,B.
Hence, she can decipher any message from Alice intended for Bob and encipher it again for Bob
using Pk,B. This way, no party would notice her presence and she could read any message. This
attack is called the man-in-the-middle attack.

1.6.2 Asymmetric Diffie–Hellman and ElGamal encryption

The Diffie–Hellman key exchange requires that both parties to work online, i.e., they are both active
at the same time. The following two protocols are asymmetric also in the sense that the sender
and the receiver perform different steps and that there are two different keys — a private key and a
public key.
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If the DLP is hard in (G,⊕) then Alice could just as well publish her public key PA = [aA]P in a
directory. The process of computing the public and private key pair is called key generation. The
systems described in this section require that the receiver of the message has already set up and
published his public key. The problem of how to make accessible this data and put confidence in the
link between A and her public key is considered in the literature on public-key infrastructure (PKI).

Algorithm 1.15 Key generation

INPUT: The public parameters (G,⊕, P ).

OUTPUT: The public key PA and private key aA.

1. aA ∈R N [choose a at random in N]

2. PA ← [aA]P

3. return PA and aA

The random choice should be done by the computing device to avoid biases introduced by humans,
like choosing small numbers to facilitate the computations. In Chapter 30 we deal with random
number generators.

If Bob wants to send the message m to Alice, he looks up her public key in a directory. He can
perform an asymmetric version of the Diffie–Hellman key exchange if there is a map ψ : G →
K from the group to the keyspace K and a symmetric cipher Eκ depending on the key κ. The
decryption function, i.e., the inverse of Eκ, is denoted by Dκ.

Algorithm 1.16 Asymmetric Diffie–Hellman encryption

INPUT: A message m, the public parameters (G,⊕, P ) and the public key PA ∈ G.

OUTPUT: The encrypted message (Q, c).

1. k ∈R N

2. Q ← [k]P

3. Pk ← [k]PA

4. κ ← ψ(Pk)

5. c ← Eκ(m)

6. return (Q, c)

To decrypt, Alice computes Pk = [aA]Q, using her private key aA, from which she determines
κ = ψ(Pk). She recovers the plaintext as m = Dκ(c).

The randomly chosen nonce k ∈R N makes this a randomized encryption.

If there is an invertible map ϕ from the message space M to G one can also use ElGamal encryption.

Algorithm 1.17 ElGamal encryption

INPUT: A message m, the public parameters (G,⊕, P ) and the public key PA ∈ G.

OUTPUT: The encrypted message (Q, c).

1. k ∈R N

2. Q ← [k]P

3. Pk ← [k]PA
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4. R ← Pk ⊕ ϕ(m)

5. return (Q,R)

To decrypt, Alice uses Pk = [aA]Q and computes m = ϕ−1(R � Pk).

Note that by this method one can only encrypt messages of size at most lg , where  is the order
of G. It is possible to encrypt longer messages using a mode of operation making multiple calls
to the Algorithm 1.17; however, this is hardly ever done because of the relative slowness of this
encryption scheme. Instead the transmitted message m will act as a secret key in some following
symmetric encryption.

1.6.3 Signature scheme of ElGamal-type

An electronic signature should bind the signer to the content of the signed message. A hash function
(see [MEOO+ 1996]) is a map h : S → T between two sets S, T , where usually |S| > |T |, e.g., the
input is a bit-string of arbitrary length and the output has fixed length.

Additional properties are required from cryptographic hash functions:

• Preimage resistant: for essentially all outputs t ∈ T it is computationally infeasible to
find any s ∈ S such that t = h(s).

• 2nd-preimage resistant: for any given s1 ∈ S it is computationally infeasible to find a
different s2 ∈ S such that h(s1) = h(s2).

• Collision resistant: it is computationally infeasible to find any distinct inputs s1, s2 such
that h(s1) = h(s2).

For practical use one requires the signature to be of fixed length no matter how long the signed
message is. Therefore, one only signs the hash of the message. The hash function should be
collision resistant as otherwise a malicious party could ask to sign some innocent message m1 and
use the signature, which only depends on h(m1), as a signature for a different message m2 with
h(m1) = h(m2). We shall also apply hash functions to elements of the group G. Here, we assume
that these are represented via a bit-string and thus write h(Q) for Q ∈ G.

To compute an electronic signature, Alice must have performed Algorithm 1.15 in advance.

Algorithm 1.18 ElGamal signature

INPUT: A message m, the public parameters (G,⊕, P ) with |G| = � and the private key aA ∈ G.

OUTPUT: The signature (Q, s) on m.

1. k ∈R N

2. Q ← [k]P

3. s ← (k−1
`
h(m) − aAh(Q)

´
mod �)

4. return (Q, s)
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Remarks 1.19

(i) In the signature scheme the short term secret, i.e., the random nonce k, must be kept
secret as otherwise the long-term secret, the private key aA, can be recovered as

aA ≡ h(Q)−1(h(m) − sk) (mod ).

(ii) There are many variants of ElGamal signature schemes. Some have the advantage that
one need not invert k modulo the group order. This is especially interesting if one is
concerned with restricted environments (cf. Chapters 27 and 26) as this way one avoids
implementing modular arithmetic for two different moduli (finite field arithmetic for
the group arithmetic and computations modulo ). An overview of different schemes is
provided in [MEOO+ 1996, Note 11.6]; e.g., the signature can also be given by

s =
(
kh(m) + aAh(Q)

)
mod 

with notations as above.

A signature can be verified by everybody.

Algorithm 1.20 Signature verification

INPUT: A message m, its signature (Q, s) from Algorithm 1.18, the public parameters (G,⊕, P )
where |G| = �, and the public key PA.

OUTPUT: Acceptance or rejection of signature.

1. R1 ← [h(Q)]PA ⊕ [s]Q

2. R2 ← [h(m)]P

3. if R1 = R2 return “acceptance” else return “rejection”

The algorithm is valid as a correct signature gets accepted. Namely,

R1 = [h(Q)]PA⊕[s]Q = [aAh(Q)]P ⊕[ks]P = [aAh(Q)+h(m)−aAh(Q)]P = [h(m)]P = R2.

In Line 1 one can apply simultaneous multiplication techniques (cf. Chapter 9).
Depending on the special properties of the group it might be possible to transmit only some part

of Q. The standard for digital signatures (DSA) works in a subgroup of the multiplicative group of
a finite field. For elliptic curves the standard is called the elliptic curve digital signature algorithm
(ECDSA) [ANSI X9.62], an adaption of Algorithm 1.18. The German standard GECDSA avoids
inversions modulo the group order. So far, there is no standard for hyperelliptic curves. A version
analogous to the ECDSA can be found in [AVLA 2005].

1.6.4 Tripartite key exchange

We now give an example of how the additional structure of a DL system with bilinear structure can
be used in protocols. We come back to this study in Chapter 24 where we apply special bilinear
maps for elliptic and hyperelliptic curves. Here, we show how three persons can agree on a joint
secret group element using using two DL systems, (G,⊕) and (H, �), and e, a bilinear map from
G × G into H and needing only one round [JOU 2000]. Note that there are other protocols based
on the usual DH protocol to solve this for arbitrarily many group members, but in two rounds
[BUDE 1995, BUDE 1997], and clearly the protocol as such is a schoolbook version that can easily
be attacked by a man-in-the-middle attack.
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The following algorithm shows the computations done by person A.

Algorithm 1.21 Three party key exchange

INPUT: The public parameters (G,⊕,H, �, P, e) with the bilinear map e.

OUTPUT: The joint key K ∈ H .

1. aA ∈R N

2. PA ← [aA]P

3. send PA to B, C

4. receive PB, PC from B, C

5. K ← [aA]
`
e(PB, PC)

´

6. return K

Applying this algorithm, A, B, and C obtain the same element of H as

[aA]
(
e(PB, PC)

)
= [aAaBaC]

(
e(P, P )

)
= [aB](e(PA, PC)) = [aC]

(
e(PA, PB)

)
.

Obviously, this protocol can be extended to more parties by the same methods as the DH protocol.

1.7 Other problems

Few problems have been investigated as thoroughly as the RSA and discrete logarithm problem.
Furthermore, these problems are suitable for designing schemes that address most of today’s needs:
key exchange, en- and decryption, and generation and verification of digital signatures. After more
than 20 years of research, they still stand as hard ones, with discrete logarithms in the Jacobians of
curves offering the advantage of shorter keys compared to RSA and the gap becomes larger as the
security demands increase. In a certain sense, curves offer balanced systems: they allow to design
protocols for all applications, offering good performance.

Besides RSA and DLP some other computationally hard problems have been proposed as a basis
for cryptosystems. Some of the systems designed around these problems require an extremely
careful choice of parameters in order to attain security: the parameters had to be redefined several
times as new attacks have been discovered. Therefore, we do not go into the details here but only
list them with some references.

• The Knapsack (subset sum) problem is to determine a subset of a given set of integers
such that the sum of the elements equals a given integer s. The corresponding decision
problem is to decide whether there exists such a sum leading to s.
Cryptosystems based on the knapsack problem [SAH 1975, IBKI 1975] were very well
received when they were created, because they were the first alternative to RSA. But
the fact that in a cryptosystem the hard problem should be easy to set up, implies
that not all types of subset-sum problems are suitable for cryptography. In particu-
lar, the first proposals using knapsacks of low density have been broken in polynomial
time [ODL 1990]. There exist some proposals that have not been broken so far but they
are hardly ever applied.

• The NTRU encryption [HOPI+ 1998] and the NTRU-Sign [HOHO+ 2003] signature
system, see [NTRU], are systems based on the problem of recovering a sparse polyno-
mial that is a factor of a polynomial modulo XN − 1 in the polynomial ring of some
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finite field Fq . This problem can be transferred to the setting of lattices where Copper-
smith and Shamir [COSH 1997] showed that this problem can be reduced to a shortest
vector problem. Even though the latter is in general a hard problem, many instances of
it arising from NTRU systems have been proved easy to solve. Since the NTRU system
possesses a remarkable speed, there is a lot of interest in finding the parameters that
make it secure. An excellent survey on the subject is [GESM 2003].

• In the last two decades, several public-key schemes based on the difficulty of solving
Multivariate Quadratic equations (MQ) have been proposed [MAIM 1988, PAT 1996,
KIPA+ 1999, KIPA+ 2003]. As it often happens, even though the general MQ problem
is NP-complete, many instances that have been proposed for designing cryptosystems
have been revealed solvable. In spite of the recent progress in Gröbner bases computa-
tion [FAJO 2003] there are some signature schemes based on enhanced versions of the
hidden field equations (HFE) system [PAT 1996] that are believed to be secure. It is still
an active area of research to devise provably secure variants of HFE cryptosystems.

• McEliece proposed the first system based on algebraic coding theory [MCE 1978]. His
intent was to take advantage of the very efficient encoding and decoding algorithms
for the binary Goppa codes to propose a very fast asymmetric encryption scheme. The
security was related to the difficulty of decoding in a linear code [BEMC+ 1978]: this
problem is NP-hard. In 1986 Niederreiter proposed a dual version [NIE 1986] of the
system, with an equivalent security [LIDE+ 1994]. A specialized version of the latter
based on Reed–Muller code was also proposed in 1994 [SID 1994]. The first digital
signature scheme using codes was presented in 2001 [COFI+ 2001].

• Braid groups Bm are a special class of noncommutative groups. This allows us to
define the conjugacy problem, namely the problem of finding an a ∈ Bm for given
x, y ∈ Bm such that y = axa−1. The systems based on this problem [KOLE+ 2000,
ANAN+ 1999] have been broken completely in [CHJU 2003] by showing a polynomial-
time algorithm to determine the secret information from the data made public for key
exchange and encryption.
Noncommutative groups still receive some interest, but at the moment we are not aware
of any proposed cryptoscheme.
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In the first part we state definitions and simple properties of the algebraic structures we shall use
constantly in the remainder of the book. More details can be found in [LAN 2002a].

The next section deals with number theory. We shall give at this occasion an introduction to
extension of fields, including the algebraic closure, Galois theory, and number fields. We refer
mainly to [LAN 2002a] and [FRTA 1991] for this part.

Finally, we conclude with an elementary theory of finite fields that are of crucial importance for
elliptic and hyperelliptic curve cryptography. Finite fields are extensively discussed in [LINI 1997].

2.1 Elementary algebraic structures

We shall recall here basic properties of groups, rings, fields, and vector spaces.

2.1.1 Groups

Definition 2.1 Given a set S, a composition law × of S into itself is a mapping from the Cartesian
product S × S to S. Common notations for the image of (x, y) under this mapping are x × y, x.y
or simply xy. When the law is commutative, i.e., when the images of (x, y) and (y, x) under the
composition law are the same for all x, y ∈ S, it is customary to denote it by +.

Definition 2.2 A group G is a set with a composition law × such that

19
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• × is associative, that is for all x, y, z ∈ G we have (xy)z = x(yz)
• × has a unit element e, i.e., for all x ∈ G we have xe = ex = x

• for every x ∈ G there exists y, an inverse of x such that xy = yx = e.

Remarks 2.3

(i) The group G is said to be commutative or abelian, if the composition law is commuta-
tive. As previously mentioned, the law is often denoted by + or ⊕ and the unit element
by 0 in this case.

(ii) The unit of a group G is necessarily unique as well as the inverse of an element x that is
denoted by x−1. If G is commutative the inverse of x is usually denoted by −x.

(iii) The cardinality of a group G is also called its order. The group G is finite if its order is
finite.

Definition 2.4 Let G be a group. A subgroup H of G is a subset of G containing the unit element
e and such that

• for all x, y ∈ H one has xy ∈ H

• if x ∈ H then also x−1 ∈ H .

Example 2.5 Let x ∈ G. The set {xn | n ∈ Z} is the subgroup of G generated by x. It is denoted
by 〈x〉.

Definition 2.6 Let G be a group. An element x ∈ G is of finite order if 〈x〉 is finite. In this case,
the order of x is |〈x〉|, that is, the smallest positive integer n such that xn = e. Otherwise, x is of
infinite order.

Definition 2.7 A group G is cyclic if there is x ∈ G such that 〈x〉 = G. If such an element x exists,
it is called a generator of G.

Remark 2.8 Every subgroup of a cyclic group G is also cyclic. More precisely, if the order of G is
n, then for each divisor d of n, G contains exactly one cyclic subgroup of order d.

Definition 2.9 Let G be a group and H be a subgroup of G. For all x, y ∈ G, the relation
x ∼ y ∈ H , if and only if x−1y ∈ H , respectively x ∼ y if and only if yx−1 ∈ H , is an equivalence
relation. An equivalence class for this relation is denoted by xH = {xh | h ∈ H}, respectively
Hx = {hx | h ∈ H} and are called respectively left and right cosets of H . The numbers of classes
for both relations are the same. This invariant is called the index of H in G and is denoted by
[G : H ].

Theorem 2.10 (Lagrange) Let G be a finite group and H be a subgroup of G. Then the order of H
divides the order of G. As a consequence, the order of every element also divides the order of G.

Since all the classes modulo H have the same cardinality |H | and form a partition of G, we have
the more precise result |G| = [G : H ]|H |.

Definition 2.11 Let G be a group. A subgroup H is normal if for all x ∈ G, xH = Hx. In this
case G/H can be endowed with a group structure such that (xH)(yH) = xyH .

For example, the group G = (Z, +) is abelian. Hence the group of multiples of n, called nZ is
a normal subgroup of G for every integer n, and one can consider the quotient group Z/nZ =
{x + nZ | x ∈ Z}. An element of Z/nZ is a class modulo n. Two integers x and y are congruent
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modulo n if they belong to the same class modulo n, i.e., if and only if x− y ∈ nZ. In this case, we
write x ≡ y (mod n).

For every integer x, there is a unique integer r in the interval [0, n − 1], which belongs to the
class of x. This integer r is called the canonical representative of x and we write r = x mod n.
Therefore we have

Z/nZ =
{
r + nZ | r ∈ [0, n − 1]

}
.

But other choices are possible. For example, to minimize the absolute value of the representatives,
we write xmods n for the unique integer in [�−n/2�+ 1, �n/2�] congruent to x modulo n.

Definition 2.12 Let G and G′ be two groups with respective laws × and ⊗ and units e and e′.

• A group homomorphism ψ between G and G′ is a map from G to G′ such that for all
x, y ∈ G, ψ(x × y) = ψ(x) ⊗ ψ(y).

• The kernel of ψ is kerψ = {x ∈ G | ψ(x) = e′}.

Remark 2.13 The kernel of ψ is never empty as it is easy to see that ψ(e) = e′. In addition, kerψ
is always a subgroup of G, which is in addition normal.

Definition 2.14 Let S be a set and G be a group. The group G acts on S if there is a map σ from
G × S into S such that

• σ(e, t) = t, for all t ∈ S

• σ
(
x, σ(y, t)

)
= σ(xy, t), for all t ∈ S and for all x, y ∈ G.

2.1.2 Rings

Definition 2.15 A ring R is a set together with two composition laws + and × such that

• R is a commutative group with respect to +
• × is associative and has a unit element 1, which is different from 0, the unit of +
• × is distributive over +, that is for all x, y, z ∈ R, x(y + z) = xy + xz and (y + z)x =

yx + zx.

Remarks 2.16

(i) The ring R is said to be commutative, if the law × is commutative.

(ii) A commutative ring R such that for all x, y ∈ R, the equality xy = 0 implies that x = 0
or y = 0 is called an integral domain.

Example 2.17 The set Z of integers together with the usual addition and multiplication is a ring.
The set Z[X ] of polynomials with coefficients in Z together with the addition and multiplication of
polynomials is a ring.

Definition 2.18 Let R and R′ be two rings with the respective operations +,× and ⊕,⊗. A ring
homomorphism ψ is an application from R to R′ such that for all x, y ∈ R

• ψ(x + y) = ψ(x) ⊕ ψ(y)
• ψ(x × y) = ψ(x) ⊗ ψ(y)
• ψ(1) = 1.

Definition 2.19 Let R be a ring, I is an ideal of R if it is a nonempty subset of R such that
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• I is a subgroup of R with respect to the law +
• for all x ∈ R and all y ∈ I , xy ∈ I and yx ∈ I .

The ideal I � R is prime if for all x, y ∈ R with xy ∈ I one obtains x ∈ I or y ∈ I .
The ideal I � R is maximal if for any ideal J of R the inclusion I ⊂ J implies J = I or J = R.
Two ideals I and J of R are coprime if I + J = {i + j | i ∈ I and j ∈ J} is equal to R.

Remark 2.20 It is easy to prove that a maximal ideal is also prime. The converse is not true in
general.

Definition 2.21 An ideal I of a ring R is finitely generated if there are elements a1, . . . , an such
that every x ∈ I can be written x = x1a1 + · · · + xnan with x1, . . . , xn ∈ R.

The ideal I is principal if I = aR and R is a principal ideal domain (PID) if it is an integral
domain and if every ideal of R is principal.

Example 2.22 The integer ring Z and the polynomial ring K[X ] where K is a field are principal
ideal domains.

Theorem 2.23 (Chinese remainder theorem) Let I1, . . . , Ik be pairwise coprime ideals of R.
Then

R/

k∏
i=1

Ii �
k∏

i=1

R/Ii.

Corollary 2.24 Let n1, . . . , nk be pairwise coprime integers, i.e., such that gcd(ni, nj) = 1 for
i �= j. Then, for any integers xi, there exists an integer x such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x ≡ x1 (mod n1)
x ≡ x2 (mod n2)

...
x ≡ xk (mod nk).

Furthermore, x is unique modulo
k∏

i=1

ni.

Remark 2.25 See Algorithm 10.52 for an efficient method to compute x given the xi’s.

Next we define an important arithmetic invariant. Let R be a ring and let ψ be the natural ring
homomorphism from Z to R. So

ψ(n) =

{
1 + · · · + 1 n times if n � 0

−(1 + · · · + 1) −n times otherwise.
(2.1)

The kernel of ψ is an ideal of Z and if the multiples of 1 are all different then kerψ = {0}.
Otherwise, for example if R is finite, some multiples of 1 must be zero. In other words, the kernel
of ψ is generated by a positive integer m.

Definition 2.26 Let R be a ring and ψ defined as above. The kernel of ψ is of the form mZ, for
some nonnegative integer m, which is called the characteristic of R and is denoted by char(R).

Remark 2.27 In a commutative ring R of prime characteristic p, the binomial formula simplifies to

(α + β)pn

= αpn

+ βpn

for all α, β ∈ R and n ∈ N. (2.2)
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Definition 2.28 Let R be a ring. An element x ∈ R is said to be invertible if there is an element y
satisfying xy = yx = 1. Such an inverse y, also called a unit, is necessarily unique and is denoted
by x−1. The set of all the invertible elements is a group under multiplication denoted by R∗.

Example 2.29 Take a positive integer N and consider the ring Z/NZ obtained as the quotient of
the usual integer ring Z by the ideal NZ. The invertible elements of Z/NZ are in one-to-one
correspondence with the canonical representatives coprime with N . The inverse of an element is
given by an extended gcd computation, cf. Section 10.6.

Definition 2.30 Let N � 1 and let us denote |(Z/NZ)∗| by ϕ(N). The function ϕ is called the
Euler totient function and one has ϕ(N) = |{x | 1 � x � N, gcd(x, N) = 1}|.

From Lagrange’s Theorem 2.10, it is easy to prove the following.

Theorem 2.31 (Euler) Let N and x be integers such that x is coprime to N , then

xϕ(N) ≡ 1 (mod N).

This result was first proved by Fermat when the modulus N is a prime p. In this case, Theorem 2.31
reduces to xp−1 ≡ 1 (mod p) for x prime to p. Therefore this restricted version if often referred to
as Fermat’s little theorem.

The ring Z/pZ has many other marvelous properties. In particular, every nonzero element has an
inverse, which means that Z/pZ is a field.

2.1.3 Fields

Definition 2.32 A field K is a commutative ring such that every nonzero element is invertible.

Example 2.33 The set of rational numbers Q with the usual addition and multiplication law is a
field. The quotient set Z/pZ with the induced integer addition and multiplication is also a field for
any prime number p.

An easy consequence of Definition 2.32 is that a field is an integral domain. Now, quotienting K
by the kernel of ψ as defined by (2.1), we see that K contains a field isomorphic to Z/ char(K)Z.
These two facts imply the following result.

Proposition 2.34 The characteristic of a field is either 0 or a prime number p.

As a corollary, a field K contains a subfield which is isomorphic to Q or Z/pZ.
Given an integral domain R, a common way to obtain a field is to add to R the formal inverses

of all the elements of R. The set obtained is the field of fractions of R. For instance, K(X) is the
field of fractions of the polynomial ring K[X ]. Next proposition is also very much used in practice
to construct fields.

Proposition 2.35 Let R be a ring and I an ideal of R. Then the quotient set R/I is a field if and
only if I is maximal.

Definition 2.36 Let K and L be fields. A homomorphism of fields is a ring homomorphism between
K and L.

We remark that a homomorphism of fields is always injective, for it is immediate that its kernel is
reduced to {0}.
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2.1.4 Vector spaces

In the remainder of this part, K will denote a field.

Definition 2.37 A vector space V over K is an abelian group for a first operation denoted by +,
together with a scalar multiplication from K × V into V , which sends (λ, x) on λx and such that
for all x, y ∈ V , for all λ, µ ∈ K we have

• λ(x + y) = λx + λy

• (λ + µ)x = λx + µx

• (λµ)x = λ(µx)
• 1x = x.

An element x of V is a vector whereas an element λ of K is called a scalar.

Definition 2.38 A K-basis of a vector space V is a subset S ⊂ V which

• is linearly independent over K , i.e., for any finite subset {x1, . . . , xn} ⊂ S and any
λ1, . . . , λn ∈ K , one has that

n∑
i=1

λixi = 0 implies that λi = 0 for all i

• generates V over K , i.e., for all x ∈ V there exist finitely many vectors x1, . . . , xn and
scalars λ1, . . . , λn such that

x =
n∑

i=1

λixi.

Theorem 2.39 Let V be a vector space over K . If V is different from {0} then V has a K-basis.

Definition 2.40 Two bases of a vector space V over K have the same cardinality. This invariant is
called the K-dimension of V or simply the dimension of V . Note that the dimension is allowed to
be infinite.

Example 2.41 The set of complex numbersC together with the usual addition and coefficient wise
multiplication with elements of R is a vector space over R of dimension 2. A real basis is for
instance {1, i}.

Example 2.42 The set K[X ] of polynomials in one variable over a field K is an infinite dimensional
vector space with the usual addition of polynomials and multiplications with elements from K . A
basis is given by {1, X, X2, . . . , Xn, . . . }

Remark 2.43 When the field K is replaced by a ring R, the axioms of Definition 2.37 give rise to a
module over the ring R.

2.2 Introduction to number theory

We refer to Section 2.1 for an elementary presentation of groups, rings, and fields. More details can
be found in [LAN 2002a].

In this section, we review the construction of an extension of a field K by formally adding some
elements to it. Then we describe some properties of algebraic extensions of fields in order to be able
to state the main result of Galois theory. We conclude with a brief presentation of number fields.
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2.2.1 Extension of fields

Definition 2.44 Let K and L be fields, we say that L is an extension field of K if there exists a field
homomorphism from K into L. Such an extension field is denoted by L/K .

Remark 2.45 As said before, a field homomorphism is always injective, so we shall identify K
with the corresponding subfield of L when considering L/K .

Example 2.46 LetR be the field of real numbers with usual addition and multiplication. Obviously,
R is an extension of Q. Now, let us describe a less trivial example. Consider the element

√
2 ∈ R

and the subset of R of the elements of the form a +
√

2b with a, b ∈ Q. If we put for a +
√

2b and
a′ +

√
2b′

(a +
√

2b) + (a′ +
√

2b′) = a + a′ +
√

2(b + b′)

and
(a +

√
2b) × (a′ +

√
2b′) = aa′ + 2bb′ +

√
2(ab′ + a′b),

it is easy to see that we obtain a field denoted by Q(
√

2), which is an extension of Q.

Definition 2.47 Let L and L′ be two extension fields of K and σ a field isomorphism from L to L′.
One says that σ is a K-isomorphism if σ(x) = x for all x ∈ K .

Definition 2.48 Let L/K be a field extension then L can be considered as a K-vector space. The
dimension of L/K is called the degree of L/K denoted by [L : K] or deg(L/K). If the degree of
L/K is finite then we say that the extension L/K is finite.

The following result is straightforward.

Proposition 2.49 Let K ⊂ L ⊂ F be a tower of extension fields then

deg(F/K) = deg(F/L) deg(L/K).

Now, let L/K be a field extension and let x be an element of L. There is a unique ring homomor-
phism ψ : K[X ] → L such that ψ(X) = x and for all z ∈ K , ψ(z) = z. We can consider the
kernel of this homomorphism which is either {0} or a maximal ideal I of K[X ].

Definition 2.50 Suppose that I as defined above is nonzero. As K[X ] is a principal ideal domain,
there exists a unique monic irreducible polynomial

m(X) = Xd + ad−1X
d−1 + · · · + a0

such that I = m(X)K[X ]. We say that x is an algebraic element of L of degree d and that m(X)
is the minimal polynomial of x.

Quotienting by kerψ, one sees that ψ gives rise to a field inclusion ψ of K[X ]/
(
m(X)K[X ]

)
into

L. Let K[x] = {f(x) | f(X) ∈ K[X ]} be the image of ψ in L. It is an extension field of K and
the monic polynomial m(X) is an invariant of the extension: in fact, if there exists y ∈ L such that
K[x] � K[y] then by construction x and y have the same minimal polynomials.

Definition 2.51 If every element of L is algebraic over K , we say that L is an algebraic extension
of K .
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It is easy to see that K[x]/K is a finite extension and d = deg(m) is equal to its degree: in fact ψ
gives a bijective map from the K-vector space of polynomials with coefficients in K of degree less
than d to K[x]. This bijection ψ is called a polynomial representation of K[x]/K .

Not all algebraic extensions are finite, but a finite extension is always algebraic, and if L/K is
a finite extension then there exists a finite sequence of elements x1, . . . , xn ∈ L such that L =
K[x1, . . . , xn]. If L = K[x] we say that L is a monogenic extension of K .

Definition 2.52 Let L/K be a finite algebraic extension and let x ∈ L. The application of right
multiplication by x from L to L considered as a K-vector space is linear. The trace and the norm of
this endomorphism of L are called respectively the trace and norm of x and denoted by TrL/K(x)
and NL/K(x). We use the notations Tr(x) and N(x) when no confusion is likely to arise.

If x is a generating element of L/K with minimal polynomial m(X) = Xd+ad−1X
d−1+· · ·+a0

then Tr(x) = −ad−1 and N(x) = (−1)da0.

The trace and norm are both maps of L to K . We have the basic properties:

Lemma 2.53 Let L/K be a degree d finite algebraic extension. For x, y ∈ L and a ∈ K we have

Tr(x + y) = Tr(x) + Tr(y), N(xy) = N(x)N(y)
Tr(a) = da, N(a) = ad

Tr(ax) = a Tr(x), N(x) = 0 ⇒ x = 0.

Let K ⊂ L ⊂ F be a tower of finite algebraic extensions, let x be an element of F then

TrF/K(x) = TrL/K

(
TrF/L(x)

)
and NF/K(x) = NL/K

(
NF/L(x)

)
.

When x is not a root of any polynomial equation with coefficients in K one needs a new notion.

Definition 2.54 If the kernel of ψ is equal to {0} we say that x is a transcendental element of L. If
every element of L is transcendental over K , we say that L is a pure transcendental extension over
K . More generally, if there exists an element of L which is not algebraic over K , then L/K is a
transcendental extension of K .

In this case, one can extend ψ to an inclusion ψ̃ of the fraction field K(X) into L by setting
ψ̃(1/X) = 1/x. Let K(x) be the image of ψ̃ in L. If L is not an algebraic extension over K(x)
then putting x1 = x we can find x2, a transcendental element of L/K(x1) which is not in K(x1),
and build in the same way an inclusion of K(X1, X2) into L. Iterating this process we can find
n ∈ N ∪ {∞} the maximum number such that K(x1, . . . , xn) is a subfield of L isomorphic to
K(X1, . . . , Xn). It can be shown that n is independent of the sequence of transcendental elements
x1, . . . , xn of L over K chosen.

Definition 2.55 The number n defined above is called the transcendence degree of L over K .

It is quite clear from the previous discussion that every extension K → L can be written as the
composition K → Ktrans → Kalg where Ktrans is a pure transcendental extension of K and Kalg is
an algebraic extension over Ktrans.

Example 2.56 Let Q(X) be the field of rational functions over Q; then obviously Q(X)/Q is a
pure transcendental extension of Q of transcendence degree equal to 1. Now let Q be the algebraic
closure ofQ, then by definitionQ/Q is an algebraic extension but it is not a finite extension. Finally
Q(X,

√
2)/Q is a transcendental extension that can be written as Q→ Q(X) → Q(X,

√
2).
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2.2.2 Algebraic closure

Let K be a field and consider a monogenic algebraic extension K[x] of K defined by a polynomial
m(X) irreducible over K . The polynomial m(X) can be written as a product

∏
mi(X) of irre-

ducible polynomials over K[x]. As by construction x is a root of m(X) in K[x] then (X − x) is an
irreducible factor of m(X) and as a consequence for each i, deg mi < deg m. If the mi(X)’s are
all of degree 1 then we say that m(X) splits completely in K[x].

If m(X) does not split completely over K[x] then there exists mi1(X), an irreducible polynomial
of degree greater than or equal to 2 and we can consider the extension K[x, y] over K[x] defined
by mi1(X). Repeating this process, one can build recursively an extension field over which m(X)
splits completely.

Definition 2.57 The smallest extension of K over which m(X) completely splits is called the split-
ting field of m(X). It is unique up to a K-isomorphism.

It is well known that every polynomial with coefficients in R splits completely inC. More generally,
if K is a field, we would like to consider a maximal algebraic extension of K in which every alge-
braic extension of K could be embedded. Such an extension has the property that every polynomial
of K[X ] splits completely in K. The following theorem [STE 1910] asserts its existence.

Theorem 2.58 (Steinitz) There exists a unique algebraic extension of K in which every polynomial
m(X) ∈ K[X ] splits completely. This extension called the algebraic closure of K and denoted by
K is unique up to a K-isomorphism.

Next, we review some basic properties of algebraic extensions in order to state the main theorem of
Galois theory.

2.2.3 Galois theory

For most parts of the book we consider finite algebraic extension fields. Therefore we restrict the
discussion of Galois theory to this important case.

Definition 2.59 An extension L over K is said to be normal if every irreducible polynomial over
K that has a root in L splits completely in L.

As an immediate consequence every field automorphism of L fixing K leaves L invariant. Let K
be a field, K its algebraic closure, σ an embedding of K into K and for x ∈ K, K[x] an algebraic
monogenic extension of K defined by a polynomial m(X) of degree d. Let x = x1, x2 . . . , xs be
the different roots of m(X) in K . Then for i = 1, . . . , s, it is possible to define the unique field
inclusion σi of K[x] into K imposing that the restriction of σi on K is σ and σi(x) = xi. The σi’s
are all the inclusion homomorphisms of K[x] in K, the restriction of which is given by σ on K .
We remark that s is always less than or equal to d, the degree of K[x]/K . This integer s is called
the degree of separability of K[x1] over K or the degree of separability of x1. More generally, we
have:

Definition 2.60 Let L be a finite algebraic extension of K , K be the algebraic closure of K and σ
an inclusion of K into K. Then the degree of separability of L over K denoted by degs(L/K) is
the number s of different field inclusions σi, i = 1, . . . , s of L into K restricting to σ over K . If
degs(L/K) = deg(L/K), we say that L/K is separable.

If x ∈ L, the elements σi(x) ∈ K are called the conjugates of x.

An immediate consequence of the definition and the preceding discussion is:
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Lemma 2.61 A monogenic algebraic extension K[x] defined by a minimal polynomial m(X) is
separable if and only if m(X) is prime to its derivative m′(X).

Concerning the composition of degree of separability we have

Proposition 2.62 Let L/K and F/K be a tower of extension fields, then

degs(F/K) = degs(F/L) degs(L/K).

We have the basic fact

Fact 2.63 Let F/L and L/K be field extensions and let x ∈ F be separable over K; then it is
separable over L.

From the previous proposition, we deduce that an algebraic finite extension is separable if and
only if it can be written as the composition of monogenic separable extensions. From this and the
preceding fact, we can state

Proposition 2.64 A finite algebraic extension L/K is separable if and only if every x ∈ L is
separable over K .

Then the criterion of Proposition 2.61 tells us that every algebraic extension over a field of charac-
teristic 0 is separable. We have the following definition

Definition 2.65 A field over which every algebraic extension is separable is called a perfect field.

A field is perfect if and only if every irreducible polynomial is prime to its derivative. We saw that
every field of characteristic zero is perfect. More generally, we have

Proposition 2.66 A field K is a perfect field if and only if one the the following conditions is
realized

• char(K) = 0,
• char(K) = p and Kp = K .

As a consequence of this proposition, we shall see that every finite field is perfect. The following
theorem shows that every finite algebraic separable extension is in fact monogenic.

Theorem 2.67 If L/K is a separable finite algebraic extension of K then L/K is monogenic, i.e.,
there exists x ∈ L such that L = K[x] and x is called a defining element.

Definition 2.68 An extension L/K is a Galois extension if it is normal and separable. We define
the Galois group of L over K denoted by GL/K or Gal(L/K) to be the group of K-automorphisms
of L. There is a natural action of GL/K on L defined for g ∈ GL/K and x ∈ L by g · x = g(x). By
its very definition, this action leaves the elements of K invariant.

If H is a subgroup of G, we denote by LH the set of elements of L invariant under the action of
H . It is easy to see that LH is a subfield of L. Moreover, LH is a Galois extension of K if and only
if H is a normal subgroup of G.

Obviously, the separability condition of Galois extensions implies that the order of the Galois group
of L/K is equal to the degree of this extension. Then, we have the following result, which is the
starting point of Galois theory

Theorem 2.69 Let L/K be a finite Galois extension. Then there is a one-to-one correspondence
between the set of subfields of L containing K and the subgroups of GL/K . To a subgroup H of
GL/K this correspondence associates the field LH .
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2.2.4 Number fields

Definition 2.70 A number field K is an algebraic extension of Q of finite degree. An element of K
is called an algebraic number.

Remarks 2.71

(i) There are number fields of any degree d, since, for instance, the polynomial Xd − 2 is
irreducible overQ for every positive integer d.

(ii) As a consequence of Theorem 2.67, for every number field K , there is an algebraic
number θ ∈ K such that K = Q(θ).

(iii) The degree d of K/Q is equal to the number of field homomorphisms σi from K to C.
Thus if K = Q(θ), the degree d is equal to the number of conjugates σi(θ) of θ and
corresponds to the degree of the minimal polynomial of θ.

Definition 2.72 Let ψ be a homomorphism from K to C. If the image of ψ is in fact included in R
then ψ is a real homomorphism. Otherwise ψ is called a complex homomorphism.

Definition 2.73 The numbers of real and complex homomorphisms of K/Q, respectively denoted
by r1 and 2r2, satisfy d = r1 + 2r2. If r2 = 0 then K/Q is said to be totally real. In case r1 = 0
then K/Q is totally complex. The ordered pair (r1, r2) is called the signature of K/Q.

Fact 2.74 It is clear that a Galois extension must be totally real or totally complex.

Remark 2.75 The signature of K/Q can be found easily. Let us write K = Q(θ) and let m(X)
be the minimal polynomial of θ. Then r1 and 2r2 are respectively the numbers of real and nonreal
roots of m(X).

Example 2.76 The signature of the totally real field Q(
√

2) of degree 2 is (2, 0).
The extensionQ(i) generated by X2 + 1 is totally complex and its signature is (0, 1).
The signature of Q(θ) where θ is the unique real root of the polynomial X3 − X − 1 is (1, 1).

Proposition 2.77 Let K/Q be a number field of degree d, let σ1, . . . , σd be the field homomor-
phisms of K to C and let α be an algebraic number in K . Following Definition 2.52, the trace and
norm of α are explicitly given by

TrK/Q(α) =
d∑

i=1

σi(α) and NK/Q(α) =
d∏

i=1

σi(α).

Definition 2.78 Let K/Q be a number field. An algebraic number α is called integral over Z or an
algebraic integer if α is a zero of a monic polynomial with coefficients in Z.

The set of all the algebraic integers of K under the addition and the multiplication of K is a ring,
called the integer ring of K and is denoted by OK .

Remarks 2.79

(i) If K = Q(θ) is of degree d then the ring OK is a Z-module having an integral basis,
that is a set of integral elements {α1, . . . , αd} such that every α ∈ OK can be written as

α = a1α1 + · · · + adαd for some ai ∈ Z.

(ii) The ring Z[θ] = {f(θ) | f(X) ∈ Z[X ]} is a subring of OK . In general it is different
from OK .
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Example 2.80 Let α be an algebraic integer such that α2 = n with n ∈ Z different from 0, 1, and
squarefree. Then OK is explicitly determined.

• If n ≡ 1 (mod 4) then OK = Z
[
1+α

2

]
·

• If n ≡ 2, 3 (mod 4) then OK = Z[α].

Definition 2.81 Let K be a number field of degree d. An order of K is a subring of OK of finite
index which contains an integral basis of length d. The ring OK is itself an order known as the
maximal order of K .

Theorem 2.82 The ring OK is a Dedekind ring, in other words

• it is Noetherian, i.e., every ideal a of OK is finitely generated
• it is integrally closed, that is, the set of all the roots of polynomials with coefficients in
OK is equal to OK itself

• every nonzero prime ideal is maximal in OK .

In a Dedekind ring, an element has not necessarily a unique factorization. For instance, in the field
Q(i

√
5) the ring of integers is Z[i

√
5] and one has

21 = 3 × 7
= (1 + 2i

√
5)(1 − 2i

√
5).

However, if we consider ideals instead, we have unique factorization. First, we define the product
of two ideals a and b by

ab =
{∑

i

aibi | ai ∈ a, bi ∈ b
}
.

Theorem 2.83 Let O be a Dedekind ring and a be an ideal of O different from (0) and (1). Then a
admits a factorization

a = p1 . . . pr

where the pi’s are nonzero prime ideals. The factorization is unique up to the order of the factors.

Definition 2.84 Let K be a number field and let an order O be a Dedekind ring. A fractional ideal
of K is a submodule of K over O.

Remark 2.85 An O-submodule a is a fractional ideal of K if and only if there exists c ∈ O such
that ca ⊂ O.

The fractional ideals form a group JK under the product defined above and the inverse of a fractional
ideal a in JK is the fractional ideal

a−1 = {x ∈ K | xa ⊂ O}.

The fractional principal ideals, i.e., fractional ideals of the form aO for a ∈ K∗ form a subgroup
PK of JK .

Definition 2.86 Let K be a field. The class group of OK is the quotient group ClK = JK/PK .

Theorem 2.87 For any number field K , the class group ClK is a finite abelian group. Its cardinality,
called the class number is denoted by h(K).
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Theorem 2.88 Let K/Q be a number field whose signature is (s, t), let OK be its integer ring and
let r = s + t − 1. Then there are units ε0, ε1, . . . , εr such that

• the unit ε0 is of finite order w(K) and generates the group of roots of unity in K

• every unit ε ∈ O∗
K can be written in a unique way as

ε =
∏

0�i�r

εni

i

with 0 � n0 < w(K) and ni ∈ Z for 1 � i � r.

A family (ε1, . . . , εr) as above is called a basis of fundamental units.

Definition 2.89 Let K/Q be a number field of degree d let p be a prime integer. Then the ideal
decomposition of pOK is of the form

pOK =
g∏

i=1

pei

i with ei � 1.

The ideals pi are above the ideal pZ. We say that

• p is ramified in K if there is i such that ei > 1. The corresponding ideal pi is said to be
ramified as well.

• p splits in K if pOK is the product of distinct prime ideals. In this case g = d and ei = 1
for all i.

• p is inert in K , if pOK is again a prime ideal, i.e., g = 1 and e1 = 1.

2.3 Finite fields

Finite fields are central objects in cryptography, because they enjoy very special properties. For
instance, their multiplicative group is cyclic and their Galois structure is remarkably simple. Initially
they were the core of cryptosystems such as ElGamal’s which relies on the difficulty to solve the
discrete logarithm problem in the group of units of a well chosen finite field. For our purpose they
serve as elementary blocks since elliptic and hyperelliptic curves used in cryptography are always
defined over finite fields. We refer mainly to [LINI 1997] for this section.

2.3.1 First properties

Definition 2.90 A finite field is a field whose order is finite. Finite fields are also referred to as
Galois fields.

Let K be a finite field. From Proposition 2.34, we know that the characteristic of K is necessarily
a prime number p, since otherwise K would be of characteristic 0 and would contain Q. The
cardinality of K is precisely determined as well. Indeed, if we factorize ψ as defined by (2.1), we
see that K contains a subfield we shall identify with Z/pZ. This implies that it is a Z/pZ-vector
space of finite dimension d. In particular, the order of K is equal to pd. The following theorem
classifies all the finite fields.

Theorem 2.91 For any prime p and any positive integer d there exists a finite field with q = pd

elements. This field is unique up to isomorphism and is denoted by Fq or GF (q).
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This result can be proved using the uniqueness of the splitting field of Xpd − X in the algebraic
closure of Z/pZ.

Definition 2.92 A finite field that does not contain any proper subfield is called a prime field.

It is clear that Fp is the only prime field of characteristic p. More generally, there is a bijection
between the subfields of Fpd and the divisors of d since

Fpc ⊂ Fpd if and only if c | d.

As a consequence

Fpd1 ∩ Fpd2 = Fpgcd(d1,d2) and Fpd1 .Fpd2 = Fplcm(d1,d2) .

The multiplicative group of nonzero elements of Fq is, as usual, denoted by F∗q . Lagrange’s theorem
shows that

αq−1 = 1 for every α ∈ F∗q .
This generalizes Fermat’s theorem and has many important consequences. For example, it implies
that no finite field is algebraically closed. Indeed the polynomial Xq −X +1 ∈ Fq[X ] has no roots
in Fq. Using the property that a polynomial of degree n with coefficients in Fq has at most n roots
in Fq one can show the following.

Theorem 2.93 Let Fq be a finite field. The group F∗q is cyclic.

A generator γ of F∗q , i.e., an element such that F∗q = 〈γ〉, is called a primitive element.

Remark 2.94 It is easy to see that there are ϕ(q − 1) primitive elements, where ϕ is the Euler’s
totient function, as given in Definition 2.30. More generally, if e | q − 1 then there are exactly
ϕ(e) elements of order e in F∗q . Note also that the map f(α) = αe is a bijection if and only if
gcd(e, q − 1) = 1.

Finite fields do have transcendental extensions. For example Fq(X) is an extension field of Fq ,
which is not algebraic over Fq. However, in the remainder we shall only describe algebraic exten-
sions of a finite field.

2.3.2 Algebraic extensions of a finite field

There are algebraic extensions of Fq of infinite degree, the first example being Fq , the algebraic
closure of Fq. Concerning finite extensions, the field Fq being perfect, see Definition 2.65 and
Proposition 2.66, this implies that Fqk/Fq can always be written Fq(θ) where θ is algebraic of
degree k over Fq, cf. Theorem 2.67.

The polynomial representation of an extension of Fq gives a practical way to construct Fqk .
Since there is a unique finite field of cardinality qk, it is sufficient to find a polynomial of degree k
irreducible over Fq.

Gauß established the equality

Xqk − X =
∏
j|k

∏
P∈Ij

P (X) (2.3)

where Ij is the set of all the irreducible monic polynomials of degree j in Fq[X ]. It follows that the
number of monic irreducible polynomials of degree k over Fq is given by the formula

1
k

∑
j|k

µ(j)qk/j (2.4)
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where µ is the Möbius function. As a consequence, there is at least one irreducible polynomial of
degree k over Fq, for all k � 1.

Relation (2.2) shows that the map that sends α to αp is an automorphism of any field of charac-
teristic p. Furthermore αp = α for every α ∈ Fp.

Definition 2.95 Let α ∈ Fqk . The map φp, which sends α to αp, is a Fp-automorphism called the
absolute Frobenius automorphism of Fqk . More generally, the application

φq : Fqk → Fqk

α �→ αq

is an Fq-automorphism of Fqk called the relative Frobenius automorphism of Fqk/Fq.

The following important result was proved by Galois.

Theorem 2.96 Every finite extension Fqk/Fq is Galois and Gal(Fqk/Fq) is a cyclic group of order
k generated by φq .

If m(X) ∈ Fq[X ] is an irreducible polynomial of degree k then it splits completely in Fqk . If α is a
root of m(X) in Fqk , one sees by direct calculation that the conjugates of α are the distinct elements
α, αq, αq2

, . . . , αqk−1
of Fqk . In case α ∈ Fqk is not of degree k, the conjugates of α are no longer

distinct since αqj

= α, for some j dividing k. In any case, we have the following result similar to
Proposition 2.77.

Proposition 2.97 Let α ∈ Fqk . The trace and the norm of α are given by the formulas

TrF
qk /Fq

(α) =
k∑

i=1

αqi

and NF
qk /Fq

(α) =
k∏

i=1

αqi

.

2.3.3 Finite field representations

In Section 2.3.1, we have seen that the multiplicative group of a finite field is cyclic. This allows
us to easily describe the multiplication in F∗q . Likewise, considering Fq as a vector space over its
prime field Fp with respect to some basis allows us to add efficiently in Fq . However, the interplay
between these structures needs to be investigated.

The notion of Zech’s logarithm can be used for prime fields as well as for extension fields. It
relies on the multiplicative structure of F∗q . Let γ be a primitive element of Fq . For α = γn put
logγ α = n, the discrete logarithm of α to the base of γ, where n is defined modulo q − 1 and
logγ 0 = ∞. This representation is well adapted to products since

logγ α1α2 = logγ α1 + logγ α2 = n1 + n2,

but computing logγ(α1+α2) = n1 logγ(1+γn2−n1) is not straightforward. For n ∈ N, one defines
Zech’s logarithm Z(n) of γn to be the discrete logarithm of 1 + γn, namely

1 + γn = γZ(n).

Note that Z(0) = ∞ if q is even and Z
(
(q − 1)/2

)
= ∞ if q is odd. In practice, we have to

precompute Zech’s logarithm of each element of the field. So this representation is only useful for
fields of small order.

Concerning prime fields, an element of Fp is usually represented by an integer between 0 and
p−1 and computations are done modulo p. More details and efficiency considerations can be found
in Section 11.1.1.
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Concerning extension fields, elements of Fqn are represented using the Fq-vector space structure
with respect to some basis. Additions are performed coefficient wise. However, to multiply one
needs to know about the dependencies between the elements of this basis. For an efficiency focused
discussion, we refer to Section 11.2.1. The following two bases are the most common ones.

2.3.3.a Polynomial representation

An element α ∈ Fqk can be represented as a polynomial with coefficients in Fq modulo an irre-
ducible polynomial m(X) ∈ Fq[X ] of degree k. If θ is a root of m(X) then {1, θ, θ2, . . . , θk−1}
is a basis of Fqk over Fq. Such a basis is called a polynomial basis; see Section 11.2.2.a. Note that
one deduces from (2.4) that there are approximately qk/k irreducible monic polynomials of degree
k in Fq[X ]. Addition, subtraction, and multiplication are made modulo m(X). Usually, inversion
is obtained with an extended gcd computation in Fq[X ]. As the field polynomial m(X) is irre-
ducible and the polynomial a(X) representing the field element α is of degree less than k, one can
find a polynomials u(X) and v(X) of degree less than k such that a(X)u(X) + m(X)v(X) = 1.
Accordingly, u(X) = a(x)−1 mod m(X). In some cases we can also use the identity αqk

= 1.
Any irreducible polynomial of degree k can be used to define Fqk but in practice polynomials with

special properties are chosen. One one hand, it can be useful to consider an irreducible polynomial
having a primitive element, that is a generator of F∗qk , among its roots. Such a polynomial is called
a primitive polynomial and there are exactly ϕ(qk − 1)/k monic primitive polynomials of degree
k in Fq[X ]. On the other hand, a sparse polynomial, that is a polynomial with only a few nonzero
coefficients, allows a fast reduction; see Algorithm 11.31. So irreducible binomials, trinomials,
and pentanomials are commonly used to define extensions of a finite field, cf. Section 11.2.1.a and
Definition 11.60. Some polynomials enjoy these two properties, e.g., the trinomial X167 + X6 + 1
in F2[X ] is both primitive and sparse.

Finally, note that in some cases it can be more efficient to use a reducible polynomial, that is to
embed the field Fqk into a ring where the computations are done. This variant gives a so-called
redundant polynomial basis. The representation of a field element is no longer unique but the
reduction can be cheaper, see Section 11.2.1.b.

2.3.3.b Normal basis representation

Definition 2.98 The element α ∈ Fqk is said to be normal over Fq if α, αq, . . . , αqk−1
are linearly

independent over Fq. In this case
{
α, φq(α), . . . , φk−1

q (α)
}

is a basis of Fqk/Fq which is called a
normal basis of Fqk over Fq .

The element α is normal if and only if

gcd
(
Xk − 1, αXk−1 + φq(α)Xk−2 + · · · + φk−2

q (α)X + φk−1
q (α)

)
= 1.

Hensel proved that there always exists a normal basis of Fqk over Fq . For β ∈ Fqk , the computation
of βq is very easy with this representation since it is simply a cyclic shift of the coordinates of β
represented with respect to {α, φq(α), . . . , φk−1

q (α)}. This is especially interesting when q = 2
because, then in the usual exponentiation using square and multiply, the squarings can simply be
replaced by these far less expensive shiftings. Multiplying two elements is more painful and requires
precomputing a table, cf. Section 11.2.2.b. To actually build a normal basis, Gauß periods are very
convenient.

Proposition 2.99 Let r = kn + 1 be a prime number, let K be the unique subgroup of order n of
(Z/rZ)∗ and ζ be a primitive r-th root of unity. Then the Gauß period of type (n, k)

α =
∑
a∈K

ζa
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generates a normal basis
(
α, αq, . . . , αqk−1)

of Fqk over Fq if and only if kn/e is prime to k, where
e is the order of q in (Z/rZ)∗. For q = 2d and a given k this holds true for some n ∈ N if and only
if gcd(k, d) = 1 and 8 � k, [GAO 2001]. For q = 2, the obtained normal basis is called a Gaussian
normal basis of type n and leads to optimal normal basis when n = 1 or 2, cf. Section 11.2.1.c.

There is also a definition of general Gauß periods of type (k,K) for any integer r [FEGA+ 1999,
NÖC 2001]. In this case K is an explicit subgroup of (Z/rZ)∗ of order n with ϕ(r) = kn.

Let r = pv1
1 . . . pvt

t where the pi’s are prime and pi �= pj for i �= j. We denote by ζr a
primitive r-th root of unity and let r = r1r2 where r1 is the squarefree part of r, i.e., r = p1 . . . pt.

Definition 2.100 With these settings, the general Gauß period of type (k,K) is

α =
∑
a∈K

(
ζar2
r

∏
pi|r2

∑
1�s<vi

ζ
ar/ps

i
r

)
.

Now this element α is normal in Fqk/Fq if and only if 〈q,K〉 = (Z/rZ)∗ [FEGA+ 1999].
See [SHP 1999, Section 4.1] for more details on normal bases and Section 11.2.2.b for efficiency

considerations.

2.3.3.c Dual basis representation

Two bases {α1, . . . , αk} and {β1, . . . , βk} of Fqk/Fq are dual or complementary with respect to
the trace if Tr(αiβj) = δij , where δij is Kronecker’s symbol. The dual basis of {α1, . . . , αk} is
uniquely determined.

The use of dual bases leads to very efficient hardware implementation [BER 1982, OMMA 1986]
to multiply an element α expressed with respect to some basis by β expressed with respect to its
dual basis. The result is obtained in dual coordinates.

As several bases are used one needs efficient conversion techniques to change bases. To overcome
this difficulty, one can use a self-dual basis, i.e., a basis equal to its own dual basis. The field Fqk

has a self-dual basis over Fq if and only if q is even or both q and k are odd [SELE 1980].
In some very particular and interesting cases a self-dual basis is also normal. Such a basis is tradi-

tionally called a self-complementary normal basis and it exists [BLGA+ 1994b] in every extension
of Fqk/Fq where

• q is even and k is not a multiple of 4, or
• q and k are both odd.

Jungnickel et al. [JUME+ 1990] determined the total number of self-dual and self-complementary
normal bases of Fqk over Fq but their proof is not constructive. In [GAGA+ 2000], it is proved that
a normal basis generated by a Gauß period of type (k, n) with k > 2 is self-dual if and only if n is
even and divisible by the characteristic of Fq. See also [BLGA+ 1994b] for an explicit construction
in one of the following cases:

• k is equal to the characteristic of Fq, or
• k | (q − 1) and k is odd, or
• k | (q + 1) and k is odd.

2.3.4 Finite field characters

Definition 2.101 A character of the finite field Fq is a group homomorphism from F∗q into C∗.

In this part, we assume that the characteristic of Fq is an odd prime number p and we shall only de-
scribe two examples of characters, namely the Legendre symbol, and its generalization to extension
fields, the Legendre–Kronecker–Jacobi symbol.
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2.3.4.a The Legendre symbol

Take an integer a and let us consider the equation

x2 ≡ a (mod p). (2.5)

If a ≡ 0 (mod p) then x = 0 is the only solution. When a �≡ 0 (mod p), a is said to be a quadratic
nonresidue if equation (2.5) has no solution. Otherwise, there are two solutions and a is a quadratic
residue. Obviously, there are (p − 1)/2 quadratic residues in Fp and the same number of quadratic
nonresidues.

Definition 2.102 The Legendre symbol
(

a
p

)
is precisely the number of solutions of the above equa-

tion minus 1. Namely

(
a

p

)
=

⎧⎪⎨
⎪⎩
−1 if a is a quadratic nonresidue

0 if a ≡ 0 (mod p)
1 if a is a quadratic residue.

Theorem 2.103 The Legendre symbol satisfies the following properties(
a

p

)
≡ a(p−1)/2 (mod p)(

ab

p

)
=

(
a

p

)(
b

p

)
(
−1
p

)
= (−1)(p−1)/2

(
2
p

)
= (−1)(p

2−1)/8.

If p and q are both odd primes then one has the quadratic reciprocity law(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4. (2.6)

The Legendre symbol can be extended to the Kronecker–Jacobi symbol
(

a
b

)
where a, b ∈ Z. We

shall only use it when b =
∏

i pνi

i is odd. Its main feature is

(a

b

)
=

∏
i

(
a

pi

)νi

·

With these settings the reciprocity law (2.6) can be extended to any odd integers p and q and leads
to an efficient method to compute the Legendre symbol, cf. Algorithm 11.19.

2.3.4.b The Legendre–Kronecker–Jacobi symbol

The case of extension fields of odd characteristic is very similar to prime fields of odd characteristic.
Let m(X) be an irreducible polynomial of degree d such that Fp[X ]/

(
m(X)

)
is isomorphic to Fq .

There is a generalization of the Legendre symbol for an element f(X) ∈ Fp[X ] denoted by(
f(X)
m(X)

)
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which is equal to 0 if m(X) | f(X), 1 if f(X) is a nonzero square mod m(X) and −1 if it is
not a square mod m(X). The Legendre symbol can be extended to the Kronecker–Jacobi symbol
when m(X) is not irreducible. This is useful because of an analogue of the reciprocity law (2.6)
independently discovered by Kühne [KÜH 1902], Schmidt [SCH 1927], and Carlitz [CAR 1932].

Theorem 2.104 Let f(X) and m(X) be monic polynomials of Fp[X ]. Then

(
f(X)
m(X)

)
=

⎧⎨
⎩

(
m(X)
f(X)

)
if q ≡ 1 (mod 4) or if deg m(X) or deg f(X) is even

−
(

m(X)
f(X)

)
otherwise.

(2.7)

Algorithm 11.69 makes use of the law (2.7) to compute the Legendre–Kronecker–Jacobi symbol.
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The p-adic numbers play an important role in algebraic number theory. Many of the fruitful prop-
erties they enjoy stem from Hensel’s lemma that allows one to lift the modulo p factorization of a
polynomial. As a consequence, although Qp is a characteristic zero field, its absolutely unramified
extensions reflect the same structure as the algebraic extensions of the finite field Fp. On the other
hand, the completion of the algebraic closure of Qp can be embedded as a field, but not as a val-
uation field, into C. Consequently, p-adic numbers are used to bridge the gap between finite field
algebraic geometry and complex algebraic geometry by the use of the so-called Lefschetz principle.

In this chapter, we review the definition and basic properties of p-adic numbers. More details can
be found in the excellent book by Serre [SER 1979].

3.1 Definition of QpQpQpQpQpQpQpQp and first properties

First, we introduce the notion of inverse limit of a directed family, which is useful in the construction
of the p-adic numbers.

Definition 3.1 Let I be a set with a partial ordering relation �, i.e., for all i, j, k ∈ I we have

• i � i,
• if i � j and j � k then i � k,
• if i � j and j � i then i = j.

Then I is a directed set if for all i, j there exists a k ∈ I such that k � i and k � j.

Definition 3.2 A directed family of groups is given by

39
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• a directed set I

• for each i ∈ I a group Ai and for i, j ∈ I , i � j a morphism of groups pij : Ai → Aj

satisfying the compatibility relation: for all i, j, k ∈ I with i � j � k, pjk ◦ pij = pik.

We denote by (Ai, {pij}j∈I) such a directed family.

Definition 3.3 Let (Ai, {pij}j∈I) be a directed family of groups and let A be a group, together with
a set of morphisms {pi : A → Ai}i∈I compatible with the pij , i.e., pj = pij ◦ pi for i � j, that
satisfies the following universal property: let B be a group and let {φi}i∈I be a set of morphisms
φi : B → Ai such that the following diagram commutes for i � j

B
φi ��

φj ���
��

��
��

� Ai

pij

��
Aj

then there is a morphism φ such that for all i, j ∈ I , the following diagram

B
φ ��

φj ���
��

��
��

A

pj

��
Aj

is commutative. The group A is called the inverse limit of (Ai, {pij}j∈I) and is denoted by lim←− Ai.
The universal property implies that lim←− Ai is unique up to isomorphism.

Proposition 3.4 Let (Ai, {pij}j∈I) be a directed family of groups with I = N∗. Let A =
∏

Ai

be the product of the family. Note that A itself is a group where the group law is defined compo-
nentwise. Consider the subset Γ of A consisting of all elements (ai) with ai ∈ Ai and for i � j,
pij(ai) = aj . It is easily verified that Γ is a subgroup of A which is isomorphic to lim←− Ai where the
projections pk for k ∈ N∗ are given by pk : (ai) �→ ak. In particular, the inverse limit of a directed
family of groups always exists. Moreover, if the Ai are rings, then lim←− Ai is a ring, where the ring
operations are defined componentwise.

Definition 3.5 Let p be a prime number and I = N∗. For i � j ∈ I , let pij : Z/piZ → Z/pjZ be
the natural projections given by reduction modulo pj , then (Z/piZ, {pij}j∈I) is a directed family.
Its inverse limit lim←− Z/piZ, denoted by Zp, is called the ring of p-adic integers.

The natural morphism of rings ψ : Z → Zp with ψ(1Z) = 1Zp is injective, which implies that
charZp = 0. The invertible elements in Zp are characterized by the following proposition.

Proposition 3.6 An element z ∈ Zp is invertible if and only if z is not in the kernel of p1. For
every nonzero element z ∈ Zp there exists a unique vp(z) ∈ N such that z = uψ(p)vp(z) with u an
invertible element in Zp. The integer vp(z) is called the p-adic valuation of z and we extend the
map vp to Zp by defining vp(0) = −∞.

Definition 3.7 Let R be a ring and let v : R → Z be a map such that for all x, y ∈ R,

• v(xy) = v(x)v(y);
• v(x + y) � min

(
v(x), v(y)

)
with equality when v(x) �= v(y).

A map with the above properties is called a discrete valuation.
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Lemma 3.8 The map vp is a discrete valuation.

The ring Zp is an integral domain and Qp denotes its field of fractions. The p-adic valuation vp can
be extended to Qp by defining vp(1/x) = −vp(x) for x ∈ Zp. Similarly, the natural embedding
ψ : Z → Zp can also be extended to the embedding Q → Qp by defining ψ(1/x) = 1/ψ(x), for
x ∈ Z.

The valuation of Qp induces a map defined by |x|p = p−vp(x) for x ∈ Qp. The properties of vp

imply that | · |p is a norm on Qp, which is called the p-adic norm. The p-adic norm also defines a
norm on Z and on Q via the map ψ. For x ∈ Z, the norm is given by |x|p = p−ν with ν the power
of p in the prime factorization of x. For x/y ∈ Q, the norm is given by |x/y|p = |x|p/|y|p. The set
ψ(Q) is a dense subset of Qp for | · |p. In fact, Qp can also be defined as the completion of Q with
respect to | · |p. This definition is similar to the definition of R as the completion ofQ endowed with
the usual archimedean norm.

3.2 Complete discrete valuation rings and fields

3.2.1 First properties

Definition 3.9 A field K is a complete discrete valuation field if

• K is endowed with a discrete valuation vK

• the valuation induces a norm | · |K on K by defining |x|K = λ−vK(x) with λ > 1
• every sequence in K which is Cauchy for | · |K has a limit in K .

Remark 3.10 The topology induced by the norm |x|K = λ−vK(x) does not depend on λ.

It is easy to see that the subset R = {x ∈ K | |x|K � 1} is a ring. This ring is an integral domain
which is integrally closed, i.e., if x ∈ K is a zero of a monic polynomial with coefficients in R then
x ∈ R. The ring R is called the valuation ring of K . Clearly, M = {x ∈ R | |x|K < 1} is the
unique maximal ideal of R. The field K = R/M is called the residue field of K . In the remainder
of this chapter, we will assume that the residue field is finite.

Proposition 3.11 An element x ∈ R is invertible in R if and only if x is not in M.

Note that if K is a complete discrete valuation field with valuation ring R and maximal ideal M,
then the rings Ai = R/Mi together with the natural projections pij : Ai → Aj for i � j form a
directed family of rings. It is easy to see that R is isomorphic to lim←− Ai.

Example 3.12 The field Qp is a complete discrete valuation field with residue field Fp.

Definition 3.13 An element π ∈ R is called a uniformizing element if vK(π) = 1. Let p1 be the
canonical projection from R to K. A map ω : K → R is a system of representatives of K if for all
x ∈ K we have p1

(
ω(x)

)
= x.

Definition 3.14 An element x ∈ R is called a lift of an element x0 ∈ K if p1(x) = x0. Conse-
quently, for all x ∈ K, ω(x) is a lift of x.

Now, let π be a uniformizing element, ω a system of representatives of K in R and x ∈ R. Let
n = vK(x), then x/πn is an invertible element of R and there exists a unique xn ∈ K such that
vK

(
x − πnω(xn)

)
= n + 1. Iterating this process and using the Cauchy property of K we obtain

the existence of the unique sequence (xi)i�0 of elements of K such that

x =
∞∑

i=0

ω(xi)πi.
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The following theorem classifies the complete discrete valuation fields.

Theorem 3.15 Let K be a complete discrete valuation field with valuation ring R and residue
field K, assumed finite of characteristic p. If charK = p then R is isomorphic to a power series
ring K[[X1, X2, . . . ]]. If charK = 0 then K is an algebraic extension of Qp.

From now on, we restrict ourselves to complete discrete valuation ring of characteristic 0 with a
finite residue field. By Theorem 3.15, any such ring can be viewed as the valuation ring of an
algebraic extension of Qp.

3.2.2 Lifting a solution of a polynomial equation

Let K be a complete discrete valuation field with norm | · |K and let R be its valuation ring. Let
R[X ] denote the univariate polynomial ring over R. The main result of this section is Newton’s
algorithm which provides an efficient way to compute a zero of a polynomial f ∈ R[X ] to arbitrary
precision starting from an approximate solution.

Proposition 3.16 Let K be a complete discrete valuation field with valuation ring R and norm
| · |K . Let f ∈ R[X ] and let x0 ∈ R be such that

|f(x0)|K < |f ′(x0)|2K

then the sequence

xn+1 = xn − f(xn)
f ′(xn)

(3.1)

converges quadratically towards a zero of f in R.

The quadratic convergence implies that the precision of the approximation nearly doubles at each
iteration. More precisely, let k = vK

(
f ′(x0)

)
and let x be the limit of the sequence (3.1). Suppose

that xi is an approximation of x to precision n, i.e., (x−xi) ∈ Mn, then xi+1 = xi−f(xi)/f ′(xi)
is an approximation of x to precision 2n − k. Very closely related to the problem of lifting the
solution of a polynomial equation is Hensel’s lemma that enables one to lift the factorization of a
polynomial.

Lemma 3.17 (Hensel) Let f, Ak, Bk, U, V be polynomials with coefficients in R such that

• f ≡ AkBk (mod Mk),
• U(X)Ak(X) + V (X)Bk(X) = 1, with Ak monic and deg U(X) < deg Bk(X) and

deg V (X) < deg Ak(X)

then there exist polynomials Ak+1 and Bk+1 satisfying the same conditions as above with k replaced
by k + 1 and

Ak+1 ≡ Ak (mod Mk), Bk+1 ≡ Bk (mod Mk).

Iterating this lemma, we obtain an algorithm to compute a factor of a polynomial over R given a
factor modulo M.

Corollary 3.18 With the notation of Proposition 3.16, let f ∈ R[X ] be a polynomial and x0 ∈ K
such that x0 is a simple zero of the polynomial f0 = p1(f). Then there exists an element x ∈ R
such that p1(x) = x0 and x is a zero of f .
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3.3 The field QpQpQpQpQpQpQpQp and its extensions

Let K be a finite algebraic extension of Qp defined by an irreducible polynomial m ∈ Qp[X ]. It
can be shown that there exists a unique norm | · |K on K extending the p-adic norm on Qp. Let
R = {x ∈ K | |x|K � 1} denote the valuation ring of K and let M = {x ∈ R | |x|K < 1} be the
unique maximal ideal of R. Then K = R/M is an algebraic extension of Fp, the degree of which
is called the inertia degree of K and is denoted by f . The absolute ramification index of K is the
integer e = vK

(
ψ(p)

)
. The extension degree [K : Qp], the inertia degree f , and the ramification

index satisfy the following fundamental relation.

Theorem 3.19 Let d be the degree of K/Qp, then d = ef .

3.3.1 Unramified extensions

Definition 3.20 Let K/Qp be a finite algebraic extension, then K is called absolutely unramified
if e = 1. An absolutely unramified extension of degree d is denoted by Qq with q = pd and its
valuation ring by Zq .

Proposition 3.21 Denote by P1 the reduction morphism R[X ] → K[X ] induced by p1 and let m
be the irreducible polynomial defined by P1(m). The extension K/Qp is absolutely unramified if
and only if deg m = deg m. Let d = deg m and Fq = Fpd the finite field defined by m, then we
have p1(R) = Fq. Let K1 and K2 be two unramified extensions of Qp defined respectively by m1

and m2 then K1 � K2 if and only if deg m1 = deg m2.

As a consequence, every unramified extension ofQp is isomorphic toQp[X ]/(m(X)) with m being
an arbitrary degree d lift of an irreducible polynomial over Fp of degree d. Let ω : Fq → Zq be
a system of representatives of Fq; every element x of Zq can be written as a power series x =∑∞

i=0 ω(xi)pi with (xi)i�0 a sequence of elements of Fq .

Proposition 3.22 An unramified extension of Qp is Galois and its Galois group is cyclic gener-
ated by an element Σ that reduces to the Frobenius morphism on the residue field. We call this
automorphism the Frobenius substitution on K .

3.3.2 Totally ramified extensions

Definition 3.23 Let K/Qp be a finite algebraic extension, then K is called totally ramified if f = 1.

Definition 3.24 A monic degree d polynomial P (X) =
∑d

i=0 aiX
i in Qp[X ] is an Eisenstein

polynomial if it satisfies

• vp(a0) = 1,
• vp(ai) > 1, for i = 1, . . . , d − 1.

Such a polynomial is irreducible.

Proposition 3.25 Let K be a totally ramified extension ofQp; then there exists an Eisenstein poly-
nomial P such that K is isomorphic to Qp[X ]/(P ).
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3.3.3 Multiplicative system of representatives

Let K be a complete discrete valuation field of characteristic zero, with valuation ring R and residue
field K, assumed finite of characteristic p. Then K is isomorphic to an algebraic extension of Qp.

Proposition 3.26 There exists a unique system of representatives ω which commutes with p-th
powering, i.e., for all x ∈ K, ω(xp) = ω(x)p. This system ω is multiplicative in the following way:
for all x, y ∈ K we have ω(xy) = ω(x)ω(y).

Such a system can be obtained as follows. Let x0 ∈ K. Since K is a perfect field, for each r ∈ N
there exists xr ∈ K such that xpr

r = x0. Set Xr = {x ∈ R | p1(x) = xr} and let Yr be the
set
{
xpr | x ∈ Xr

}
. It is easy to see that for all y ∈ Yr, p1(y) = x0. Moreover, we have for all

x, y ∈ Yr, vK(x − y) � r. This means by the Cauchy property that there exists a unique element
z ∈ R such that z ∈ Yr, for all r. Then simply define ω(x0) = z. The system of representatives
defined in this way is exactly the unique system that commutes with p-th powering.

Let π be a uniformizing element of R and let ω be the multiplicative system of representatives of
K in R that commutes with p-th powering. Write x ∈ R as x =

∑∞
i=0 ω(xi)πi with (xi)i�0 the

unique sequence of elements of K as defined in Section 3.2. Let Σ be the Frobenius substitution on
K; then we have

Σ(x) =
∞∑

i=0

ω(xi)pπi.

3.3.4 Witt vectors

Definition 3.27 Let p be a prime number and (Xi)i∈N a sequence of indeterminates. The Witt
polynomials Wn ∈ Z[X0, . . . , Xn] are defined as

W0 = X0,

W1 = Xp
0 + pX1,

Wn =
n∑

i=0

piXpn−i

i .

Theorem 3.28 Let (Yi)i∈N be a sequence of indeterminates, then for every Φ(X, Y ) ∈ Z[X, Y ]
there exists a unique sequence (φi)i∈N ∈ Z[X0, X1, . . . ; Y0, Y1, . . . ] such that for all n � 0

Wn

(
φ0, . . . , φn

)
= Φ

(
Wn(X0, . . . , Xn), Wn(Y0, . . . , Yn)

)
.

Let (Si)i∈N, resp. (Pi)i∈N, be the sequence of polynomials (φi)i∈N associated via Theorem 3.28
with the polynomials Φ(X, Y ) = X +Y , resp. Φ(X, Y ) = X ×Y . Then for any commutative ring
R, we can define two composition laws on RN: let a = (ai)i∈N ∈ RN and b = (bi)i∈N ∈ RN, then

a + b =
(
Si(a, b)

)
i∈N

and a × b =
(
Pi(a, b)

)
i∈N

.

Definition 3.29 The set RN endowed with the two previous composition laws is a ring called the
ring of Witt vectors with coefficients in R and is denoted by W (R).

The relation with p-adic numbers is the following. Let Fq with q = pd be a finite field of characteris-
tic p, then W (Fq) is canonically isomorphic to the valuation ring of the unramified extension of de-
gree d ofQp. Via this isomorphism, the map F : W (Fq) → W (Fq) given by F

(
(ai)i∈N

)
= (ap

i )i∈N

corresponds to the Frobenius substitution Σ.
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This chapter introduces the main characters of this book — curves and their Jacobians. To this
aim we give a brief introduction to algebraic and arithmetic geometry. We first deal with arbitrary
varieties and abelian varieties to give the general definitions in a concise way. Then we concentrate
on Jacobians of curves and their arithmetic properties, where we highlight elliptic and hyperelliptic
curves as main examples. The reader not interested in the mathematical background may skip
the complete chapter as the chapters on implementation summarize the necessary mathematical
properties. For full details and proofs we refer the interested reader to the books [CAFL 1996,
FUL 1969, LOR 1996, SIL 1986, STI 1993, ZASA 1976].

Throughout this chapter let K denote a perfect field (cf. Chapter 2) and K its algebraic closure.
Let L be an extension field of K . Its absolute Galois group AutL(L) is denoted by GL.

4.1 Algebraic varieties

We first introduce the basic notions of algebraic geometry in projective and affine spaces.

45
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4.1.1 Affine and projective varieties

Before we can define curves we need to introduce the space where they are defined and it is also
useful to have coordinates at hand.

4.1.1.a Projective space

We shall fix a field K as above. As a first approximation of the n-dimensional projective space
Pn/K := Pn over K we describe its set of K-rational points as the set of (n + 1)-tuples

Pn(K) :=
{
(X0 : X1 : . . . : Xn) | Xi ∈ K, at least one Xi is nonzero

}
/ ∼

where ∼ is the equivalence relation

(X0 : X1 : . . . : Xn) ∼ (Y0 : Y1 : . . . : Yn) ⇐⇒ ∃ λ ∈ K ∀i : Xi = λYi.

The coordinates are called homogeneous coordinates. The equivalence classes are called projective

points. Next we endow this set with a K-rational structure by using Galois theory.

Definition 4.1 Let L be an extension field of K contained in K. Its absolute Galois group GL

operates on Pn(K) via the action on the coordinates. Obviously, this preserves the equivalence
classes of ∼. The set of L-rational points Pn(L) is defined to be equal to the subset of Pn fixed by
GL. In terms of coordinates this means:

Pn(L) :=
{
(X0 : . . . : Xn) ∈ Pn | ∃λ ∈ K ∀i : λXi ∈ L

}
.

Note that in this definition for an L-rational point one does not automatically have Xi ∈ L. How-
ever, if Xj �= 0 then ∀i : Xi/Xj ∈ L.

Let P ∈ Pn(K). The smallest extension field L of K such that P ∈ Pn(L) is denoted by K(P )
and called the field of definition of P . One has

K(P ) =
⋂

GL·P=P

L.

Let S ⊂ Pn(K) and L be a subfield of K containing K . Then S is called defined over L if and only
if for all P ∈ S the field K(P ) is contained in L, or, equivalently, GL · S = S.

Remark 4.2 Let L be any extension field of K , not necessarily contained in K. We can define
points in the n-dimensional projective space over L in an analogous way and an embedding of K
into L induces a natural inclusion of points of the projective space over K to the one over L. This
is a special case of base change.

To be more rigorous, one should not only look at the points of Pn over extension fields of K as sets,
but endow Pn with the structure of a topological space with respect to the Zariski topology. This
will explain the role of the base field K much better.

First recall that a polynomial f(X0, . . . , Xn) ∈ K[X0, . . . , Xn] is called homogeneous of de-
gree d if it is the sum of monomials of the same degree d. This is equivalent to requiring that
f(λX0, . . . , λXn) = λdf(X0, . . . , Xn) for all λ ∈ K. Especially, this implies that the set

Df (L) := {P ∈ Pn(L) | f(P ) �= 0}

is well defined.
One defines a topology on Pn(K) by taking the sets Df(K) =: Df as basic open sets. The L-

rational points are denoted by Df(L) = Pn(L)
⋂

Df . To describe closed sets we need the notion
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of homogeneous ideals. An ideal I ⊆ K[X0, X1, . . . , Xn] is homogeneous if it is generated by
homogeneous polynomials. For I �= 〈X0, . . . , Xn〉, define

VI := {P ∈ Pn(K) | f(P ) = 0, ∀f ∈ I}

and VI(L) = VI

⋂
Pn(L). One sees immediately that VI is well defined. So a subset S ⊂ Pn(K)

is closed with respect to the Zariski topology attached to the projective space over K if it is the set
of simultaneous zeroes of homogeneous polynomials lying in K[X0, . . . , Xn].

Example 4.3 The set of points of the projective n-space Pn and the empty set ∅ are closed sets as
they are the roots of the constant polynomials 0 and 1. By the same argument they are also open
sets.

Example 4.4 Let f ∈ K[X0, X1, . . . , Xn] be a homogeneous polynomial. The closed set V(f) is
called a hypersurface.

Example 4.5 Define Ui := DXi , thus

Ui(L) =
{
(X0 : X1 : . . . : Xn) ∈ Pn(L) | Xi �= 0

}
and let Wi := V(Xi) with

Wi(L) =
{
(X0 : X1 : . . . : Xn) ∈ Pn(L) | Xi = 0

}
.

The Ui are open sets, the Wi are closed.

Example 4.6 Let (k0, . . . , kn) ∈ Kn+1 and not all ki = 0. Take fij(X0, . . . , Xn) := kjXi−kiXj

and I =
(
{fij | 0 � i, j � n}

)
. Obviously, I is a homogeneous ideal and taking (k0 : . . . : kn) as

a homogeneous point, I is independent of the representative. Then VI(L) =
{
(k0 : . . . : kn)

}
, ∀L.

This shows that K-rational points are closed with respect to the Zariski topology. This is not true if
P is not defined over K . The smallest closed set containing P is the GK-orbit GK · P .

From now on we write X for (X0, . . . , Xn). If T ⊂ K[X ] is a finite set of homogeneous
polynomials we define V (T ) to be the intersection of the V(fi), fi ∈ T . Let I = (T ) be the ideal
generated by the fi. Then V (T ) = VI .

4.1.1.b Affine space

As in the projective space we begin with the set of K-rational points of the affine space of dimension
n over K given by the set of n-tuples

An :=
{
(x1, . . . , xn) | xi ∈ K

}
.

The set of L-rational points is given by

An(L) :=
{
(x1, . . . , xn) | xi ∈ L

}
which is the set of GL-invariant points in An(K) under the natural action on the coordinates.

As in the projective case one has to consider An as a topologic space with respect to the Zariski
topology, defined now in the following way: For f ∈ K[x1, . . . , xn] let

Df (L) := {P ∈ An(L) | f(P ) �= 0}

and take these sets as base for the open sets.
Closed sets are given in the following way: for an ideal I ⊆ K[x1, . . . , xn] let

VI(L) = {P ∈ An(L) | f(P ) = 0, ∀f ∈ I}.

A set S ⊂ An is closed if there is an ideal I ⊆ K[x1, . . . , xn] with S = VI .
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Example 4.7 Let (k1, . . . , kn) ∈ An(K) and put fi = xi − ki and I =
(
{fi | 1 � i � n}

)
. Then

VI =
{
(k1, . . . , kn)

}
. Hence, the K-rational points are closed.

Please note, if P ∈ An�An(K) the set {P} is not closed.

Remark 4.8 For closed S ⊂ An assume that S = VI . The ideal I is not uniquely determined by
S. Obviously there is a maximal choice for such an ideal, and it is equal to the radical ideal (cf.
[ZASA 1976, pp. 164]) defined as

√
I =

{
f ∈ K[x1, . . . , xn] | ∃k ∈ N with fk ∈ I

}
.

As in the projective case we take x as a shorthand for (x1, . . . , xn).

4.1.1.c Varieties and dimension

To define varieties we use the definition of irreducible sets. A subset S of a topological space is
called irreducible if it cannot be expressed as the union S = S1 ∪ S2 of two proper subsets closed
in S. We additionally define that the empty set is not irreducible.

Definition 4.9 Let V be an affine (projective) closed set. One calls V an affine (projective) variety
if it is irreducible.

Example 4.10 The affine 1-space A1 is irreducible because K[x1] is a principal ideal domain and
so every closed set is the set of zeroes of a polynomial in x1. Therefore, any closed set is either
finite or equal to A1. Since A1 is infinite it cannot be the union of two proper closed subsets.

From commutative algebra we get a criterion for when a closed set is a variety.

Proposition 4.11 A subset V ofAn (resp. Pn) is an affine (projective) variety if and only if V = VI

with I a (homogeneous) prime ideal in K[x] (resp. K[X ]).

We recall that the Zariski topology is defined relative to the ground field K . For extension fields L
and given embeddings σ of K into L fixing K we have induced embeddings of Pn/K → Pn/L.
Due to the obvious embedding of K[X ] into L[X ] and as the topology depends on these polynomial
rings, we can try to compare the Zariski topologies of affine and projective spaces over K with
corresponding ones over L.

If L is arbitrary, a closed set in the space over K may not remain closed in the space over L.
But if L is algebraic over K and if S is closed in the affine (projective) space over K then

its embedding σ · S is closed over L. Namely, if S = VI with I ⊆ K[x] (resp. K[X ]) then
σ · S = VI·L[x] (resp. σ · S = VI·L[X]).

But varieties over K do not have to be varieties over L since for prime ideals I in K[x] it may
not be true that I · L[x] is a prime ideal.

Example 4.12 Consider I = (x2
1 − 2x2

2) ⊆ Q[x1, x2]. Over Q(
√

2) the variety VI splits because
x2

1 − 2x2
2 = (x1 −

√
2x2)(x1 +

√
2x2). Therefore, the property of a closed set being a variety

depends on the field of consideration.

Example 4.13 Let V be an affine variety, i.e., a closed set in someAn for which the defining ideal I
is prime in K[x]. The m-fold Cartesian product V m is also a variety, embedded in the affine space
Anm. For affine coordinates choose (x1

1, . . . , x
1
n, . . . , xm

1 , . . . , xm
n ), define Ii ⊆ K[xi] obtained

from I by replacing xj by xi
j . Then the ideal of V m is given by 〈I1, . . . , Im〉.

Definition 4.14 A variety V of the affine (projective) space An (Pn) over K is called absolutely
irreducible if it is irreducible as closed set with respect to the Zariski topology of the corresponding
spaces over K .
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Example 4.15

(i) The n-dimensional spaces An and Pn are absolutely irreducible varieties as they corre-
spond to the prime ideal (0).

(ii) The sets V(f) and V(F ) with f ∈ K[x] and F ∈ K[X ] are absolutely irreducible if and
only if f and F are absolutely irreducible polynomials, i.e., they are irreducible over K .

(iii) Let S be a finite set in an affine or projective space over K . The set S is absolutely
irreducible if and only if it consists of one (K-rational) point.

Example 4.16 Let f(x1, x2) = x2
2 − x3

1 − a4x1 − a6 ∈ K[x1, x2]. This polynomial is absolutely
irreducible, hence V(f) is an irreducible variety over K and over any extension field of K contained
in K .

The affine and the projective n-spaces are Noetherian, which means that any sequence of closed
subsets S1 ⊇ S2 ⊇ . . . will eventually become stationary, i.e., there exists an index r such that
Sr = Sr+1 = . . . . This holds true as any closed set corresponds to an ideal of K[x] or K[X ],
respectively, and these rings are Noetherian.

Definition 4.17 Let V be an affine (projective) variety. The dimension dim(V ) is defined to be the
supremum on the lengths of all chains S0 ⊃ S1 ⊃ · · · ⊃ Sn of distinct irreducible closed subspaces
Si of V . A variety is called a curve if it is a variety of dimension 1.

Example 4.18 The dimension of A1 is 1 as the only irreducible subsets correspond to nonzero
irreducible polynomials in 1 variable. In general, An and Pn are varieties of dimension n.

Example 4.19 Let 0, 1 �= f ∈ K[x1, x2] be absolutely irreducible. Then V(f) is an affine curve as
the only proper subvarieties are points P ∈ A2 satisfying f(P ) = 0.

Example 4.20 Let V be an affine variety of dimension d. Then the Cartesian product (cf. Exam-
ple 4.13) V m has dimension md by concatenating the chains of varieties.

4.1.1.d Relations between affine and projective space

Here we show how the topologies introduced for Pn and An are made compatible. For both spaces
we defined open and closed sets via polynomials and ideals, respectively.

Let F ∈ K[X0, X1, . . . , Xn] be a homogeneous polynomial of degree d. The process of replac-
ing

F (X0, X1, . . . , Xn) by Fi := F (x1, . . . , xi, 1, xi+1, . . . , xn) ∈ K[x1, . . . , xn]

is called dehomogenization with respect to Xi. The reverse process takes a polynomial f ∈ K[x]
and maps it to

fi := Xd
i f(X0/Xi, X1/Xi, . . . , Xi−1/Xi, Xi+1/Xi, . . . , Xn/Xi),

where d is minimal such that fi is a polynomial in K[X ]. By applying these transformations, we
relate homogeneous (prime) ideals in K[X ] to (prime) ideals in K[x] and conversely. So we can
expect that we can relate affine spaces with projective spaces including properties of the Zariski
topologies.

Example 4.21 The open sets Ui = DXi ⊂ Pn are mapped to An by dehomogenizing their defining
polynomial Xi with respect to Xi. The inverse mappings are given by

φi : An → Ui

(x1, . . . , xn) �→ (x1 : . . . : xi : 1 : xi+1 : . . . : xn)
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Therefore, for any 0 � i � n we have a canonical bijection between Ui and An which is a homeo-
morphism as it maps closed sets of Ui to closed sets in An.

The sets U0, . . . , Un cover the projective space Pn. This covering is called the standard covering.
The maps φi can be seen as inclusions An ⊂ Pn.

If V is a projective closed set such that V = VI(V ) with homogeneous ideal I(V ) ⊆ K[X0, . . . , Xn]
we denote by Vi the set φ−1

i (V ∩ Ui) for 0 � i � n. The resulting set is a closed affine set with
ideal obtained by dehomogenizing all polynomials in I(V ) with respect to Xi. This way, V is
covered by the n + 1 sets φi(Vi).

For the inverse process we need a further definition:

Definition 4.22 Let VI ⊆ An be an affine closed set. Using one of the φi, embed VI into Pn by

VI ⊂ An φi→ Pn.

The projective closure V I of VI is the closed projective set defined by the ideal
_
I generated by the

homogenized polynomials {fi | f ∈ I}.

The points added to get the projective closure are called points at infinity. Note that in the definition
we need to use the ideal generated by the fi’s, a set of generators of I does not automatically
homogenize to a set of generators of

_
I . These processes lead to the following lemma that describes

the relation between affine and projective varieties.

Lemma 4.23 We choose one embedding φi from An to Pn and identify An with its image. Let
V ⊆ An be an affine variety, then V is a projective variety and

V = V ∩ An.

Let V ⊆ Pn be a projective variety, then V ∩ An is an affine variety and either

V ∩ An = ∅ or V = V ∩ An.

If V is a projective variety defined over K then V ∩ An is empty or an affine variety defined over
K . There is always at least one i such that V ∩ φiA

n =: V(i) is nonempty. We call V(i) a nonempty
affine part of V .

For example, let C ⊂ Pn be a projective curve. The intersections C ∩ Ui lead to affine curves
C(i). Starting from an affine curve Ca ⊂ An one can embed the points of Ca into Pn via φi. The
result will not be closed in the Zariski topology of Pn so one needs to include points from Pn�Ui

to obtain the projective closure
__
Ca.

Example 4.24 Consider the projective line P1. It is covered by two copies of the affine line A1.
When embedding A1 in P1 via φ0 we miss a single point (0 : 1) which is called the point at infinity
denoted by ∞.

Example 4.25 Let V be a projective variety embedded in Pn. To define the m-fold Cartesian prod-
uct one uses the construction for affine varieties (cf. Example 4.13) for affine parts Va and “glues
them together.”

Warning: it is not possible to embed V m in Pmn in general. One has to use constructions due to
Segre [HAR 1977, pp. 13] and ends up in a higher dimensional space.
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4.2 Function fields

Definition 4.26 Let V be an affine variety in the n-dimensional space An over K with correspond-
ing prime ideal I . Denote by

K[V ] := K[x1, . . . , xn]/I

the quotient ring of K[x1, . . . , xn] modulo the ideal I . This is an integral domain, called the coor-
dinate ring of V . The function field K(V ) of V is the quotient field

K(V ) := Quot(K[V ]).

The maximal algebraic extension of the field K contained in K(V ) is called the field of constants
of K(V )/K .

Definition 4.27 Let V be a projective variety over K . Let Va ⊆ An be a nonempty affine part of
V . Then the function field K(V ) is defined as K(Va).

One can check that K(V ) is independent of the choice of the affine part Va. Thus, the notation
K(V ) makes sense. But note that K[Va] depends on the choice of Va.

Obviously, the elements f ∈ K(V ) can be represented by fractions of polynomials f = g/h,
f, g ∈ K[x1, . . . , xn] or as fractions of homogeneous polynomials of the same degree f = g/h,
f, g ∈ K[X0, X1, . . . , Xn]. Then functions f1 = g1/h1 and f2 = g2/h2 are equal if g1h2−g2h1 ∈
I(V ).

In Example 4.12, the splitting was induced by an algebraic extension of the ground field. We can
formulate a criterion for V to be absolutely irreducible:

Proposition 4.28 A variety V is absolutely irreducible if and only if K is algebraically closed in
K(V ), i.e., K is the full constant field of K(V ) (cf. [STI 1993, Cor. III.6.7]).

Example 4.29 Consider An as affine part of Pn. Its coordinate ring K[An] = K[x1, . . . , xn] is
the polynomial ring in n variables. The function field of Pn is the field of rational functions in n
variables.

From now on, we assume that V is absolutely irreducible.
Let L be an algebraic extension field of K . As pointed out above the set V is closed under the

Zariski topology related to the new ground field L and again irreducible by assumption. We denote
this variety by VL. We get

Proposition 4.30 If V is affine then K[VL] = K[V ] ·L. If V is affine or projective then K(VL) =
K(V ) · L.

The proof of this proposition follows immediately from the fact that for affine V with corresponding
prime ideal I we get VL = VI·L[x].

Example 4.31 Consider the projective curve C = P1 and the affine part Ca = A1. For any field
K ⊆ L ⊆ K the coordinate ring of Ca is the polynomial ring in one variable L[Ca] = L[x1] and
the function field is the function field in one variable L(x1).

A function field K(V ) of a projective variety V is finitely generated. Since K is perfect the exten-
sion is also separably generated. Therefore, the transcendence degree of K(V )/K is finite.

Lemma 4.32 Let K(V ) be the function field corresponding to the projective variety V . The dimen-
sion of V is equal to the transcendence degree of K(V ).
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4.2.1 Morphisms of affine varieties

We want to define maps between affine varieties that are continuous with respect to the Zariski
topologies. We shall call such maps morphisms. We begin with V = An.

Definition 4.33 A morphism ϕ from An to the affine line A1 is given by a polynomial f(x) ∈ K[x]
and defined by

ϕ : An → A1

P = (a1, . . . , an) �→ f
(
(a1, . . . , an)

)
=: f(P ).

One sees immediately that f is uniquely determined by ϕ.
To ease notation we shall identify f with ϕ. Hence the set of morphisms from An to the affine

line is identified with K[x]. In fact we can make the set of morphisms to a K-algebra in the usual
way by adding and multiplying values. As K-algebra it is then isomorphic to K[x].

As desired, the map f is continuous with respect to the Zariski topology. It maps closed sets to
closed sets, varieties to varieties, and for extension fields L of K we get f

(
An(L)

)
⊂ A1(L).

Definition 4.34 A morphism ϕ from An to Am (for n, m ∈ N) is given by an m-tuple(
f1(x), . . . , fm(x)

)
of polynomials in K[x] mapping P ∈ An to

(
f1(P ), . . . , fm(P )

)
.

Since ϕ is determined by f1, . . . , fm, the set of morphisms from An to Am can be identified with
K[x]m. Again one checks without difficulty that morphisms are continuous with respect to the
Zariski topology and map varieties to varieties.

Let V be an affine variety in An with corresponding prime ideal I ⊂ K[x].

Definition 4.35 A morphism from V ⊂ An to a variety W ⊂ Am is given by the restriction to V
of a morphism from An to Am with image in W .

We denote the set of morphisms from V to W by MorK(V, W ).

Example 4.36 As basic example take W = A1. For V = A1 we already have MorK(A1,A1) =
K[x]. For an arbitrary variety V = VI one has that MorK(V,A1) is as K-algebra isomorphic to
K[V ] = K[x]/I .

Remark 4.37 Take ϕ ∈ MorK(V, W ) and f ∈ MorK(W,A1) = K[W ]. Then f ◦ ϕ is an element
of MorK(V,A1) = K[V ], and so we get an induced K-algebra morphism

ϕ∗ : K[W ] → K[V ].

The morphism ϕ∗ is injective if and only if ϕ is surjective. If ϕ∗ is surjective then ϕ is injective.

Definition 4.38 The map ϕ is an isomorphism if and only if ϕ∗ is an isomorphism. This means that
the inverse map of ϕ is again a morphism, i.e., given by polynomials.

Two varieties V and W are called isomorphic if there exists an isomorphism from V to W , and
we have seen that this is equivalent to the fact that K[V ] is isomorphic to K[W ] as K-algebra.

Example 4.39 Assume that char(K) = p > 0. Then the exponentiation with p is an automor-
phism φp of K since K is assumed to be perfect. The map φp is called the (absolute) Frobenius
automorphism of K (cf. Section 2.3.2).
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We can extend φp to points of projective spaces over K by sending the point (X0, . . . , Xn) to
(Xp

0 , . . . , Xp
n). We apply φp to polynomials over K by applying it to the coefficients.

If V is a projective variety over K with ideal I we can apply φp to I and get a variety φp(V ) with
ideal φp(I). The points of V are mapped to points on φp(V ).

The corresponding morphism from V to φp(V ) is called the Frobenius morphism and is again
denoted by φp. We note that φp is not an isomorphism as the polynomial rings K[V ]/K[φp(V )]
form a proper inseparable extension.

4.2.2 Rational maps of affine varieties

Let V ⊂ An be an affine variety with ideal I = I(V ) and take ϕ ∈ K[V ] with representing element
f ∈ K[x].

By definition, the set Df consists of the points P in An in which f(P ) �= 0. It is open in the
Zariski topology of An, and hence Uϕ := Df ∩V is open in V . Its complement Vϕ in V is the zero
locus of ϕ. It is not equal to V if and only if Uϕ is not empty, and this is equivalent to f /∈ I .

We assume now that f /∈ I . For P ∈ Uϕ define (1/ϕ)(P ) := f(P )−1.

Definition 4.40 Assume that U is a nonempty open set of an affine variety V and let the map rU be
given by

rU : U → A1

P �→ (ψ/ϕ)(P )

for some ψ, ϕ ∈ K[V ] and U ⊂ Uϕ. Then rU is a rational map from V to A1 with definition set U .

We introduce an equivalence relation on rational maps: for given V the rational map rU is equivalent
to r′U ′ if for all points P ∈ U ∩ U ′ we have: rU (P ) = r′U ′(P ).

Definition 4.41 The equivalence class of a rational map from V to A1 is called a rational function
on V .

Proposition 4.42 Let V be an affine variety. The set of rational functions on V is equal to K(V ).
The addition (resp. multiplication) in K(V ) corresponds to the addition (resp. multiplication) of
rational functions defined by addition (resp. multiplication) of the values.

Let V ⊂ An. As in the case of morphisms we can extend the notion of rational maps from the case
W = A1 to the general case that W ⊂ Am is a variety:

Definition 4.43 A rational map r from V to W is an m-tuple of rational functions (r1, . . . , rm)
with ri ∈ K(V ) having representatives Ri defined on a nonempty open set U ⊂ V with R(U) :=(
R1(U), . . . , Rm(U)

)
⊂ W .

A rational map r from V to W is dominant if (with the notation from above) R(U) is dense in
W , i.e., if the smallest closed subset in W containing R(U) is equal to W .

A rational map r : V → W is birational if there exists an inverse rational map r′ : W → V such
that r′ ◦ r is equivalent to IdV and r ◦ r′ is equivalent to IdW .

If there exists a birational map from V to W the varieties are called birationally equivalent.

Example 4.44 Consider the rational maps

rij : An → An, rij = (rij
1 , . . . , rij

n ),
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where (for i � j)

rij
k (x1, . . . , xn) :=

⎧⎪⎪⎨
⎪⎪⎩

xk/xj , k < i
1/xj, k = i
xk−1/xj , i < k � j
xk/xj , j < k.

The case i > j works just the same. For fixed j and arbitrary i the maps rij are defined on Dxj .
Using the embeddings φi of An into Pn one has the description

rij = φ−1
j ◦ φi.

The inverse map is just rji and so rij represents a birational map regular on Dxj ∩Dxi . It describes
the coordinate transition of affine coordinates with respect to φi to affine coordinates with respect
to φj on Pn.

Proposition 4.45 Assume that the rational map r from V to W is dominant. Then the composition
of r with elements in K(W ) induces a field embedding r∗ of K(W ) into K(V ) fixing elements in
K , generalizing the definition made for morphisms in Remark 4.37.

If r is birational then K(V ) is isomorphic to K(W ) as K-algebra.

Example 4.46 A projective curve C corresponds to a function field of transcendence degree 1.
Since K is perfect, there are elements x1, x2 ∈ K(C) and an irreducible polynomial f(x1, x2)
such that K(C) = Quot

(
K[x1, x2]/

(
f(x1, x2)

))
. Hence, C (and every affine part of dimension

1 of C) is birationally equivalent to the plane curve V(f) and of course to its projective closure
V (f) ⊂ P2.

Example 4.47 We consider again the Frobenius morphism φp from Example 4.39. The map

φ∗
p : K

(
φp(V )

)
→ K(V )

has as its image K(V )p since the coordinate functions of V are exponentiated by p under the map
φp.

4.2.3 Regular functions

We continue to assume that V is an affine variety.

Definition 4.48 A rational function f ∈ K(V ) is regular at a point P ∈ V if f has as representative
a rational map f̃ with set of definition U containing P .

In other words f is regular at P ∈ V if there is an open neighborhood U of P where f|U = (g/h)|U
for g, h ∈ K[x] and P ∈ Dh. If this is the case we say that f is defined at P with value f(P ) =
g(P )/h(P ).

Definition 4.49 For two varieties V ⊂ An, W ⊂ Am a rational map r : V → W is regular at P if
there is a nonempty open set U of V containing P such that the restriction of r to U is given by an
m-tuple of rational maps defined on U .

In other words: a map r is regular if locally it can be represented via m-tuples of quotients of
polynomials in K[x] which are defined at P ∈ U .
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4.2.4 Generalization to projective varieties

We want to generalize the definitions of morphisms to projective varieties.

Definition 4.50 Let V ⊂ Pn and W ⊂ Pm be projective varieties. Let ϕ be a map from V to W
such that the following holds:

(i) The set V =
⋃n

i=1 Vi with Vi = V ∩ Ui the standard affine parts of V .

(ii) The morphism ϕi := ϕ|Vi
is an affine morphism to an affine part Wi of W .

(iii) The polynomials
(
f i
1(x), . . . , f i

m(x)
)

describing ϕ on Vi with respect to the standard
affine coordinates are transformed into the polynomials

(
f j
1 (x), . . . , f j

m(x)
)

describing
ϕj in the standard affine coordinates related to Vj under the coordinate transformation
considered in Example 4.44.

Then ϕ is a morphism from V to W : ϕ ∈ MorK(V, W ).

The notions of rational functions of projective varieties V and of regularity in a point P of such
functions are easier to define since they are local definitions.

We define rational maps as equivalence classes of rational maps defined on the affine parts of V
compatible with the transition maps on intersections of standard affine pieces Ui (cf. Example 4.44).
To define regularity at P we first choose an affine part Vi of V containing P and then require that
there is an open neighborhood U of P in Vi such that the rational map obtained by restriction is
defined on U .

A rational map from W to P1 is called a rational function of V .

Proposition 4.51 The set of rational functions on a projective variety V forms a field isomorphic
to K(V ) which is equal to the field of rational functions on a nonempty affine part of V .

A function f : V → K is regular at P ∈ V if there is an open neighborhood U of P where
f = g/h for homogeneous polynomials g, h ∈ K[X ] of the same degree and h(Q) �= 0, ∀Q ∈ U .

4.3 Abelian varieties

We want to use the concepts introduced above for a structure that will become most important for
the purposes of the book.

Remark 4.52 Already in the definition we shall restrict ourselves to the cases that will be considered
in the sequel. So we shall assume throughout the whole section that all varieties are defined over K
and are absolutely irreducible.

4.3.1 Algebraic groups

We combine the concept of groups with the concept of varieties in a functorial way.

Definition 4.53 An (absolutely irreducible) algebraic group G over a field K is an (affine or pro-
jective) absolutely irreducible variety defined over K together with three additional ingredients:

(i) the addition, i.e., a morphism
m : G × G → G,

(ii) the inverse, i.e., a morphism
i : G → G,
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(iii) the neutral element, i.e., a K-rational point

0 ∈ G(K),

satisfying the usual group laws:

m ◦ (IdG ×m) = m ◦ (m × IdG) (associativity),

m|{0}×G = p2,

where p2 is the projection of G × G on the second argument, and

m ◦ (i × IdG) ◦ δG = c0,

where δG is the diagonal map from G to G × G and c0 is the map which sends G to 0.

Let L be an extension field of K . Let G(L) denote the set of L-rational points. The set G(L) is a
group in which the sum and the inverse of elements are computed by evaluating morphisms that are
defined over K , that do not depend on L, and in which the neutral element is the point 0.

A surprising fact is that if G is a projective variety the group law m is necessarily commutative.

Definition 4.54 Projective algebraic groups are called abelian varieties.

From now on we shall require m to be commutative. We can use a classification theorem which
yields that G is an extension of an abelian variety by an affine (i.e., the underlying variety is affine)
algebraic group. So, for cryptographic purposes we can assume that G is either affine or an abelian
variety as by Theorem 2.23 one is interested only in (sub)groups of prime order.

Affine commutative group schemes that are interesting for cryptography are called tori. The
reader can find the definition and an interesting discussion on how to use them for DL systems
in [SIRU 2004].

Remark 4.55 To make the connection with abelian groups more obvious we replace “m(P, Q)”
with the notation P ⊕ Q for P, Q ∈ G(K) and i(P ) by −P .

We shall concentrate on abelian varieties from now on and shall use as standard notationA instead
of G.

4.3.2 Birational group laws

Assume that we are given an abelian variety A. Since we want to use A for DL systems we shall
not only need structural properties of A but explicitly compute with its points. In general this seems
to be hopeless. Results of Mumford [MUM 1966] and Lange–Ruppert [LARU 1985] show that the
number of coordinate functions and the degree of the addition formulas both grow exponentially
with the dimension of the abelian variety. Therefore, we have to use special abelian varieties on
which we can describe the addition at least on open affine parts.

By definitionA can be covered by affine subvarieties Vi. Choose one such V := Vi. For l depending
on V one finds coordinate functions X1, . . . , Xl defining V by polynomial relations{

f1(X1, . . . , Xl), . . . , fk(X1, . . . , Xl)
}
.

The L-rational points V (L) ⊂ A(L) are the elements (x1, . . . , xl) ∈ Ll, where the polynomials fi

vanish simultaneously. The addition law can be restricted to V × V and induces a morphism

mV : V × V → A.



§ 4.3 Abelian varieties 57

For generic points of V × V the image of mV is again contained in V . So mV is given by addition
functions Ri ∈ K(X1, . . . , Xl; Y1, . . . , Yl) such that for pairs of L-rational points in V × V we get(

(x1, . . . , xl) ⊕ (y1, . . . , yl)
)

=
(
R1(x1, . . . , xl; y1, . . . , yl), . . . , Rl(x1, . . . xl; y1, . . . , yl)

)
.

Remark 4.56 This is a birational description of the addition law that is true outside proper closed
subvarieties of V × V . The set of points where this map is not defined is of small dimension and
hence with high probability one will not run into it by chance. But it can happen that we use pairs
of points on purpose (e.g., lying on the diagonal in V × V ) for which we need an extra description
of m.

We shall encounter examples of abelian varieties with birational description of the group law in later
chapters. In fact it will be shown that one can define abelian varieties from elliptic and hyperelliptic
curves — they constitute even the main topics of this book.

4.3.3 Homomorphisms of abelian varieties

We assume that A and B are abelian varieties over K with addition laws ⊕ (resp. ⊕′). Let ϕ be an
element of MorK(A,B).

Example 4.57 Let P ∈ A(K) and define

tP : A → A
Q �→ P ⊕ Q.

Here, tP is called the translation by P and lies in MorK(A,A).

A surprising fact is that for all ϕ ∈ MorK(A,B) we have

ϕ(P ⊕ Q) = ϕ(P ) ⊕′ ϕ(Q)

for all points P, Q of A if and only if ϕ(0) is the neutral element of B. In other words every
morphism from A to B is a homomorphism with respect to the addition laws up to the translation
map t−(ϕ(0)) in B. The set of homomorphisms from A to B is denoted by HomK(A,B).

Let L be an extension field of K and take ϕ ∈ HomK(A,B). We get a group homomorphism
ϕL : A(L) → B(L) which is given by evaluating polynomials with coefficients in K . An important
observation is that ϕL commutes with the action of the Galois group GK of K .

The set of homomorphisms HomK(A,B) becomes a Z-module in the usual way: for ϕ1, ϕ2 ∈
HomK(A,B) and points P of A define

(ϕ1 + ϕ2)(P ) :=
(
ϕ1(P ) ⊕ ϕ2(P )

)
.

In many cases it is useful to deal with vector spaces instead of modules, and so we define

HomK(A,B)0 := HomK(A,B) ⊗Z Q.

In the next chapter we shall see that HomK(A,B)0 is a finite dimensional vector space overQ.

Remark 4.58 Homomorphisms of abelian varieties behave in a natural way under base change: let
L be an extension field of K and let AL,BL be the abelian varieties obtained by scalar extension to
L, HomL(A,B) := HomL(AL,BL). The Galois group GL acts in a natural way on MorL(AL,BL)
and hence on HomL(A,B).
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Lemma 4.59 With the notations from above we get

(i) Let L0 be the algebraic closure of K in L. Then HomL(A,B) = HomL0(A,B).
(ii) For L contained in K we get HomL(A,B) = HomK(A,B)GL .

Because of the next results we can think of abelian varieties as behaving like abelian groups.

Proposition 4.60 Take ϕ ∈ HomK(A,B).

(i) The image Im(ϕ) of ϕ is a subvariety of B, which becomes an abelian variety by restrict-
ing the addition law from B, i.e., it is an abelian subvariety of B.

(ii) The kernel ker(ϕ) of ϕ is by definition the inverse image of 0B. It is closed (in the Zariski
topology) in A. Its points consist of all points in A(K) that are mapped to 0B by ϕK and
hence form a subgroup of A(K).

(iii) The kernel ker(ϕ) contains a maximal absolutely irreducible subvariety ker(ϕ)0 contain-
ing 0A. This subvariety is called the connected component of the unity of ker(ϕ). It is
an abelian subvariety of A.

(iv) For the dimension one has

dim
(
Im(ϕ)

)
+ dim

(
ker(ϕ)0

)
= dim(A).

Remark 4.61 Warning: in general it is not true that the sequence of abelian groups

0 → ker(ϕ)(L) → A(L) → Im
(
ϕ(L)

)
→ 0

is exact. This holds, however, if L = K.

4.3.4 Isomorphisms and isogenies

To study abelian varieties it is (as usual) important to have an insight into isomorphisms between
them. Very closely related to isomorphisms are homomorphisms which preserve the dimension of
the abelian variety. They are intensively used both in theory and in applications to cryptography.

Definition 4.62 We assume that A,B are abelian varieties over K .

(i) The map ϕ ∈ HomK(A,B) is an isogeny if and only if Im(ϕ) = B and ker(ϕ) is finite.

(ii) The morphism ϕ is an isomorphism if and only if there is a ψ ∈ HomK(B,A) with
ϕ ◦ ψ = IdB and ψ ◦ ϕ = IdA. So necessarily one has ker(ϕ) = {0A}.

(iii) The variety A is isogenous to B (A ∼ B) if and only if there exists an isogeny in
HomK(A,B).

(iv) The variety A is isomorphic to B (A � B) if and only if there exists an isomorphism in
HomK(A,B).

Let ϕ ∈ HomK(A,B) be dominant. By mapping f ∈ K(B) to f ◦ ϕ we get an injection ϕ∗ of
K(B) into K(A) (cf. Remark 4.45).

Proposition 4.63 The homomorphism ϕ ∈ HomK(A,B) is an isogeny if and only if dim(A) =
dim(B) and dim

(
ker(ϕ)0

)
= 0.

Equivalently we have that ϕ is dominant and K(A) is a finite algebraic extension of ϕ∗(K(B)
)
.

The relations � and ∼ (cf. Corollary 4.76) are equivalence relations between abelian varieties.
Hence we can speak about (K-)isogeny classes (resp. (K-)isomorphism classes) of abelian varieties
over K .
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Definition 4.64 Let ϕ be an isogeny fromA toB. The degree of ϕ is defined as [K(A) : ϕ∗(K(B)
)
].

The isogeny ϕ is called separable if and only if K(A)/ϕ∗(K(B)
)

is a separable extension. It is
called (purely) inseparable if K(A)/ϕ∗(K(B)

)
is purely inseparable. In this case ker(ϕ) = {0}

but nevertheless ϕ is not an isomorphism in general.

As for abelian groups we can describe the abelian varieties that are isomorphic to a homomorphic
image of A.

Let C be a closed set (with respect to the Zariski topology) in A with C(K) a subgroup of A(K).
Then there exists an (up to K-isomorphisms unique) abelian variety B defined over K and a unique
π := πC ∈ HomK(A,B) such that

• Im(π) = B,
• ker(π) = C and
• K

(
A)/π∗(K(B)

)
is separable.

Definition 4.65 With the notation from above we call B =: A/C the quotient of A modulo C.
Hence, B(K) = A(K)/C(K).

For general homomorphisms ϕ ∈ HomK(A,B) we get:

ϕ = ψ ◦ πker(ϕ)

where ψ is a purely inseparable isogeny from A/ ker(ϕ) to Im(ϕ).
Hence we can classify all abelian varieties defined over K that are separably isogenous to A up

to isomorphisms:

Proposition 4.66 The K-isomorphism classes of abelian varieties that are K-separably isogenous
to A correspond one-to-one to the finite subgroups C ⊆ A(K) that are invariant under the action of
GK . They are isomorphic to A/C. The field K(A) is a separable extension of π∗(K(A/C)

)
, which

is a Galois extension with Galois group canonically isomorphic to C: the automorphisms of K(A)
fixing π∗(K(A/C)

)
are induced by translation maps tP with P ∈ ker(π), i.e., π∗(K(A/C)

)
consists of the functions on A that are invariant under translations of the argument by points in C.

To describe all abelian varieties that are K-isogenous to A we have to compose separable isogenies
with purely inseparable ones. As seen the notion of finite subgroups of A(K) is not sufficient for
this; we would have to go to the category of group schemes to repair this deficiency. This is beyond
the scope of this introduction. For details see e.g., [MUM 1974, pp. 93].

For our purposes there is a most prominent inseparable isogeny, the Frobenius homomorphism.
Assume that char(K) = p > 0. We recall that we have defined the Frobenius morphism φp (cf.
Example 4.39) for varieties over K . It is easily checked that φp(A) is again an abelian variety over
K . By the description of φ∗

p it follows at once that φp is a purely inseparable isogeny of degree
pdim(A) and its kernel is {0}.

Now we consider the special case that B = A.

Definition 4.67 The homomorphisms EndK(A) := HomK(A,A) are the endomorphisms of A.

The set EndK(A) is a ring with composition as multiplicative structure.

Example 4.68 Assume that K = Fp. Then φp induces the identity map on polynomials over K
and so φp(A) = A. Therefore, φp ∈ EndK(A). It is called the Frobenius endomorphism.

A slight but important generalization is to consider K = Fq with q = pd. Then φq := φd
p is

the relative Frobenius automorphism fixing K element wise. We can apply the considerations made
above to φq and get a totally inseparable endomorphism of A of degree pd dim(A) which is called
the (relative) Frobenius endomorphism of A.
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To avoid quotient groups we introduce a further definition.

Definition 4.69 An abelian variety is simple if and only if it does not contain a proper abelian
subvariety.

Assume that A is simple. It follows that ϕ ∈ HomK(A,B) is either the zero map or has a finite
kernel, hence its image is isogenous to A.

Proposition 4.70 If A is simple then EndK(A) is a ring without zero divisors and EndK(A)0 :=
EndK(A) ⊗Q is a skew field.

One proves by induction with respect to the dimension that every abelian variety is isogenous to the
direct product of simple abelian varieties. So we get

Corollary 4.71 EndK(A)0 is isomorphic to a product of matrix rings over skew fields.

4.3.5 Points of finite order and Tate modules

We come to most simple but important examples of elements in EndK(A).
For n ∈ N define

[n] : A → A

as the (n − 1)-fold application of the addition ⊕ to the point P ∈ A. For n = 0 define [0] as
zero map, and for n < 0 define [n] := −[|n|]. By identifying n with [n] we get an injective
homomorphism of Z into EndK(A).

By definition [n] commutes with every element in EndK(A) and with GK and so lies in the
center of the GK-module EndK(A).

The kernel of [n] is finite if and only if n �= 0. Hence [n] is an isogeny for n �= 0. It is an
isomorphism if |n| = 1.

Definition 4.72 Let n ∈ N.

(i) The kernel of [n] is denoted by A[n].
(ii) The points in A[n] are called n-torsion points.

(iii) There exists a homogeneous ideal defined over K such that A[n](K) is the set of points
on A(K) at which the ideal vanishes. It is called the n-division ideal.

For the latter we recall that A is a projective variety with a fixed embedding into a projective space.
For elliptic curves (cf. Section 4.4.2.a) which are abelian varieties of dimension one the n-division

ideal is a principal ideal. The generating polynomial is called the n-division polynomial. We will
give the division polynomials explicitly in Section 4.4.5.a together with a recursive construction.

A fundamental result is

Theorem 4.73 The degree of [n] is equal to n2 dim(A). The isogeny [n] is separable if and only if n
is prime to char(K). In this case A[n](K) � (Z/nZ)2 dim(A). If n = ps with p = char(K) then
A[ps](K) = Z/ptsZ with t � dim(A) independent of s.

A proof of these facts can be found in [MUM 1974, p. 64].

Definition 4.74 Let p = char(K).

(i) The variety A is called ordinary if A[ps](K) = Z/ptsZ with t = dim(A).
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(ii) If A[ps](K) = Z/ptsZ then the abelian variety A has p-rank t.

(iii) If A is an elliptic curve, i.e., an abelian variety of dimension 1 (cf. Section 4.4.2.a), it is
called supersingular if it has p-rank 0.

(iv) The abelian variety A is supersingular if it is isogenous to a product of supersingular
elliptic curves.

Remark 4.75 If an abelian variety A is supersingular then it has p-rank 0. The converse is only true
for abelian varieties of dimension � 2.

Corollary 4.76 Let ϕ be an isogeny from A to B of degree n =
∏t

i=1 �ki

i with �i primes.

(i) There is a sequence ϕi of isogenies from abelian varieties Ai to Ai+1 with A1 = A and
At+1 = B with deg(ϕi) = �ki

i and ϕ = ϕt ◦ ϕt−1 ◦ · · · ◦ ϕ1.

(ii) Assume that n is prime to char(K). Let Bn = ϕ
(
A[n](K)

)
. Then Bn is GK-invariant,

B/Bn is isomorphic to A and πBn ◦ ϕ = [n].
(iii) If A is ordinary then taking ϕ = φp

[p] = φp ◦ πA[p] = πφp(A[p]) ◦ φp.

Example 4.77 Assume that K = Fp and that A is an ordinary abelian variety over K . Then there
is a uniquely determined separable endomorphism V p ∈ EndK(A) called Verschiebung with

[p] = φp ◦ V p = V p ◦ φp

of degree pdim(A), where φp is the absolute Frobenius endomorphism

Corollary 4.78 Let � be a prime different from char(K) and k ∈ N. Then

[�]A[�k+1] = A[�k].

We can interpret this result in the following way: the collection of groups

. . .A[�k+i], . . . ,A[�k], . . .

forms a projective system with connecting maps [�i] and so we can form their projective limit
lim←− A[�k]. The reader should recall that the system with groups Z/�kZ has as projective limit
the �-adic integers Z� (cf. Chapter 3). In fact there is a close connection:

Definition 4.79 Let � be a prime different from char(K). The �-adic Tate module of A is

T�(A) := lim←−A[�k].

Corollary 4.80 The Tate module T�(A) is (as Z�-module) isomorphic to Z2 dim(A)
� .

4.3.6 Background on ������-adic representations

The torsion points and the Tate modules of abelian varieties are used to construct most impor-
tant representations. The basic fact provided by Proposition 4.73 is that for all n ∈ N prime to
char(K) the groups A[n](K) are free Z/nZ-modules and for primes � different from char(K)
the Tate modules T�(A) are free Z�-modules each of them having rank equal to 2 dim(A). Hence
AutK(A[n]), respectively AutZ�

(
T�(A)

)
, can be identified (by choosing bases) with the group
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of invertible 2 dim(A) × 2 dim(A)-matrices over Z/nZ, respectively Z�. Likewise one can iden-
tify EndK(A[n]) and EndZ�

(
T�(A)

)
with the 2 dim(A) × 2 dim(A)-matrices over Z/nZ or Z�,

respectively.

The first type of these representations relates the arithmetic of K to the arithmetic of A via Galois
theory. This will become very important in the case that K is a finite field or a finite algebraic
extension of either Q or a p-adic field Qp.

The Galois action of GK on A(K) maps A[�k] into itself and extends in a natural way to T�(A).
Hence both the groups of points in A[n] and in T�(A) carry the structure of a GK -module and so
they give rise to representations of GK .

Definition 4.81 For a natural number n prime to char(K) the representation induced by the action
of GK on A[n] is denoted by ρA, n.

For primes � prime to char(K) the representation induced by the action on T�(A) is denoted by
ρ̃A, � and is called the �-adic Galois representation attached to A.

Second, we take ϕ ∈ EndK(A). It commutes with [n] for all natural numbers and so it operates
on T�(A) continuously with respect to the �-adic topology. Let T�(ϕ) denote the corresponding
element in EndZ�

(
T�(A)

)
.

With the results about abelian varieties we have mentioned already, it is not difficult to see that
the set of points of �-power order in A(K) is Zariski-dense, i.e., the only Zariski-closed subvariety
of A containing all points of �-power order is equal to A itself.

It follows that T�(ϕ) = 0 if and only if ϕ = 0 and so we get an injective homomorphism T� from
EndK(A) into EndZ�

(
T�(A)

)
.

Much deeper and stronger is the following result:

Theorem 4.82 We use the notation from above. The Tate module, T� induces a continuous Z�-
module monomorphism, again denoted by T�, from EndZ�

(
T�(A)

)
⊗Z Z� into EndZ�

(
T�(A)

)
.

For the proof see [MUM 1974, pp. 176].

It follows that EndK(A) is a free finitely generated Z-module of rank �
(
2 dim(A)

)2
and so

EndK(A) ⊗ Q is a finite dimensional semisimple algebra over Q. There is an extensive theory
about such algebras and a complete classification. For more details see again [MUM 1974, pp.
193].

Moreover we can associate to ϕ the characteristic polynomial

χ
(
T�(ϕ)

)
(T ) := det

(
T − T�(ϕ)

)
,

which is a monic polynomial of degree 2 dim(A) with coefficients in Z� by definition.
But here another fundamental result steps in:

Theorem 4.83 The characteristic polynomial χ
(
T�(ϕ)

)
(T ) does not depend on the prime number

� and has coefficients in Z, hence it is a monic polynomial of degree 2 dim(A) in Z[T ].

For the proof see [MUM 1974, p. 181].
Because of this result the following definition makes sense.

Definition 4.84 Let ϕ be an element in EndK(A). The characteristic polynomial χ(ϕ)A(T ) is
equal to the characteristic polynomial of T�(ϕ) for any � different from char(K).

Corollary 4.85 We get
deg(ϕ) = χ(ϕ)A(0)
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and more generally
deg([n] − ϕ) = χ(ϕ)A(n).

For n prime to char(K) the restriction of ϕ to A[n] has the characteristic polynomial

χ(ϕ)A(T ) (mod n).

There is an important refinement of Theorem 4.82 taking into account the Galois action. As seen GK

is mapped into EndZ�

(
T�(A)

)
by the representation ρ̃A, �. By definition the image of T� commutes

with the image of ρ̃A, � and hence we get:

Corollary 4.86 Moving to the Tate module T� induces a map from EndK(A) to EndZ�[GK ]

(
T�(A)

)
.

Example 4.87 Let K = Fp and let A be an abelian variety defined over K .
The Frobenius automorphism of K has a Galois �-adic representation ρ̃A, �(φp) and a representa-

tion as endomorphism of A in EndZ�

(
T�(A)

)
. By the very definition both images in EndZ�

(
T�(A)

)
coincide.

It follows that the endomorphism φp attached to the Frobenius automorphism of K commutes
with every element in EndK(A).

Moreover its characteristic polynomial χ(φp)A(T ) is equal to the characteristic polynomial of
ρ̃A, �(φp) for all � prime to char(K).

For n prime to char(K), the kernel of [n] − φp has order χ(φp)A(n).

4.3.7 Complex multiplication

The results of the section above are the key ingredients for the study of EndK(A).
For instance, it follows for simple abelian varieties A that a maximal subfield F of EndK(A)⊗Q

is a number field of degree at most 2 dim(A) overQ, cf. [MUM 1974, p. 182].

Definition 4.88 A simple abelian variety A over K has complex multiplication if EndK(A) ⊗ Q
contains a number field F of degree 2 dim(A) overQ.

If an F of this maximal degree exists then it has to be a field of CM-type. That means that it is a
quadratic extension of degree 2 of a totally real field F0 (i.e., every embedding of F0 into C lies in
R), and no embedding of F into C is contained in R. Therefore, F = EndK(A) ⊗Q.
If K is a field of characteristic 0 we get more:

Proposition 4.89 Let K be a field of characteristic 0. Let A be a simple abelian variety defined
over K with complex multiplication. Then EndK(A) ⊗ Q is equal to a number field F of degree
2 dim(A) which is of CM-type. The ring EndK(A) is an order (cf. Definition 2.81) in F .

Example 4.90 Let K be a field of characteristic 0 and let E be an elliptic curve over K (cf. Sec-
tion 4.4.2.a). Then either EndK(E) = {[n] | n ∈ Z} or E has complex multiplication and
EndK(E) is an order in an imaginary quadratic field. In either case the ring of endomorphisms
of E is commutative.

The results both of the proposition and of the example are wrong if char(K) > 0.
For instance, take a supersingular curve E defined over a finite field Fp2 (cf. Definition 4.74).

Then the center of EndFp2 (E)⊗Q is equal to Q, and EndFp2 (E) ⊗Q is a quaternion algebra over
an imaginary quadratic number field F (in fact there are infinitely many such quadratic number
fields). Hence E has complex multiplication but EndFp2 (E) ⊗ Q is not commutative and not an
order in F .
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Remark 4.91 For elliptic curves (cf. Section 4.4.2.a) it is a strong requirement to have complex
multiplication. If K has characteristic 0 we shall see that E has to be defined over a number field
K0, and its absolute invariant jE which will be defined in Corollary 4.118 has to be an algebraic
integer in K0 (satisfying more conditions as we shall see in Theorem 5.47).

If char(K) = p > 0 a necessary condition is that jE lies in a finite field. After at most a quadratic
extension of K this condition becomes sufficient.

4.4 Arithmetic of curves

From now on we concentrate on curves.

4.4.1 Local rings and smoothness

Definition 4.92 Let P be a point on an affine curve C. The set of rational functions that are regular
at P form a subring OP of K(C).

In fact, OP is a local ring with maximal ideal

mP = {f ∈ OP | f(P ) = 0}.

It is called the local ring of P .
The residue field of P is defined as OP /mP .

One has K(P ) = OP /mP , hence, deg(P ) = [K(P ) : K].
For S ⊂ C define OS :=

⋂
P∈S OP . It is the ring of regular functions on S. If S is closed then

OS is the localization of K[C] with respect to the ideal defining S.
A rational function r on C is a morphism if and only if r ∈ OC = K[C].
For a projective curve, the ring of rational functions on C that are regular at P is equal to OP ,

the local ring of P in a nonempty affine part of C.

Definition 4.93 Let P ∈ C for a projective curve C. The point P is nonsingular if OP is integrally
closed in K(C). Otherwise the point is called singular. A curve is called nonsingular or smooth if
every point of C(K) is nonsingular.

A smooth curve satisfies that K[Ca] is integrally closed in K(C) for any choice of Ca. If C is
projective but not smooth we take an affine covering Ci and define C̃i as affine curve corresponding
to the integral closure of K[Ci]. By the uniqueness of the integral closure we can glue together the
curves C̃i to a projective curve C̃ called the desingularization of the curve C. Note that in general
even for C a plane curve, C̃ shall not be plane.

There is a morphism ϕ : C̃ → C that is a bijection on the nonsingular points of C. Hence
projective smooth curves that are birationally equivalent are isomorphic.

Therefore, irreducible projective nonsingular curves are in one-to-one correspondence to function
fields of dimension 1 over K .

To have a criterion for smoothness that can be verified more easily we restrict ourselves to affine
parts of curves.

Lemma 4.94 (Jacobi criterion) Let Ca ⊆ An be an affine curve, let f1, . . . , fd ∈ K[x] be gener-
ators of I(Ca), and let P ∈ Ca(K). If the rank of the matrix

(
(∂fi/∂xj)(P )

)
i,j

is n − 1 then the
curve is nonsingular at P .
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Using this lemma one can show that there are only finitely many singular points on a curve.
For a nonsingular point P the dimension of mP /m2

P is one. Therefore, the local ring OP is a
discrete valuation ring.

Definition 4.95 Let C be a curve and P ∈ C be nonsingular. The valuation at P on OP is given by

vP : OP → {0, 1, 2, . . .} ∪ {∞}, vP (f) = max{i ∈ Z | f ∈ mi
P }.

The valuation is extended to K(C) by putting vP (g/h) = vP (g) − vP (h). The value group of vP

is equal to Z.
The valuation vP is a non-archimedean discrete normalized valuation (cf. Chapter 3).
A function t with v(t) = 1 is called uniformizer for C at P .

Let P1 and P2 be nonsingular points. Then vP1 = vP2 if and only if P1 ∈ GK · P2.

Example 4.96 Let C = P1/K and choose P ∈ A1. Let f ∈ K(x). The value vP (f) of f at
P = (a) ∈ K equals the multiplicity of a as a root of f . If a is a pole of f , the pole-multiplicity is
taken with negative sign as it is the zero-multiplicity of 1/f .

This leads to a correspondence of Galois orbits of nonsingular points of C to normalized valua-
tions of K(C) that are trivial on K . For a nonsingular curve this is even a bijection. Namely, to
each valuation v of K(C) corresponds a local ring defined by Ov := {f ∈ K(C) | v(f) � 0}
with maximal ideal mv. If C is smooth, there exists a maximal ideal Mv ⊂ K[Ca], where Ca is
chosen such that K[Ca] ⊂ Ov , satisfying Ov = Op. Over the algebraic closure there exist points
P1, . . . , Pd such that Ov equals OPi and the Pi form an orbit under GK . The degree of Mv is
[K[Ca]/Mv : K] = [Ov/mv : K]. It is equal to the order of GK · Pi of one of the corresponding
points on C.

Two valuations of v1, v2 of K(C) are called equivalent if there exists a number c ∈ R>0 with
v1 = cv2.

Definition 4.97 The equivalence class of a valuation v of K(C) which is trivial on K is called a
place p of K(C). The set of places of F/K is denoted by ΣF/K .

In every place there is one valuation with value group Z. It is called the normalized valuation of
p and denoted by vp.

We have seen:

Lemma 4.98 Let F/K be a function field and let C/K be a smooth projective absolute irreducible
curve such that F � K(C) with an isomorphism ϕ fixing each element of K .

There is a natural one-to-one correspondence induced by ϕ between the places of F/K and the
Galois orbits of points on C.

Example 4.99 Consider the function field K(x1) with associated smooth curve P1/K and affine
coordinate ring K[x1]. The normalized valuations in ΣK(C)/K for which the valuation ring contains
K[x1] correspond one-to-one to the irreducible monic polynomials in K[x1]. There is one additional
valuation with negative value at x1, called v∞, which is equal to the negative degree valuation,
corresponding to the valuation at p∞(t) = t in K[t] = K[1/x1]. Geometrically v∞ corresponds to
P1�A1.
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4.4.2 Genus and Riemann–Roch theorem

We want to define a group associated to the points of a curve C.

Definition 4.100 Let C/K be a curve. The divisor group DivC of C is the free abelian group over
the places of K(C)/K . An element D ∈ DivC is called a divisor. It is given by

D =
∑

pi∈ΣK(C)/K

nipi,

where ni ∈ Z and ni = 0 for almost all i.
The divisor D is called a prime divisor if D = p with p a place of K(C)/K .
The degree deg(D) of a divisor D is given by

deg : DivC → Z

D �→ deg(D) =
∑

pi∈ΣK(C)/K

ni deg(pi).

A divisor is called effective if all ni � 0. By E � D one means that E − D is effective.
For D ∈ DivC put

D0 =
∑

pi∈ΣK(C)/K
ni�0

nipi and D∞ =
∑

pi∈ΣK(C)/K
ni�0

−nipi,

thus D = D0 − D∞.

Recall that over K each place pi corresponds to a Galois orbit of points on the projective nonsingular
curve attached to K(C). Thus, D can also be given in the form

D =
∑

Pi∈C

niPi

with ni ∈ Z, almost all ni = 0 and ni = nj if Pi ∈ Pj · GK .
Assume now that C is absolutely irreducible. Then we can make a base change from K to K. As

a result we get again an irreducible curve C · K (given by the same equations as C but interpreted
over K) with function field K(C) · K.

Applying the results from above we get

DivC·K =
{∑

Pi∈C

niPi

}

with ni ∈ Z and almost all ni = 0. For all fields L between K and K the Galois group GL operates
by linear extension of the operation on points.

Proposition 4.101 Assume that C/K is a projective nonsingular absolutely irreducible curve. Let
L be a field between K and K and denote by DivC·L the group of divisors of the curve over L
obtained by base change from K to L. Then

DivC·L = {D ∈ DivC·K | σ(D) = D, for all σ ∈ GL}.

Especially: DivC = DivGK

C·K .
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Important examples of divisors of C are associated to functions. We use the relation between nor-
malized valuations of K(C) which are trivial on K and prime divisors.

Definition 4.102 Let C/K be a curve and f ∈ K(C)∗. The divisor div(f) of f is given by

div : K(C) → DivC

f �→ div(f) =
∑

pi∈ΣK(C)/K

vpi(f)pi.

A divisor associated to a function is called a principal divisor. The set of principal divisors forms a
group PrincC .

We have a presentation of div(f) as difference of effective divisors as above:

div(f) = div(f)0 − div(f)∞.

The points occurring in div(f)0 (resp. in div(f)∞) with nonzero coefficient are called zeroes (resp.
poles) of f .

Example 4.103 Recall the setting of Example 4.99 for the curve C = P1. Since polynomials of
degree d over fields have d zeroes (counted with multiplicities) over K we get immediately from
the definition:

deg(f) = 0, for all f ∈ K(x1)∗.

Now let C be arbitrary. Take f ∈ K(C)∗. For constant f ∈ K∗ the divisor is div(f) = 0.
Otherwise K(f) is of transcendence degree 1 over K and can be interpreted as function field of
the projective line (with affine coordinate f ) over K . By commutative algebra (cf. [ZASA 1976])
we learn about the close connection between valuations in K(f) and K(C), the latter being a finite
algebraic extension of K(f). Namely, div(f)∞ is the conorm of the negative degree valuation on
K(f) and hence has degree [K(C) : K(f)] (cf. [STI 1993, p. 106]).

Since div(f)0 = div(f−1)∞ we get:

Proposition 4.104 Let C be an absolutely irreducible curve with function field K(C) and f ∈
K(C)∗.

(i) deg
(
div(f)0

)
= 0 if and only if f ∈ K∗.

(ii) If f ∈ K(C)�K then [K(C) : K(f)] = deg
(
div(f)∞

)
= deg

(
div(f)0

)
.

(iii) For all f ∈ K(C)∗ we get: deg
(
div(f)

)
= 0.

So the principal divisors form a subgroup of the group Div0
C of degree zero divisors.

To each divisor D we associate a vector space consisting of those functions with pole order at
places pi bounded by the coefficients ni of D.

Definition 4.105 Let D ∈ DivC . Define

L(D) := {f ∈ K(C) | div(f) � −D}.

It is not difficult to see that L(D) is a finite dimensional K-vector space. Put �(D) = dimK

(
L(D)

)
.

The Theorem of Riemann–Roch gives a very important connection between deg(D) and �(D).
We give a simplified version of this theorem, which is sufficient for our purposes. The interested

reader can find the complete version in [STI 1993, Theorem I.5.15].
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Theorem 4.106 (Riemann–Roch) Let C/K be an absolutely irreducible curve with function field
K(C). There exists an integer g � 0 such that for every divisor D ∈ DivC

�(D) � deg(D) − g + 1.

For all D ∈ DivC with deg(D) > 2g − 2 one even has equality �(D) = deg(D) − g + 1.

Definition 4.107 The number g from Theorem 4.106 is called the genus of K(C) or the geometric
genus of C. If C is projective nonsingular then g is called the genus of C.

The Riemann–Roch theorem guarantees the existence of functions with prescribed poles and zeroes
provided that the number of required zeroes is at most 2g−2 less than the number of poles. Namely,
if ni > 0 at pi then f ∈ L(D) is allowed to have a pole of order at most ni at pi. Vice versa a
negative ni requires a zero of multiplicity at least ni at pi.

As an important application we get:

Lemma 4.108 Let C/K be a nonsingular curve and let D =
∑

nipi be a K-rational divisor of C
of degree � g. Then there is a function f ∈ K(C) which has poles of order at most ni (hence zeroes
of order at least −ni if ni < 0) in the points Pi ∈ C corresponding to pi and no poles elsewhere. In
other words: the divisor D + (f) is effective.

Example 4.109 For the function field K(x1), Lagrange interpolation allows to find quotients of
polynomials for any given zeroes and poles. This leads to �(D) = deg(D) + 1. The curve P1/K
has genus 0.

The Hurwitz genus formula relates the genus of algebraic extensions F ′/F/K . It is given in a
special case in the following theorem (cf. [STI 1993, Theorem III.4.12] for the general case).

Theorem 4.110 (Hurwitz Genus Formula) Let F ′/F be a tame finite separable extension of alge-
braic function fields having the same constant field K . Let g (resp. g′) denote the genus of F/K
(resp. F ′/K). Then

2g′ − 2 = [F ′ : F ](2g − 2)
∑

p∈ΣF/K

∑
p′|p

(
e(p′|p) − 1

)
deg(p′).

One of the most important applications of the Riemann–Roch theorem is to find affine equations for
a curve with given function field. We shall demonstrate this in two special cases which will be the
center of interest later on.

4.4.2.a Elliptic curves

Definition 4.111 A nonsingular absolutely irreducible projective curve defined over K of genus 1
with at least one K-rational point is called an elliptic curve.

Let C be such a smooth absolutely irreducible curve of genus 1 with at least one K-rational point
P∞ and let F/K be its function field. As �(P∞) = 1 we have thus L(P∞) = K .

Theorem 4.106 guarantees �(2P∞) = 2, hence there exists a function x ∈ F such that {1, x} is a
basis of L(2P∞) over K . There also exists y ∈ F such that {1, x, y} is a basis of L(3P∞) over K .
We easily find that {1, x, y, x2} is a basis of L(4P∞) and that L(5P∞) has basis {1, x, y, x2, xy}.

The space L(6P∞) ⊃ 〈{1, x, y, x2, xy, x3, y2}〉 has dimension six, hence there must be a linear
dependence between these seven functions. In this relation y2 has to have a nontrivial coefficient
a. By multiplying the relation with a and by replacing y by a−1y we can assume that a = 1. The
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function x3 has to appear nontrivially, too, with some coefficient b. Multiply the relation by b2 and
replace x by b−1x, y by b−1y. Then the coefficients of y2 and x3 are equal to 1 and we get a relation

y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6, ai ∈ K.

This is the equation of an absolutely irreducible plane affine curve. It is a fact (again obtained by
the use of the theorem of Riemann–Roch) that this curve is smooth.

The projective closure C of C is given by

Y 2Z + a1XY Z + a3Y Z2 − X3 − a2X
2Z − a4XZ2 − a6Z

3, ai ∈ K

with plane projective coordinates (X : Y : Z). One sees at once that C �C = {(0 : 1 : 0)} and
that P∞ := (0 : 1 : 0) is smooth. Hence C is a nonsingular absolutely irreducible plane projective
curve of genus 1.

Again by using the Riemann–Roch theorem one can prove that the converse holds, too. The projec-
tive curve given by

Y 2Z + a1XY Z + a3Y Z2 − X3 − a2X
2Z − a4XZ2 − a6Z

3, ai ∈ K

is a curve of genus 1 if and only if it is smooth.
We have seen that the Riemann–Roch theorem yields

Theorem 4.112 A function field F/K of genus 1 with a prime divisor of degree 1 is the function
field of an elliptic curve E. This curve is isomorphic to a smooth plane projective curve given by a
Weierstraß equation

E : Y 2Z + a1XY Z + a3Y Z2 − X3 − a2X
2Z − a4XZ2 − a6Z

3, ai ∈ K.

A plane nonsingular affine part Ea of E is given by

y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6, ai ∈ K.

E�Ea consists of one point with homogeneous coordinates (0 : 1 : 0).

Conversely nonsingular curves given by equations

E : Y 2Z + a1XY Z + a3Y Z2 − X3 − a2X
2Z − a4XZ2 − a6Z

3, ai ∈ K

have function fields of genus 1 with at least one prime divisor of degree 1 and so are elliptic curves.

In the remainder of the book E will be a standard notation for an elliptic curve given by a Weierstraß
equation, and we shall often abuse notation and denote by E the affine part Ea, too. Since elliptic
curves are one of the central topics of this book we use the opportunity to study their equations in
more detail.

Short normal forms and invariants

Let E be an elliptic curve defined over K with affine Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

We shall simplify this equation under assumptions about the characteristic of K . To achieve this we
shall map (x, y) to (x′, y′) by invertible linear transformations. These transformations correspond
to morphisms of the affine part of E to the affine part of another elliptic curve E′, and since the
infinite point remains unchanged we get an isomorphism between E and E′. Having done the
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transformation we change notation and denote the transformed curve by E with coordinates (x, y)
again.
First assume that the characteristic of K is odd. We make the following transformations

x �→ x′ = x and y �→ y′ = y +
1
2

(
a1x +

a3

2

)
·

The equation of E expressed in the coordinates (x′, y′) and then, following our convention to change
notation and to write x for x′ and y for y′ is:

E : y2 = x3 +
b2

4
x2 +

b4

2
x +

b6

4
where b2 = a2

1 + 4a2, b4 = 2a4 + a1a3 and b6 = a2
3 + 4a6.

Now we assume in addition that the characteristic of K is prime to 6. We transform

x �→ x′ = x +
b2

12
and y �→ y′ = y

and — applying our conventions — get the equation

E : y2 = x3 − c4

48
x − c6

864
,

where c4 and c6 are expressed in an obvious way in terms of b2, b4, b6 as

c4 = b2
2 − 24b4 and c6 = −b3

2 + 36b2b4 − 216b6.

So if char(K) is prime to 6, we can always assume that an elliptic curve is given by a short Weier-
straß equation of the type

y2 = x3 + a4x + a6.

Next we have to decide which Weierstraß equations define isomorphic elliptic curves. We can and
will restrict ourselves to isomorphisms that fix the point at infinity, i.e., we fix one rational point on
E or equivalently we fix one place of degree 1 in the function field of E, which is the place P∞
used when we derived the equation in Section 4.4.2.a.

To make the discussion not too complicated we shall continue to assume that the characteristic of
K is prime to 6 and so we have to look for invertible transformations of the affine coordinates for
which the transformed equation is again a short Weierstraß equation.

So let E be given by
E : y2 = x3 + a4x + a6.

One sees immediately that the conditions imposed on the transformations imply

x �→ x′ = u−2x and y �→ y′ = u−3y

with u ∈ K∗, and that the resulting equation is

E′ : y′2 = x′3 + u4a4x + u6a6.

Proposition 4.113 Assume that the characteristic of K is prime to 6 and let E be an elliptic curve
defined over K . Let E be given by a short Weierstraß equation

E : y2 = x3 + a4x + a6.

• If a4 = 0 then the coefficient of x is equal to 0 in all short Weierstraß equations for E,
and a6 is determined up to a sixth power in K∗.

• If a6 = 0 then the absolute term in all short Weierstraß equations for E is equal to 0 and
a4 is determined up to a forth power in K∗.

• If a4a6 �= 0 then a6/a4 is determined up to a square in K∗.
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Conversely:

• If a4 = 0 then E is isomorphic to E′ if in a short Weierstraß form of E′ the coefficient
a′
4 of x is equal to 0 and a′

6/a6 is a sixth power in K∗.
• If a6 = 0 then E is isomorphic to E′ if in a short Weierstraß form of E′ the absolute

term is equal to 0 and a′
4/a4 is a fourth power in K∗.

• If a4a6 �= 0 then E is isomorphic to E′ if in a short Weierstraß form of E′ we have:
there is an element v ∈ K∗ with a′

4 = v2a4 and a′
6 = v3a6.

Corollary 4.114 Assume that the characteristic of K is prime to 6 and let E be given by a short
Weierstraß equation

E : y2 = x3 + a4x + a6.

• If a4 = 0 then for every a′
6 ∈ K∗ the curve E is isomorphic to

E′ : y2 = x3 + a′
6 over K

(
(a6/a′

6)
1/6
)
.

• If a6 = 0 then for every a′
4 ∈ K∗ the curve E is isomorphic to

E′ : y2 = x3 + a′
4x over K

(
(a4/a′

4)
1/4
)
.

• If a4a6 �= 0 then for every v ∈ K∗ the curve E is isomorphic to

Ẽv : y2 = x3 + a′
4x + a′

6 with a′
4 = v2a4 and a′

6 = v3a6 over K(
√

v).

The curves occurring in the Corollary are called twists of E. The curves Ẽv are called quadratic
twists of E. Note that E is isomorphic to Ẽv over K if and only if v is a square in K∗. Therefore
up to isomorphisms there is only one quadratic twist of a curve with a4a6 �= 0.

We want to translate the results of the proposition and of the lemma into “invariants” of E that
can be read off from any Weierstraß equation.

Recall that a crucial part of the definition of elliptic curves was that the affine part has no singular
points. This is translated into the condition that the discriminant of the equation of E is not equal to
0. This discriminant is a polynomial in the coefficients ai, which is particularly easy to write down
if we have a short Weierstraß equation. So let E be given by

E : y2 = x3 + a4x + a6 := f(x).

Definition 4.115 The discriminant ∆E of E is equal to the polynomial discriminant of f(x) which
is (up to a sign) the product of the differences of the zeroes of f(x), which we endow with a constant
for historical reasons:

∆E = −16(4a3
4 + 27a2

6).

We note that this definition is to be taken with caution: it depends on the chosen Weierstraß equation
and not only on the isomorphism class of E. To make the discriminant well defined we have to
consider it modulo 12-th powers in K∗.

To get an invariant of the isomorphism class of E we use the transformations of a4, a6, and ∆E

under transformations of Weierstraß forms.

Definition 4.116 The absolute invariant (sometimes called j-invariant) jE of E is defined by

jE = 123−4a3
4

∆E
.
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Lemma 4.117 Assume that the characteristic of K is prime to 6 and let E be given by a short
Weierstraß equation

E : y2 = x3 + a4x + a6.

The absolute invariant jE depends only on the isomorphism class of E.

(i) We have jE = 0 if and only if a4 = 0.

(ii) We have jE = 123 if and only if a6 = 0.

(iii) If j ∈ K is not equal to 0, 123 then E is a quadratic twist of the elliptic curve

Ej : y2 = x3 − 27j

4(j − 123)
x +

27j

4(j − 123)
·

Corollary 4.118 Assume that the characteristic of K is prime to 6. The isomorphism classes of
elliptic curves E over K are, up to twists, uniquely determined by the absolute invariants jE , and
for every j ∈ K there exists an elliptic curve with absolute invariant j.

If K is algebraically closed then the isomorphism classes of elliptic curves over K correspond
one-to-one to the elements in K via the map E �→ jE .

Of course it is annoying that we have to restrict ourselves to fields whose characteristic is prime to 6.
In fact this is not necessary at all; completely analogous discussions can be done for characteristics
2 and 3 and can be found in [SIL 1986] and also in Chapter 13.

We give a very short sketch of the discussions there.
We start with a general Weierstraß equation for E over a field with odd characteristic.

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

and recall the definitions of b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6, and c4 = b2
2 − 24b4.

In addition we define

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4.

Definition 4.119 The discriminant of E is

∆E := −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

and the absolute invariant of E is
jE = c3

4/∆E .

If the characteristic of K is equal to 2 one also finds normal forms for E (cf. Section 13.3). Either
a1 = 0 and then jE := 0. Otherwise we can find an equation for E with a3 = a4 = 0 and a1 = 1.
Then jE = a−1

6 .
We summarize the definitions in Table 4.1. Using these extra considerations one easily sees

that the conclusions of Corollary 4.118 hold without any restrictions about the characteristic of the
ground field.

Theorem 4.120 Let K be a field. The isomorphism classes of elliptic curves E over K are, up
to twists, uniquely determined by the absolute invariants jE , and for every j ∈ K there exists an
elliptic curve E with absolute invariant jE = j.

If K is algebraically closed then the isomorphism classes of elliptic curves over K correspond
one-to-one to the elements in K via the map E �→ jE .
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Table 4.1 Short Weierstraß equations.

charK Equation ∆ j

�= 2, 3 y2 = x3 + a4x + a6 −16(4a3
4 + 27a2

6) 1728a3
4/4∆

3 y2 = x3 + a4x + a6 −a3
4 0

3 y2 = x3 + a2x
2 + a6 −a3

2a6 −a3
2/a6

2 y2 + a3y = x3 + a4x + a6 a4
3 0

2 y2 + xy = x3 + a2x
2 + a6 a6 1/a6

4.4.2.b Hyperelliptic curves

Definition 4.121 A nonsingular curve C/K of genus g > 1 is called a hyperelliptic curve if the
function field K(C) is a separable extension of degree 2 of the rational function field K(x) for some
function x. Let ω denote the nontrivial automorphism of this extension. It induces an involution ω∗
on C with quotient P1. The fixed points P1, . . . , P2g+2 of ω∗ are called Weierstraß points.

From a geometrical point of view, C is a hyperelliptic curve if there exists a generically étale
morphism π of degree 2 to P1. The Weierstraß points are exactly the points in which π is ramified.

Classically, elliptic curves are not subsumed under hyperelliptic curves. The main difference is that
for g > 1 the rational subfield of index 2 is unique. That implies that the function x is uniquely
determined up to transformations

x �→ ax + b

cx + d
with a, b, c, d ∈ K and ad − bc �= 0.

For elliptic curves this is wrong. If, for instance, K is algebraically closed then there exist infinitely
many rational subfields of index 2. In this book we will often consider elliptic curves as hyperelliptic
curves of genus one since most of the arithmetic properties we are interested in are the same.

We now use the Riemann–Roch theorem to find an equation describing a plane affine part of C.
The definition implies that there exists a divisor D of degree 2, which is the conorm of the

negative degree valuation on K(x) (cf. [STI 1993, p. 106]).
From the construction we have that L(D) has basis {1, x} and, hence, �(D) = 2. For 1 � j � g

we have that �(jD) � 2j and the elements {1, x, . . . , xj} are linearly independent in L(jD). As
deg
(
(g + 1)D

)
= 2(g + 1) > 2g − 2, Theorem 4.106 implies that

�
(
(g + 1)D

)
= deg

(
(g + 1)D

)
− g + 1 = g + 3.

Hence, besides the g+2 elements 1, x, . . . , xg+1 there must be a (g+3)-th function y ∈ L
(
(g+1)D

)
independent of the powers of x.

Therefore, y �∈ K[x]. The space L
(
2(g + 1)D

)
has dimension 3g + 3. It contains the 3g + 4

functions
1, x, . . . , xg+1, y, xg+2, xy, . . . , x2(g+1), xg+1y, y2.

Therefore there must exist a linear combination defined over K among them. In this relation y2

has to have some nontrivial coefficient a as y �∈ K[x]. By multiplying the relation with a and by
replacing y by a−1y we can assume that a = 1.

This leads to an equation

y2 + h(x)y = f(x), h(x), f(x) ∈ K[x],

where deg(h) � g + 1 and deg(f) � 2g + 2.
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To determine the exact degrees we use the Hurwitz genus formula stated in Theorem 4.110. In our
case [K(C) : K(x)] = 2 and thus e(p′|p) � 2. To simplify we shall assume that the characteristic
of K is odd. After applying the usual transformation y �→ y−h(x)/2 we can assume that h(x) = 0.
Then the fixed points of ω∗ are points with y-coordinate equal to 0 or are points lying over x = ∞.
The latter case occurs if and only if D is a divisor of the form 2P∞, i.e., if there is only one point
P∞ lying over ∞ on the nonsingular curve with function field K(C). Moreover the x-coordinates
of these points correspond to the places of K(x) which ramify in the extension K(C)/K(x).

By the genus formula the number of the ramified points has to be equal to 2g + 2. Hence f(x)
has to have 2g+2 different zeroes if ∞ is not ramified, and 2g +1 different zeroes if ∞ is ramified.
As a result we get: the degree of f(x) is equal to 2g + 2 if D = P1 + P2 with different P1, P2 and
equal to 2g + 1 if D = 2P∞, and f(x) has no double zeroes.

Moreover the affine curve given by the equation

Ca : y2 + h(x)y = f(x), h(x), f(x) ∈ K[x]

is nonsingular.

Theorem 4.122 A function field F/K of genus g > 1 with an automorphism ω∗ of order 2 with
rational fixed field is the function field of a plane affine curve given by an equation

C : y2 + h(x)y = f(x), h(x), f(x) ∈ K[x], (4.1)

where 2g + 1 � deg f � 2g + 2 and deg h � g + 1 without singularities.
Conversely the nonsingular projective curve birationally isomorphic to an affine nonsingular

curve given by an equation of this type is a hyperelliptic curve of genus g.

The homogenized equation has a singularity at infinity exactly if there is a single point in π−1(∞)
and then the degree of f(x) is equal to 2g + 1. In this case we can achieve a monic f . Let b be the
leading coefficient. Multiplying the equation by b2g and replacing y �→ y/bg, x �→ x/b2 we obtain

Ca : y2 + h(x)y = f(x) with h(x), f(x) ∈ K[x], deg(f) = 2g + 1, deg(h) � g and f monic.

In the sequel we shall always characterize hyperelliptic curves by their affine plane parts and assume
them given by equations of the form (4.1).

Short Weierstraß equations

Later on we shall concentrate on the case that deg(f) = 2g + 1, i.e., curves having a K-rational
Weierstraß point. In this case we can simplify the equations analogously to the case of elliptic
curves. We distinguish between the case of K having odd or even characteristic.

Let C be a hyperelliptic curve of genus g defined over a field of characteristic �= 2 by an equation
of the form (4.1) with deg(f) = 2g+1. The transformation y �→ y−h(x)/2 leads to an isomorphic
curve given by

C : y2 = f(x), f ∈ K[x] and deg(f) = 2g + 1. (4.2)

The Jacobi criterion (cf. Lemma 4.94) states that C is nonsingular if and only if no point on the
curve satisfies both partial derivative equations 2y = 0 and f ′(x) = 0. The points with y = 0 are
just the points Pi = (xi, 0), where f(xi) = 0. The second condition shows that the singular points
are just the Weierstraß points for which the first coordinate is a multiple root of f . Therefore, a
necessary and sufficient criterion for (4.2) to be nonsingular is that f has only simple roots over the
algebraic closure.

Let

f(x) = x2g+1 +
2g∑

i=0

fix
i.
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If additionally char(K) is coprime to 2g, the transformation x �→ x − f2g/(2g) allows to give

f(x) = x2g+1 + f2g−1x
2g−1 + · · · + f1x + f0 with fi ∈ K.

Let C be a hyperelliptic curve of genus g over a field of characteristic 2. Assume first that h(x) = 0,
i.e., y2 = f(x) like above.

The partial derivatives are 2y = 0 and f ′(x). Any of the 2g +1 roots xP of f ′ can be extended to
a point (xP , yP ) satisfying y2

P = f(xP ) and both partial derivatives. Hence, h(x) = 0 immediately
leads to a singular point and so we must have h(x) �= 0.

4.4.2.c Differentials

We shall now give another application of the theorem of Riemann–Roch. For this we have to
introduce differentials. We shall do this in the abstract setting of function fields. If the ground field
K is equal to C this concept coincides with the “usual” notion of differentials known from calculus.

Let K(C) be the function field of a curve C defined over K . To every f ∈ K(C) we attach a
symbol df , the differential of f lying in a K(C)-vector space Ω

(
K(C)

)
, which is the free vector

space generated by the symbols df modulo the following relations.
For f, g ∈ K(C) and λ ∈ K we have

(R1) d(λf + g) = λdf + dg

(R2) d(fg) = fdg + gdf.

Recall that a derivation of K(C) is a K-linear map

D : K(C) → K(C)

vanishing on K with
D(fg) = D(f)g + D(g)f.

Let x ∈ K(C) be such that K(C) is a finite separable extension of K(x). Then there is exactly one
derivation D of K(C) with D(x) = 1 (cf. [ZASA 1976]) call this derivation the partial derivative
with respect to x and denote the image of f ∈ K(C) under this derivation by ∂f/∂x.

The relation between derivations and differentials is given by the chain rule.

Lemma 4.123 (Chain rule) Let x be as above and f ∈ K(C). Then df = (∂f/∂x)dx.

Corollary 4.124 The K(C)-vector space of differentials Ω(K(C)) has dimension 1.
It is generated by dx for any x ∈ K(C) for which K(C)/K(x) is finite separable.

Let P be a point on C. Take a uniformizer for C at P , i.e., a function tP ∈ K(C) that generates
the maximal ideal MP of the place associated to P . So tP is a function that vanishes at P with
multiplicity 1. It follows that K(C)/K(tP ) is finite separable.

Let ω ∈ Ω
(
K(C)

)
be a differential of C. We attach a divisor div(ω) =

∑
P∈C nP P given

by the following recipe: for P ∈ C choose a uniformizer tP and express ω by ω = fP dtP with
fP ∈ K(C). Then

nP = vP (fP ).

Lemma 4.125 The sum div(ω) =
∑

P∈C nP P defines a divisor of C that is independent of the
choice of the uniformizers tP . The degree of div(ω) is equal to 2g − 2.

For a proof of the lemma see [STI 1993].
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Definition 4.126 A differential ω is holomorphic if div(ω) is an effective divisor.

The set of holomorphic differentials of C forms a K-vector space Ω0(K(C)).
A consequence of the Riemann–Roch theorem is:

Theorem 4.127 The K-vector space Ω0
(
K(C)

)
has dimension g.

Example 4.128 Let E be an elliptic curve defined over K and given by an affine Weierstraß equa-
tion G(x, y) = 0, where

G(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6, with ai ∈ K.

The differential 1/
(
∂G(x, y)/∂y

)
dx is holomorphic, and up to a multiplicative constant it is the

unique holomorphic differential of E. Note that it has neither poles nor zeroes.

4.4.3 Divisor class group

In this section we shall attach an abelian group to each nonsingular curve starting from the group of
divisors as defined in Section 4.4.2. This construction will give us an intimate relation between the
arithmetic of curves and abelian varieties.

Let C/K be an absolutely irreducible smooth projective curve. Let Div0
C denote the group of

K-rational divisors of C of degree 0.
Recall that principal divisors have degree zero and form a subgroup PrincC ⊆ Div0

C .

Definition 4.129 The divisor class group Pic0
C of C of degree zero is the quotient of the group of

degree zero divisors Div0
C by the principal divisors. It is also called the Picard group of C.

Hence, two divisors D1 and D2 are in the same class if there exists an f ∈ K(C) with div(f) =
D1 − D2.

Example 4.130 Let ω and ω′ be two differentials of C that are not equal to 0. Then div(ω) is in the
same class as div(ω′).

In contrast to the group of divisors, the divisor class group has many torsion elements. If the field
K is finite, it is even a finite group.

We now give an example of how to deal with torsion elements.

4.4.3.a Divisor classes of order equal to char(K)(K)(K)(K)(K)(K)

We assume that K is a field of characteristic p > 0. Let C be a projective absolutely irreducible
nonsingular curve of genus g defined over K . Let Pic0

C [p] be the group of divisor classes of C with
order dividing p.

In [SER 1958] we find the following result.

Proposition 4.131 There is a monomorphism α from Pic0
C [p] into Ω0(C), the K-vector space of

holomorphic differentials on C given by the following rule: choose a K-rational divisor D with
pD = div(f) where f is a function on C. Then the divisor class

__
D of D is mapped under α to the

holomorphic differential (1/f)df .

Note that (1/f)df is holomorphic since the multiplicity of the zeroes of f is divisible by p =
char(K). Next we choose a point P0 ∈ C(K). Let t be a uniformizer of C at P0 (i.e., t ∈ K(C)
with t(P0) = 0 and ∂f/∂t(P0) �= 0). We take (1/f)df as in the proposition and express it via the
chain rule in the form

(
(∂f/∂t)/f

)
dt. Let (a0, a1, . . . , a2g−2)(f) be the tuple whose coordinates
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are first coefficients of the power series expansion of (∂f/∂t)/f at P0 and assume that there is
another holomorphic differential hdt with h having the same power series expansion as (∂f/∂t)/f
modulo t2g−1. Then (1/f)df − hdt is a holomorphic differential whose divisor has a coefficient
� 2g− 1 at P0 and so its degree is � 2g − 1. But this implies that it is equal to 0 and so (1/f)df =
hdt.

Hence we get

Proposition 4.132 Let K be a field of characteristic p > 0 and C a curve of genus g defined over K .
For divisor classes

__
D ∈ Pic0

C [p] choose a divisor D ∈
__
D and take f ∈ K(C) with pD = div(f).

The map

Φ : Pic0
C [p] → K2g−1

__
D �→ (a0, a1, . . . , a2g−2)(f)

is an injective homomorphism.

Remark 4.133 For applications later on we shall be interested mostly in the case that K is a finite
field Fq. Moreover, computational aspects will become important. If we want to use Proposition
4.132 in practice to identify Pic0

C [p](Fq) with a subgroup of F2g−1
q we must be able to compute

the first coefficients of the power series expansion of (1/f)df at P0 fast. The problem is that the
degree of f can be very large. Nevertheless this can be done in polynomial time (depending on g
and lg q). The method is similar to the one we shall use later on for computing the Tate pairing (see
Chapter 16) and so we refer here to [RÜC 1999] for details.

4.4.4 The Jacobian variety of curves

We come back to a projective absolutely irreducible curve C defined over the field K and the study
of its divisor class group.

A first and easily verified observation is that GK acts in a natural way on Pic0
C·K and that

Pic0
C = (Pic0

C·K)
GK

where Pic0
C·K is the divisor class group of degree 0 of the curve over K obtained by base change

from C.
More generally, take any field L between K and K. Then Pic0

C·L = (Pic0
C·K)

GL .

In the language of categories this means that for a fixed curve C, the Picard groups corresponding
to curves obtained from C by base change define a functor Pic0 from the set of intermediate fields
L between K and K to the category of abelian groups.

It is very important that this functor can be represented by an absolutely irreducible smooth
projective variety JC defined over K . For all fields L between K and K we have that the functors
of sets L �→ JC(L), the set of L-rational points of JC , can be identified in a natural way with
L �→ Pic0

C·L.
But even more is true: JC has the structure of an algebraic group. Since JC is projective and

absolutely irreducible this means that JC is an abelian variety.
In particular, this implies that JC(L) is a group in which the group composition ⊕ is given by

the evaluation of rational functions (if one takes affine coordinates) or polynomials (in projective
coordinates) with coefficients in K on pairs (P1, P2) ∈ JC(L)2.

As a result we can introduce coordinates for elements in Pic0
C and compute by using algebraic

formulas.



78 Ch. 4 Background on Curves and Jacobians

Definition 4.134 The variety JC is called the Jacobian (variety) of C.

By using Theorem 4.106 we can give a birational description of JC , which (essentially) proves its
existence and makes it accessible for computations. It is based on the following lemma.

Lemma 4.135 Let C/K be a nonsingular, projective, absolutely irreducible curve of genus g with a
K-rational point P∞ corresponding to the place p∞. For every K-rational divisor class

__
D of degree

0 of C there exists an effective divisor D of degree deg(D) = g such that D − g p∞ ∈
__
D.

Proof. Take any D′ ∈
__
D with D′ = D1 −D2 as difference of two effective K-rational divisors. In

the first step we choose l large enough so that l−deg(D2) > g and by Lemma 4.108 find a function
f1 such that −D2 + (f1) + l p∞ is effective.

By replacing D′ by D′ + (f1) we can assume that D′ = D − k p∞ with D effective and k =
deg(D). If k > g (otherwise we are done) we apply Lemma 4.108 to the divisor D−(k−g) p∞ and
find a function f such that D−(k−g) p∞+(f) := D0 is effective and therefore D+(f)−k p∞ =
D0 − g p∞ is an element of

__
D of the required form.

Let C be as in Lemma 4.135 and take the g-fold Cartesian product Cg of C. As per Example 4.25,
Cg is a projective variety of dimension g. Recall that an affine part of it is given in the following
way:
Take Ca as a nonempty affine part of C in some affine spaceAn with affine coordinates (x1, . . . , xn)
and denote by C(i) an isomorphic copy of C with coordinates (xi

1, . . . , x
i
n). Then Cg

a can be
embedded into the affine space Agn with coordinates (x1

1, . . . , x
1
n, . . . , xg

1, . . . , x
g
n).

Let Sg be the symmetric group acting on {1, . . . , g}. It acts in a natural way on Cg by permut-
ing the factors. On the affine part described above this action is given by permuting the sections
(xi

1, . . . , x
i
n). The action of Sg defines an equivalence relation on Cg . We denote the quotient by

Cg/Sg.
It is not difficult to see that Cg/Sg is a projective variety defined over K . On the affine part Cg

a/Sg

one proves this as follows: take the ring of polynomials K[x1, . . . , xg] where xj is shorthand for the
n variables xj

1, . . . , x
j
n. On this ring, the group Sg acts by permuting {x1, . . . , xg}. The polynomials

fixed under Sg are symmetric and form a ring R = K[x1, . . . , xg]Sg . By a theorem of Noether (cf.
[ZASA 1976]) there is a number m and an ideal I in K[Y1, . . . , Ym] with R = K[Y1, . . . , Ym]/I .
Hence, Cg

a/Sg is isomorphic to VI ⊂ Am.

Let P be a point in Cg/Sg(L) for a field L between K and K. Then P is the equivalence class of
a g-tuple (P1, . . . , Pg) with Pi ∈ C and for all σ ∈ GL we get: there is a permutation π ∈ Sg such
that (σP1, . . . , σPg) = (Pπ(1), . . . , Pπ(g)).

This means that for any Pi the tuple (P1, . . . , Pg) contains the whole Galois orbit GL ·Pi. Assume
that it consists of k disjoint GL-orbits, each of them corresponding to a place p1, . . . , pk of K(C)·L.
Hence the formal sum P1 + · · · + Pg corresponds to the L-rational divisor p1 + · · · + pk which is
positive and of degree g.

This way we get a map φL from Cg(L) to Pic0
C·L defined by

φL(P ) �→ (p1 + · · · + pk − g p∞),

where (p1 + · · · + pk − g p∞) is the divisor class of degree zero associated to p1 + · · · + pk.

Using the alternative description of L-rational divisors as sums of points on C that consist of Galois
orbits under GL we get a more elegant description of φL: let (P1, . . . , Pg) ∈ Cg be a representative
of P ∈ Cg/Sg. Define φ(P ) as the divisor class of P1 + · · · + Pg − g P∞ in Pic0

C·K . Then φL is
the restriction of φ to Pic0

C·L.



§ 4.4 Arithmetic of curves 79

Theorem 4.136 Assume that C is a curve of genus g > 0 with a K-rational point P∞. Then
Cg/Sg is birationally isomorphic to JC , and the map φ defined above represents a birational part
of the functorial isomorphism between JC(L) and Pic0

C·L. It maps the symmetry class P∞ of the
point (P∞, . . . , P∞) to the zero class and so P∞ corresponds to the neutral element of the algebraic
group JC .

4.4.5 Jacobian variety of elliptic curves and group law

We come back to elliptic curves as introduced in Definition 4.111 and make concrete all of the
considerations discussed above.

Assume that E is an elliptic curve with function field K(E). Hence, E can be given as plane
projective cubic without singularities and with (at least) one K-rational point P∞. Clearly E1/S1 =
E.

Let
__
D ∈ Pic0

E be a divisor class of degree 0, D ∈
__
D a K-rational divisor. By the Riemann–

Roch theorem 4.106 the space L(D + P∞) has dimension 1. So there is an effective divisor in the
class of D + P∞, and since this divisor has degree 1 it is a prime divisor corresponding to a point
P ∈ E(K), and φK(P ) =

__
D. So, E(K) is mapped bijectively to Pic0

E , the preimage of a divisor
class

__
D is the point P on E corresponding to the uniquely determined prime divisor in the class of

D + P∞ with D ∈
__
D.

This implies that E is isomorphic to its Jacobian as projective curve. So E(K) itself is an abelian
group with the chosen point P∞ as neutral element, and the addition of two points is given by
rational functions in the coordinates in the points.

Hence E is an abelian variety of dimension 1 (and vice versa) and we can apply all the structural
properties of abelian varieties discussed above to study the structure of E(K) (in dependence of
K). This and the description of the addition with respect to carefully chosen equations for E will
be among the central parts of the algorithmic and applied parts of the book (cf. Chapter 13).

Let P = (x1, y1) and Q = (x2, y2) be two points with x1 �= x2 of the affine curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

The isomorphism maps them to divisor classes with representatives DP = P − P∞ and DQ =
Q − P∞ of degree 0. The space L(DP + DQ + P∞) has dimension 1 by Riemann–Roch. Hence,
there exists a function passing through P and Q and having a pole of order at most 1 in P∞. Such
a function is given by the line l(x, y) = y − λx − µ = 0 connecting P and Q. It has

λ =
y2 − y1

x2 − x1
and µ = y1 − λx1.

As DP + DQ + P∞ = P + Q − P∞ has degree 1 and l ∈ L(DP + DQ + P∞), there exists an
effective divisor in this class that we denote by R and which is a prime divisor. Hence, in the divisor
class group we have

__
DP +

__
DQ =

__
R +

__
P∞, which is equivalent to P ⊕ Q = R on E using the

isomorphism from above.
Choosing P �= Q with x1 = x2 we apply the same geometric construction and get as connecting

line the parallel to the y-axis x = x1. Hence, the third intersection point has to be interpreted
as the point P∞. This associates to each point P ∈ E an inverse point −P which has the same
x-coordinate.

In the remaining case P = Q one can use the considerations above. The function l ∈ L(2P−P∞)
passes through P with multiplicity 2, i.e., it is the tangent line to the curve at P . In formulas this
means

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
and µ = y1 − λx1.
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4.4.5.a Division polynomials

By Theorem 4.73 we know the structure of the group of n-torsion points on E. In that context we
showed that for each n there exists a polynomial ψn such that the x-coordinates of n-torsion points
are the roots of ψn. These polynomials are called division polynomials.

If char(K) �= 2, put

f0(x) = 0, f1(x) = 1, f2(x) = 1,

f3(x) = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8,

f4(x) = 2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x + (b4b8 − b2
6)

where the bi’s are defined as in Section 4.4.2.a and for n � 5

f2n = fn(fn+2f
2
n−1 − fn−2f

2
n+1),

f2n+1 =

{
f̃2fn+2f

3
n − fn−1f

3
n+1) if n is even,

fn+2f
3
n − f̃2fn−1f

3
n+1) otherwise.

with f̃(x) = 4x3 + b2x
2 + 2b4x + b6.

If char(K) = 2 and E : y2 + xy = x3 + a2x
2 + a6 then set

f0(x) = 0, f1(x) = 1, f2(x) = x,

f3(x) = x4 + x3 + a6, f4(x) = x6 + x2a6.

Otherwise E : y2 + a3y = x3 + a4x + a6 and put

f0(x) = 0, f1(x) = 1, f2(x) = a3,

f3(x) = x4 + a2
3x + a2

4, f4(x) = a5
3.

For n � 5, they can be computed recursively in both cases with the formulas

f2n+1 = fn+2f
3
n − fn−1f

3
n+1,

f2f2n = fn+2fnf2
n−1 − fn−2fnf2

n+1.

Now if P = (x1, y1) ∈ E(K) is not a 2-torsion point then P ∈ E[n] if and only if P = P∞ or
fn(x) = 0.

In addition there are explicit formulas for [n] when char(K) is different from 2, namely

[n] : E → E

P �→ [n]P =

⎧⎨
⎩

P∞ if P ∈ E[n],(
φn(x, y)
ψ2

n(x, y)
, ωn(x, y)
ψ3

n(x, y)

)
if P ∈ E(K)�E[n].

where

ψn =

{
(2y + a1x + a3)fn if n is even,

fn otherwise

and
φn = xψ2

n − ψn−1ψn+1 and 2ψnωn = ψ2n − ψ2
n(a1φn + a3ψ

2
n).

Note that in general these formulas are not used to compute [n]P for given n and P .
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4.4.6 Ideal class group

The divisor class group relies on the projective curve and leads to points on an abelian variety.
For computational reasons it is sometimes easier to work with affine parts and the arithmetic of
corresponding affine algebras O.

The objects corresponding to divisors are ideals of O and the objects corresponding to divisor
classes are ideal classes of O. The purpose of this section is to discuss the relation between these
groups.

Let C be an affine smooth curve with function field K(C) and coordinate ring O = K[C].
We recall that O is a Dedekind ring and so every ideal �= (0) is a product of powers of maximal

ideals M in a unique way and every maximal ideal M corresponds to a place pM of K(C).
The ideals �= 0 of O form a semigroup freely generated by the maximal ideals. To get a group

one generalizes O-ideals:

Definition 4.137 The set B ⊂ K(C) is a fractional O-ideal if there exists a function f ∈ K(C)∗

such that fB is an ideal of O. For a maximal ideal M ⊂ O define vM (B) := max{k ∈ Z | B ⊂
Mk}. Then

B =
∏

M maximal in O

MvM (B)

and B ⊂ O if and only if all vM (B) � 0.
To form the ideal class group we let two O-ideals B1 and B2 be equivalent if and only if there

exists a function f ∈ K(C) with vM (B1) = vM (B2) + vM

(
(f)
)

for all maximal ideals M of O.
The group of O-ideal classes is denoted by Cl(O).

4.4.6.a Relation between divisor and ideal class groups

Here we want to explain the relation between ideal class groups of rings of regular functions of
affine parts of absolutely irreducible smooth projective curves C and the divisor class group of C
(hence points of the Jacobian JC ).

For the simplicity of our presentation we shall assume that there is a K-rational point P∞. Let
x1 be a nonconstant function on C with pole divisor

div(x1)∞ = m∞P∞ +
∑

2�j�t

mjP∞j ,

and t � 0, m∞ > 0, mj > 0 and P∞j ∈ C(K). Put P∞1 = P∞. Let O be the ring of functions
on C that are regular outside of the points P∞j . So O is the intersection of the valuation rings Op

of all places p of K(C) with vp(x1) � 0.
It follows that O is the integral closure of the polynomial ring K[x1] in K(C). It is the coordinate

ring of the affine curve CO with CO(K) = C(K)� {P∞1 , . . . , P∞t}.
The inclusion K[x1] → O corresponds to a morphism CO → A1, which extends to a map

π : C → P1 with π−1(∞) = {P∞1 , . . . , P∞t}. To describe a relation between points on JC and
elements of Cl(O), we state that every place of K(C) is either equal to pM for some maximal ideal
M of O or to an extension of the infinite place on P1 to C.

Hence, there is a one-to-one correspondence between proper ideals A ⊂ O and effective K-
rational divisors D of C in which only points of CO occur, given by∑

nipi ↔
∏

Mni
pi

,

where the pi are not extensions of p∞. If A corresponds to D then deg(D) = deg(A). This
correspondence extends naturally to fractional ideals and arbitrary divisors.

Now we apply the theorem of Riemann–Roch to ideal classes of O to get
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Lemma 4.138 With notation as above let C be a curve of genus g. Let c be an element of Cl(O).
Then c contains an ideal A ⊂ O with deg(A) � g.

Proof. Let A′ ∈ c be an O-ideal and assume that deg(A′) > g. Take the effective divisor DA′

associated to A′ and a function f such that D′ := (f) + DA′ −
(
deg(A′) − g

)
P∞ is effective of

degree g. Let D′′ be the divisor obtained from D′ by removing points in π−1(∞) and let A be the
ideal obtained from D′′. Then A ∈ c and deg(A) � g.

Note that principal divisors are mapped to principal ideals. Therefore, one can consider the corre-
spondence between divisor classes and ideal classes. We are now ready to define a homomorphism
from JC to the ideal class group Cl(O).

Define φ : JC(K) → Cl(O) by the following rule: in the divisor class c take a representative D′

of the form D′ = D − g P∞, D effective. Remove from D all points in π−1(∞) and define A as
ideal in O like above. Then φ(c) is the class of A in Cl(O). By Lemma 4.138 φ is surjective.

For applications one is usually interested in the case that the kernel of φ is trivial, i.e., in choices
for C and O such that Cl(O) � Pic0

C . This allows us to use the interpretation via ideal classes of
polynomial orders O for the computations whereas the interpretation as points on the Jacobian of C
is used for the structural background.

So let us describe the kernel of φ: let c be a divisor class of degree 0 represented by the divisor
D = D1 + D2 − gP∞1 , where Di are effective divisors and D1 =

∑
niPi with Pi /∈ π−1{∞}

and D2 =
∑

mjP∞j with P∞j ∈ π−1{∞}. If φ(c) = 0 then
∏

Mni

Pi
is a principal ideal (f)

with f ∈ O. Hence, all prime divisors occurring in the pole divisor of f correspond to points in
π−1{∞} and we can replace D by an equivalent divisor D − (f) of degree 0, which is a sum of
prime divisors all corresponding to points in π−1{∞}.

Proposition 4.139 We use the notation from above. The homomorphism

φ : JC(K) → Cl(O)

is surjective.
The kernel of φ is equal to the divisor classes of degree 0 in{∑

mjP∞j |
∑

mj = 0 and all P∞j ∈ π−1{∞}
}

.

Proposition 4.140 Assume that there is a cover

ϕ : C → P1,

in which one point P∞ is totally ramified and induces the place v∞ in the function field K(x1) of
P1. Let O be the integral closure of K[x1] in the function field of C. Then φ is an isomorphism
and, hence, the ideal class group of O is (in a natural way) isomorphic to the divisor class group of
C.

This gives a very nice relation of the projective algebraic geometry and the ideal theory in Dedekind
rings. Due to the isomorphism the ideal class group can be used for arithmetic while the divisor
class group setting provides structural background.

Definition 4.141 A nonsingular curve C/K for which there exists a cover ϕ in which one K-point
P∞ ∈ C is totally ramified is called a Cab-curve.

If the functions x and y have pole divisor aP∞ and bP∞, respectively, one finds an equation over
K given by

C : αb,0x
b + α0,1 +

∑
ia+jb<ab

αi,jx
iyj , with αi,j ∈ K,

with αb,0, α0,1 �= 0.
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In particular, hyperelliptic curves are Cab curves if they have a K-rational Weierstraß point and if
we take as affine part the curve given by a Weierstraß equation (4.1). This relation is the topic of
the following section.

Example 4.142 An interesting class of curves are the Picard curves of genus 3. Over a field of
characteristic char(K) �= 3 containing the third roots of unity they can by given by an equation of
the form

y3 = f(x),

where f(x) ∈ K[x] is monic of degree 4 and has only simple roots over K.

4.4.7 Class groups of hyperelliptic curves

The type of hyperelliptic curves C we consider in this book additionally satisfies that there exists
one K-rational Weierstraß point of C. This point is totally ramified under a cover φ and is denoted
by P∞. By the considerations of the previous paragraph these curves satisfy that the ideal class
group and the divisor class group are isomorphic. In Chapter 14 on the arithmetic of hyperelliptic
curves we will use the ideal class group for the efficient computations inside the group. To fix
notation we still speak of divisor classes usually implying this isomorphism. In Section 4.4.2.b we
have shown how one can use the definition and the Riemann–Roch theorem to derive an affine plane
equation. The K-rational point P∞ allows us to use the divisor of degree one in the construction.

Recall that a hyperelliptic curve over K of genus g with at least one K-rational Weierstraß point
can be given by a Weierstraß equation

y2 + h(x)y = f(x), with h(x) and f(x) ∈ K[x], (4.3)

where f is monic of degree 2g + 1 and deg(h) � g. By abuse of language we denote affine curves
given by such an equation as imaginary quadratic curves.

We use the equation of such curves C to describe explicitly their ideal class group.

Theorem 4.143 Let C/K be an imaginary quadratic hyperelliptic curve of genus g and let ω denote
the nontrivial automorphism of K(C) over K(x) with a K-rational Weierstraß point P∞ lying over
the place x∞ of K(x). Let O = K[x, y]/

(
y2 + h(x)y − f(x)

)
.

(i) In every nontrivial ideal class c of Cl(O) there is exactly one ideal I ⊆ O of degree t � g
with the property: the only prime ideals that could divide both I and ω(I) are those resulting
from Weierstraß points.

(ii) Let I be as above. Then I = K[x]u(x) + K[x]
(
v(x) − y

)
with u(x), v(x) ∈ K[x], u monic

of degree t, deg(v) < t and u divides v2 + h(x)v − f(x).

(iii) The polynomials u(x) and v(x) are uniquely determined by I and hence by c. So [u, v] can
be used as coordinates for c.

Proof. Since for every ideal J we get that J · ω(J) is a principal ideal we can reduce I repeatedly
until the condition in (i) is satisfied without changing its class. After this process we call J reduced.

Now assume that deg(I) � g, deg(J) � g, with I, J reduced and that I ∼ J . Then I ·ω(J) is a
principal ideal in O and so it is equal to (b) with b ∈ K(C) having only one pole of order � 2g in
P∞. By Riemann–Roch all such functions lie in a K-vector space of dimension g + 1 and a basis
of this space is given by {1, x, x2, . . . , xg}. So b ∈ K[x] and I · ω(J) is the conorm of an ideal in
K[x]. Since I and J are reduced this means that I = J and (i) is proved.



84 Ch. 4 Background on Curves and Jacobians

(ii). Let I ∈ O be an ideal of degree t. Recall that {1, y} is a basis of O as K[x]-module. We choose
any basis {w1 = f1(x) + f2(x)y, w2 = g1(x) + g2(x)y} of I as K[x]-module. We find relatively
prime polynomials h1, h2 with f2h1 − g2h2 = 0 and choose u1, u2 ∈ K[x] with u1h1 − u2h2 = 1.
Now take u′ := h1w1 + h2w2, w

′
2 = u2w1 + u1w2. Since the determinant of this transformation

is 1 the pair {u′(x), w′
2 = v1(x) + v2(x)y} is again a basis of I . Since the rank of I is 2, v2(x)

is not equal to 0. So I
⋂

K[X ] is generated by u′. Since I is reduced, the degree of I is equal
to the degree of u′ and we can and will take u monic. Now write v1 = au + v with deg v < t.
By replacing w′

2 by w′
2 − a u we get a basis {u(x), v(x) + v2(x)y} of I . Since the degree of I

is equal to u(x)v2(x) we get: v2(x) is constant and so we can assume v2(x) = −1. The element
(v + y)(v − y) = v2 + h(x)y − f(x) =

(
v2 + h(x)v − f(x)

)
− h(x)(v − y) lies in I and so the

last claim of (ii) follows.
(iii). From the proof of (ii) we have that u(x) is determined by I as monic generator of I

⋂
K[x].

Now assume that v′ − y ∈ I with deg(v′) < t. Then v′ − v ∈ I
⋂

K[x] and hence v′ − v = 0.

Remark 4.144 We are in a very similar situation as in the case of class groups of imaginary quadratic
fields. In fact, Artin has generalized the theory of ideal classes of imaginary quadratic number fields,
due to Gauß, to hyperelliptic function fields connecting ideal classes of O with reduced quadratic
forms of discriminant f(x) and the addition ⊕ with the composition of such forms. Theorem 4.143
and its proof can easily be translated into this language.

We are now in a position to use the results obtained in the previous section and describe the divisor
class group of C using the ideal class group of the affine part.

Theorem 4.145 (Mumford representation)
Let C be a genus g hyperelliptic curve with affine part given by y2 + h(x)y − f(x), where h, f ∈
K[x], deg f = 2g + 1, deg h � g. Each nontrivial group element

__
D ∈ Pic0

C can be represented
via a unique pair of polynomials u(x) and v(x), u, v ∈ K[x] , where

(i) u is monic,

(ii) deg v < deg u � g,

(iii) u | v2 + vh − f .

Let
__
D be uniquely represented by D =

∑r
i=1 Pi − rP∞, where Pi �= P∞, Pi �= −Pj for i �= j and

r � g. Put Pi = (xi, yi). Then the corresponding polynomials are defined by

u =
r∏

i=1

(x − xi)

and the property that if Pi occurs ni times then(
d

dx

)j [
v(x)2 + v(x)h(x) − f(x)

]
|x=xi

= 0, for 0 � j � ni − 1.

A divisor with at most g points in the support satisfying Pi �= P∞, Pi �= −Pj for i �= j is called a
reduced divisor. The first part states that each class can be represented by a reduced divisor. The
second part of the theorem means that for all points Pi = (xi, yi) occurring in D we have u

(
xi

)
= 0

and the third condition guarantees that v
(
xi

)
= yi with appropriate multiplicity.

Like for elliptic curves (cf. Section 4.4.5) one can make explicit the group operations in the ideal
class group. Consider the classes represented by [u1(x), v1(x)] and [u2(x), v2(x)] and assume them
in general position. The product of the representatives is generated by

〈u1u2, u1(y − v2), u2(y − v1), (y − v1)(y − v2)〉.
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By Hermite reduction from the generating system we obtain a basis {u′
3(x), v′3(x) + w′

3(x)y}.
This ideal lies in the class of the product of the ideal classes but is usually not yet reduced. To
reduce it one recursively applies the fact that u | v2 + hv − f . This procedure is formalized and
applied to arbitrary inputs in Cantor’s algorithm, which we state in Chapter 14 on the arithmetic of
hyperelliptic curves.
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In the previous chapter we dealt with algebraic and geometric objects over arbitrary fields. In this
chapter we explain additional properties of these objects when considered over special fields. We
concentrate on varieties over the complex numbers and finite fields.

5.1 Varieties over the field of complex numbers

In the whole section we take ground field K as the field of complex numbers C. Since C is alge-
braically closed we can identify the affine space An (respectively the projective space Pn) with the
set of points in Cn (respectively the homogeneous classes of (n + 1)-tuples in Cn+1) together with
the topological structure induced by the Zariski topology. Recall that closed sets are given as zeroes
of polynomial equations.

The absolute value | · | makesCn to a metric space and hence induces a “natural” topology. Since
polynomial functions are continuous in this topology it follows that Zariski closed sets are also
closed in this topology.

5.1.1 Analytic varieties

First we shall describe very briefly the analytic structure on An (respectively Pn): the key notions
are holomorphic functions. Locally, holomorphic functions are given by power series converging in
an open ball.

87
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For open sets U ⊂ Pn one can globalize to get holomorphic functions by gluing together the local
“germs.” So a holomorphic function f on U is a complex valued function defined on U such that
for all P ∈ U there is an open ball around P on which f is given by a convergent power series.
Examples for holomorphic functions are polynomials (for U = An) and rational functions (for U
equal to the set of definition).

Meromorphic functions on U are defined as quotients of holomorphic functions. Locally they
are given by Laurent series with finite negative part. To a meromorphic function f on U and to
any point P ∈ U we can associate the order of vanishing nP (f) of f at P . It is negative if f has
a pole of order |nP (f)| at P , and positive if f has a zero of order nP (f) at P . If nP (f) = 0
there is a neighborhood of P in U such that the restriction of f is invertible in this neighborhood
as a holomorphic function. In particular, it follows that the set of zeroes and poles of meromorphic
functions on U does not have a limit point in U . The (analytic) divisor divan(f) is equal to the
formal sum divan(f) =

∑
P∈U nP (f)P .

One can differentiate and integrate holomorphic and meromorphic functions and as usual one has
meromorphic differentials ω on U . Locally at a point P ∈ U they are of the form fP (x)dx1 · · · dxn

with fP meromorphic and (x1, . . . , xn) a local system of coordinates (mapping the chosen neigh-
borhood to an open ball in Cn with 0 as image of P ). Their divisor is divan(ω) =

∑
P∈U nP (fP )P .

One sees that ω is holomorphic on U if and only if the divisor of ω has only nonnegative coefficients.
In the sequel we shall need a further concept, namely analytic varieties. For the notion of analytic

varieties (without boundary) in projective spaces we refer to [GRHA 1978].
One essential property of analytic varieties Van ⊆ Pn is that there exists a number d � n such

that Van is locally isomorphic to a ball in an affine space Ad, or equivalently: every point P ∈ Van

has an open neighborhood UP (with respect to the topology on Van induced by the restriction of
the topology on Pn to Van) and local coordinate functions (holomorphic in UP ) which map UP

bijectively to a ball in Cd with 0 as image of P .
Using this local analytic structure one defines holomorphic functions on open subsets of Van,

meromorphic functions on Van, holomorphic (respectively meromorphic) differentials and holo-
morphic (respectively meromorphic) maps between two analytic varieties. The number d is the
dimension of Van.

Now assume that V is an (affine or projective) algebraic variety of algebraic dimension d em-
bedded in Pn. First of all the underlying set is closed. Next, all points of V are nonsingular, and
the Jacobi criterion (cf. Lemma 4.94) for the local (algebraic) coordinate functions together with
the implicit function theorem ensures that this set satisfies the conditions of analytic varieties being
locally isomorphic to Cd. So we can give V the structure of an analytic variety of dimension d
denoted by Van. Note that rational functions on V are meromorphic functions on Van. Of course, the
converse does not have to hold true.

But there is a very important special case. Assume that V is a projective algebraic variety. Then
the underlying set is compact in Pn. It follows that meromorphic functions on Van have only finitely
many zeroes and poles. Therefore, they are rational functions on V . So the field of meromorphic
functions on Van is equal to K(V ) and has transcendental degree d over C.

The converse of this remark is true, too. So we can state the following fundamental result.

Theorem 5.1 Let Van be a compact analytic variety in Pn of dimension d. There is an algebraic
projective variety V ⊂ Pn such that the induced analytic variety is equal to Van, and the field of
meromorphic functions on Van has transcendence degree d over C and hence is equal to K(V ).

The next lemma gives a slight generalization of the above facts about functions on varieties.

Lemma 5.2 Let V, W be projective algebraic varieties. Then the set of holomorphic maps from Van

to Wan is (in a natural way) identical with HomC(V, W ).
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As a consequence of these comparison results, we can use the full power of complex analysis to get
purely algebraic properties of objects related to varieties defined over the complex numbers.

Before discussing the two examples that are the most important for us we will conclude this section
with a remark.

Remark 5.3 It is well-known in number theory that the interpretation of number fields K as sub-
fields of C is in a most fruitful way generalized to the study of number fields as subfields of p-adic
fields. The same is true if we want to study objects of algebraic geometry by analytic methods.
As counterpart of C one uses the completion of the algebraic closure of Qp. Over these fields we
have the highly developed machinery of rigid analytic geometry. In Chapter 17 we shall have to
use parts of this theory as background for discussing p-adic point counting methods on curves over
finite fields, which have become important in recent years.

5.1.2 Curves over CCCCCC

Analytic curves Can are one-dimensional analytic varieties embedded into a projective space overC.
From now on we shall assume that Can is compact. Then there is a nonsingular projective irreducible
curve C such that Can is the corresponding analytic curve. Hence, from an abstract point of view
the rational functions on C cannot be distinguished from the meromorphic functions on Can.

One uses this to produce functions on C by analytic methods: locally there are many more mero-
morphic functions given by converging Laurent series, and by the gluing process we can hope to get
global meromorphic functions that turn out to be algebraic.

In the previous section we introduced the notion of divisors on analytic curves Can in a way
analogous to the algebraic case. The finiteness condition for coefficients not equal to 0 is replaced
by the condition that poles and zeroes have no limit point. But since we have assumed that Can is
compact this is exactly the same condition as in the algebraic case. Therefore, analytic divisors can
be identified with algebraic divisors in a canonical way. The same is true for divisor class groups.
(Note again that the situation changes totally if we go to affine parts of C.)

We introduced differentials for algebraic curves in Section 4.4.2.c. We now look at them from
the analytic point of view. Here the usual calculus methods are used to construct the meromorphic
differentials. Again we get:

Proposition 5.4 Meromorphic (respectively holomorphic) differentials on Can can be identified
with meromorphic (respectively holomorphic) differentials on C.

We have defined the genus g of C with the help of the theorem of Riemann–Roch (cf. Theo-
rem 4.106). This theorem also holds for the divisor theory of Can. (In fact its original version
was proved in this context.) One of its consequences is that the holomorphic differentials ΩC on
Can (or on C) form a g-dimensional vector space overC and that these differentials can be identified
with algebraic differentials with effective divisors. Let us choose a basis {ω1, . . . , ωg}. To get the
full power of analytic methods we have to go one step further and go to real surfaces.

Digression: the easiest example of Weil descent

Next we use an additional special property of C: it is a two-dimensional vector space over the field
of real numbers R with basis {1, i} where as usual i2 = −1.

Replacing a complex variable z by two real variables x, y using z = x + iy identifies the metric
vector space Cn with the usual Euclidean space R2n. By this process we lose the analytic struc-
ture but have a differentiable structure from usual real calculus again compatible with the Zariski
topology. Applying this to algebraic varieties V of dimension d in An

C we find in a natural way an
affine variety WR ⊂ A2n

R of dimension 2d with W (R) = V (C): we replace the n complex affine
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coordinates (X1, . . . , Xn) by the real coordinates (U1, V1, . . . , Un, Vn) with Xj = Uj + iVj , plug
them into the equations

(
f1(X), . . . , fm(X)

)
defining V and separate the resulting polynomials

into their real and imaginary part fk(U, V ) = gk(U, V ) + ihk(U, V ), where gk and hk are defined
over R. Then W is the variety defined by (gk, hk).

By a gluing process we can apply this procedure to projective algebraic varieties. So we attach to
every affine or projective variety V of dimension d defined overC an affine (respectively projective)
algebraic variety WV of dimension 2d defined over R with WV (R) = V (C). It is a nice exercise to
show that WV ·C is isomorphic to V × V as algebraic variety over C.

What we have sketched above is the most simple example of scalar (or Weil-) restriction of varieties
defined over a finite algebraic extension field L of a field K to varieties over K . This construction
will play an important role later (cf. Chapter 7 on Weil descent).

Riemann surfaces

We apply Weil descent to irreducible nonsingular projective curves C defined over C and get an
irreducible two-dimensional projective variety WC defined over R. The analytic structure of C
induces a differentiable real structure that makes WC locally isomorphic to a unit ball in R2. That
means that for every P ∈ WC(R) there is an open neighborhood UP ∈ WC and real differentiable
functions f1, f2 defined on UP mapping UP to the open unit disc in R2 and sending P to (0, 0).

Since C(C) is compact, it follows that WC is compact in the real topology.
As result we get that the projective curve C carries in a natural way the structure of a compact

Riemann surface. We remark that the converse is true, too: every compact Riemann surface is the
Weil descent of a projective nonsingular irreducible curve defined over C.

Riemann surfaces R are classical and very well studied objects in geometry. One key ingredient
is the study of paths on them up to homology (cf. [GRHA 1978]). They can be used to define
the topological genus gtop of R. Namely fixing a base point P0 and composing closed paths in a
natural way we turn the set of points P into a group. By identifying homologous paths we get the
fundamental group ΠR of R as quotient of P . It is generated by 2gtop paths satisfying one relation
which lies in the commutator subgroup of the fundamental group. This implies that the maximal
abelian factor group of ΠR, the first homology group H1(R,Z), is a free abelian group with 2gtop

generators (α1, . . . , α2gtop).

We come back to the case that R = WC with C a projective curve over C.

Proposition 5.5 The genus g of C is equal to the topological genus gtop of WC .

Using well-known results from (real and complex) calculus we do integration on WC using holo-
morphic differentials ω on C and closed paths α on WC . As above we choose a base point P0 on
WC and get the group P by composing closed (continuous) paths beginning in P0.

Lemma 5.6 We have a map

〈· , ·〉0 : P × ΩC → C

defined by 〈α, ω〉0 :=
∫

α
ω where

∫
α

is the line integral along the path α.
Moreover, 〈· , ·〉0 is independent of the homology class of α and vanishes when restricted to the

commutator subgroup of P in the first component.

Corollary 5.7 The map 〈· , ·〉0 induces a pairing, that is denoted by 〈· , ·〉, between the Z-module
H1(WC ,Z) and the C-vector space ΩC .
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Recall that we have chosen a basis (ω1, . . . , ωg) of the space of holomorphic differentials on C. We
define the map

φ : H1(WC ,Z) −→ Cg

τ �−→
(∫

α ω1, . . . ,
∫

α ωg

)
where α is a path in the class of τ .

Proposition 5.8 The image ΛC of φ is a full lattice in Cg, i.e., a discrete free Z-module of rank 2g
in Cg .

By this proposition we can associate a full rank lattice to each curve over C. The following lemma
describes what quotients of lattices look like.

Lemma 5.9 Let Λ be a lattice of full rank in Cg and let Cg/Λ be the quotient group with quotient
topology. Then Cg/Λ is compact and locally isomorphic (as topological space) to the unit ball in
Cg.

Corollary 5.10 The set Cg/ΛC is a compact topological space with respect to the quotient topology
inherited from Cg . It is locally homeomorphic to the unit ball in Cg .

Definition 5.11 The lattice ΛC is called the period lattice of C (with respect to the basis {ω1, . . . ,
ωg} of the holomorphic differentials).

We are now ready to define the Abel–Jacobi map. We fix the base point P0 ∈ C(C). For P ∈ C(C)
choose a path γ from P0 to P and define Jγ(P ) :=

(∫
γ

ω1, . . . ,
∫

γ
ωn

)
∈ Cg. The tuple Jγ(P ) will

— in general — depend on the choice of γ. If γ′ is another path from P0 to P then γ and γ′ differ
by a closed path beginning in P0 and so Jγ(P ) − Jγ′(P ) is an element of ΛC .

Definition 5.12 The Abel–Jacobi map is defined by

J : C(C) → Cg/ΛC

P �→ Jγ(P ) + ΛC .

We can generalize this definition to divisors on C by linear extension. We denote the corresponding
map again by J .

Theorem 5.13 (Abel–Jacobi)

(i) Let D be a principal divisor of C. Then J(D) = 0. So J induces a map J̄ from Pic0
C to

Cg/ΛC .

(ii) The map J̄ is a group isomorphism.

By Lemma 5.9 the group Cg/ΛC carries an analytic structure since it is locally homeomorphic to
the unit ball in Cg. The group Pic0

C carries the structure of an abelian variety, namely the Jacobian
variety JC of C (see Definition 4.134). Hence, it has an analytic structure, too. The theorem of
Abel–Jacobi includes that J̄ is an analytic isomorphism.

So the structure of JC as analytic variety is rather simple and described by Cg/Λ.
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5.1.3 Complex tori and abelian varieties

An important part of the introduction to the objects relevant for cryptography were the connected
projective algebraic groups called abelian varieties (cf. Section 4.3). The analytic counterpart are
connected compact complex Lie groups (cf. e.g., Lang [LAN 2002a]).

We give the most simple example of a complex Lie group: take Cd with the usual complex
structure and with vector addition + as group composition. It is obvious that the addition + as well
as the inversion − are holomorphic. The group Cd is not compact but we can easily find quotients
that are compact.

For this we choose a lattice (always assumed to be of full rank) Λ ⊂ Cd, i.e., there is a basis
{µ1, . . . , µ2d} of Cd as real vector space such that

Λ =

{
2d∑

j=1

zjµj | zj ∈ Z
}

.

Equivalently we have: Λ is a Z-submodule of Cd of rank 2d which is discrete, i.e., in every bounded
subset of Cd there are only finitely many elements of Λ.

We can endowCd/Λ with an analytic structure in a natural way. Let the Uj be open sets covering
Cd/Λ such that each Uj is homeomorphic via bijective continuous maps ϕj to balls Bj in Cd. The
maps ϕj are assumed to be compatible with restrictions to intersections of the sets Uj . We define
holomorphic functions on Uj as functions fj : Uj → C such that fj ◦ ϕ−1

j are holomorphic on
Bj and come to global functions by gluing local holomorphic functions. Meromorphic functions
are defined as quotients of holomorphic functions. It is an immediate consequence from these
definitions that Cd/Λ carries the structure of a complex connected Lie group that is a quotient (as
Lie group) of Cd/Λ.

Definition 5.14 A complex Lie group isomorphic to Cd/Λ is called a complex d-dimensional torus.

A fundamental result is:

Proposition 5.15 Let X be a connected compact complex Lie group of dimension d. Then X is
isomorphic to a torus T := Cd/Λ.

For the proof see [MUM 1974, p. 2].
We apply this to an abelian variety A of dimension d defined over C. The associated analytic

variety Aan is connected and compact. Since addition and inversion on A are given by polynomials,
Aan is a torus and, hence, is isomorphic to the Lie groupCd/Λ for some lattice Λ. Note that by this
isomorphism the addition on A is transferred into a very easy form. It is just the vector addition in
Cd modulo Λ.

Next we shall study the converse. We want to decide whether T is the analytic companion of an
algebraic variety. By Chow’s theorem this is equivalent to the question whether we can embed T
into a projective space such that the analytic structures are compatible.

If this is possible we shall find d algebraically independent meromorphic functions on T . By stan-
dard methods of algebraic theory (the key word is “ample line bundle”) one sees that the converse is
true, too. So one has to construct meromorphic functions on T , or equivalently, meromorphic func-
tions on Cd which are periodic with respect to Λ. There are well-known methods for this (for d = 1
one uses results like the Weierstraß product theorem or the Mittag–Leffler theorem). In general the
main ingredients are theta functions attached to Λ. We shall need them later on (cf. Chapter 18)
and then deal explicitly with the case that is most interesting for us, and so we do not give a formal
definition here.

In [MUM 1974, pp. 24-35] one finds the discussion what additional properties Λ has to have in
order to have enough periodic functions.
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First recall that a Hermitian form H on Cd × Cd can be decomposed as

H(x, y) = E(ix, y) + iE(x, y)

where E is a skew symmetric real form onCd satisfying E(ix, iy) = E(x, y). The form E is called
the imaginary part 	m(H) of H . (Since these notations are rather standard we find it convenient
not to change them though the letter E is used for elliptic curves in most cases. We hope that this
does not give rise to confusion.)

Theorem 5.16 The torus T = Cd/Λ can be embedded into a projective space and, hence, equals
the analytic variety attached to an abelian variety if and only if there exists a positive definite
Hermitian form H on Cd with E = 	m(H) such that E restricted to Λ × Λ has values in Z.

We use the structure theorems for Hermitian forms and get

Corollary 5.17 Let T = Cd/Λ be a complex torus attached to an abelian variety A. Then Λ is
isomorphic to Zd ⊕ Ω · Zd, where the (d × d)-matrix Ω is symmetric and has a positive definite
imaginary part, i.e., lies in the Siegel upper half plane Hg.

Corollary 5.18 Assume that d = 1, i.e., A is an elliptic curve E. Then the torus associated to E is
isomorphic to C/(Z+ τZ) where τ is a complex number with positive imaginary part.

Definition 5.19 We call Ω the period matrix of A.

We continue to assume that T = Aan with Hermitian form H and E = 	m(H).
With the help of E we can define a dual lattice Λ̂ given by

Λ̂ :=
{
x ∈ Cd | E(x, y) ∈ Z, for all y ∈ Λ

}
.

The lattice Λ̂ contains Λ and Λ̂/Λ is finite. Furthermore, Λ̂ belongs to a torus T̂ , which is attached
to an abelian variety Â. In fact we have just constructed the dual abelian variety to A by analytic
methods over the complex numbers (see [MUM 1974], 82-86). There it is also shown how this dual
abelian variety can be constructed by purely algebraic methods over any ground field.

For us a special case is most important. Assume that Λ̂ = Λ and so A is equal to its dual.

Definition 5.20 If Λ̂ = Λ then A is called principally polarized.

Corollary 5.21 Let A be a principally polarized abelian variety over C with lattice Λ, Hermitian
form H and E = 	m(H). Then there exists a basis {µ1, . . . , µ2d} of Λ such that

[
E(µi, µj)

]
1�i,j�2d

=

[
0 Id

−Id 0

]
.

Now we come back to the theme of this book, namely projective irreducible nonsingular curves C
and their Jacobians JC .

By the theorem of Abel–Jacobi (cf. Theorem 5.13) we have found an isomorphism from Pic0
C , the

divisor class group of degree 0 of C to Cg/ΛC by integrating a basis of holomorphic differentials
along paths that form a basis of the first homology group of C. So the period lattice of C is attached
to the isomorphism class of (JC)an.

Definition 5.22 The period matrix ΩC of ΛC is called the period matrix of C. The form E(x, y) is
called the Riemann form.

Lemma 5.23 The period matrix ΩC can be computed by integrating a basis of holomorphic differ-
entials along paths on the Riemann surface corresponding to C.

By duality theorems about differentials and paths on Riemann surfaces one sees:

Proposition 5.24 The Jacobian of a projective irreducible nonsingular curve is a principally polar-
ized abelian variety.
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5.1.4 Isogenies of abelian varieties over CCCCCC

We can use the torus representation of abelian varieties to find the algebraic results about torsion
points, isogenies and endomorphisms. So assume that A is analytically given by T = Cd/Λ.

First we find a result given previously.

Proposition 5.25 Let n be a natural number. The points of order dividing n of A, A[n], are iso-
morphic to the subgroup 1

nΛ/Λ ⊂ Cd/Λ and hence isomorphic to (Z/nZ)2d.

Let G be a subgroup of 1
nΛ/Λ. The inverse image of G in Cd is a lattice ΛG that contains Λ, and

hence we get a quotient map from T to Cd/ΛG = T/G with kernel isomorphic to G. This quotient
map is, by definition of the analytic structure on tori, an analytic map. The Hermitian structure on
T induces one on TG that satisfies the condition from Theorem 5.16 and hence TG corresponds to
an abelian variety AG.

By Lemma 5.2 the quotient map comes from an algebraic morphism that is an isogeny from A to
AG with kernel corresponding to G.

Proposition 5.26 Let A be an abelian variety defined over C with lattice Λ ⊂ Cd. The isogenies
η of degree n of A are, up to isomorphisms, in one-to-one correspondence with lattices Λη which
contain Λ and satisfying [Λη : Λ] = n. The kernel of η is isomorphic to Λη/Λ.

Of special interest are isogenies with image isomorphic to A. For simplicity and since it is in the
center of our interest we restrict the discussion to simple abelian varieties.

We know that in this case the ring EndC(A) of endomorphisms of A is a skew field and that all
endomorphisms different from the zero map are isogenies.

We want to use the results of Proposition 5.26 but look at them from a slightly different point of
view. In the proposition we interpreted isogenies as quotient maps of the identity map on Cd with
changing lattices. Now we shall fix the lattice Λ and study holomorphic additive maps α : Cd → Cd.
Such a map α induces an endomorphism of A if and only if it is well defined modulo Λ, i.e.,
α(Λ) ⊂ Λ.

Example 5.27 We give the most simple example to explain this. Look at the endomorphism [n]
obtained by scalar multiplication with n.

In the first interpretation we take as lattice of the image the lattice 1
nΛ and take the quotient map

from Cd/Λ to Cd/
(

1
nΛ

)
.

In the second interpretation we multiply elements in Cd by n and so the subset 1
nΛ is mapped to

Λ and hence to the zero element of the torus associated to A.

From the condition imposed on α (it has to be continuous) it follows that α is a linear invertible
map on the real vector space of dimension 2d attached to Cd. Hence (after having chosen a basis
{µ1, . . . , µ2d} of Λ) we can describe α by a real invertible (2d × 2d)-matrix B with the additional
condition that α maps Λ into itself. But this is equivalent to the condition that B has integers as
coefficients. Hence the characteristic polynomial χ(α)A(T ) of α is a monic polynomial of degree
2d with integers as coefficients.

Remark 5.28 The reader should recall that we have described endomorphisms α in the algebraic
setting by using Tate modules to produce �-adic representations. One of the crucial results due to
Weil is that the characteristic polynomials do not depend on the prime �.

Here we use the period lattice to produce an integral representation again of dimension 2d. It
plays the role of Tate modules in the analytic setting. The resulting characteristic polynomial χα(T )
is the same as the corresponding �-adic polynomial. This remark will become important for point
counting algorithms.
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Until now we have only looked at linear algebra and continuity. But we have to take into account
the analytic structure that yields holomorphy conditions for α.

We shall explain this in the simplest case.

Example 5.29 Let A =: E be an elliptic curve. The associated analytic variety is isomorphic to
C/(Z+ τZ) with τ /∈ R. A holomorphic additive map α is given by a matrix

B =

[
n1 n2

n3 n4

]

over Z if we take {1, τ} as basis, it also represents a multiplication by a complex number β that is
determined by α(1) =: β = n1 + n2τ . Hence it maps τ to βτ = n1τ + n2τ

2 = n3 + n4τ .
Now assume that n2 �= 0 or, equivalently, that β /∈ Z. Then τ satisfies the equation

n2τ
2 + (n1 − n4)τ − n3 = 0

and, hence,Q(τ) is an imaginary quadratic field K .
The lattice Z + τZ is an ideal Aτ of an order of K , and the isogenies correspond to numbers

n1 + n2Z that map Aτ into itself. But this means that EndC(E) is an order (cf. Definition 2.81) in
K and that E has complex multiplication.

For higher dimensional abelian varieties A, analogous but more complicated considerations lead to
the CM-theory mentioned already in the algebraic part. Again one gets that the lattice of abelian
varieties with complex multiplication is very special and that the period matrix has an algebraic
structure. This combined with class field theory is the key of the CM method used to construct
abelian varieties over finite fields with known number of points. We shall be more precise in the
next sections in the case of elliptic and hyperelliptic curves and come to algorithmic details in
Chapter 18.

5.1.5 Elliptic curves over CCCCCC

In this section we shall apply the theory of curves and their Jacobians over C for elliptic curves E.

5.1.5.a The complex theory of elliptic curves

We recall Corollary 5.18 that the Jacobian variety of E and hence E itself is analytically isomorphic
to C/(Z+ τZ) where τ is a complex number with a positive imaginary part.

Let E be given by an affine Weierstraß equation

E : y2 = x3 + a4x + a6 with a4, a6 ∈ C.

As a consequence of the theorem of Abel–Jacobi 5.13 we get: there is an analytic isomorphism
between the groups E(C) and C/ΛE where ΛE is a lattice Zω1 + Zω2 in C.

We want to describe explicitly this isomorphism. For this we begin with the lattice Λ = Zω1 +
Zω2 and then construct the elliptic curve corresponding to it. We shall follow closely [COH 2000,
Chapter 7] and [SIL 1986, Chapter VI, section 3]. The first step is to find the meromorphic func-
tions.

Definition 5.30 Let ω1, ω2 ∈ C be linearly independent over R. An elliptic function with periods
{ω1, ω2} is a meromorphic function f(x) on C such that for all x ∈ C one has f(x + ω1) =
f(x + ω2) = f(x).
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We shall fix ω1, ω2 as well as the lattice Λ spanned by them in the following. Elliptic functions will
always be periodic with respect to Λ.

The task is to construct nonconstant elliptic functions. It was solved by Weierstraß.

Definition 5.31 The Weierstraß ℘-function is defined by the series

℘(z, Λ) =
1
z2

+
∑

ω∈Λ� {0}

(
1

(z + ω)2
− 1

ω2

)
· (5.1)

This series converges uniformly on every compact subset of C�Λ. The function ℘ := ℘(z, Λ)
defined by (5.1) is a meromorphic function on C with poles (of order 2) in Λ. It is an even function,
i.e., ℘(z, Λ) = ℘(−z, Λ) for all z ∈ C�Λ.

The proofs are straightforward applications of the basics of complex analysis, see e.g., [SIL 1986,
Chapter VI, Theorem 3.1].

As usual we denote by ℘′ := ℘′(z, Λ) the derivative of ℘. Again it is an elliptic function. It can be
computed easily by using the series defining ℘; the result is again a series whose first term is − 2

z3 ·
It follows immediately that ℘′ is an odd function, i.e., ℘′(z) = −℘′(−z).

Define the Eisenstein series Gn := Gn(Λ) of weight n for Λ by

Gn(Λ) :=
∑

ω∈Λ� {0}

ω−n.

The fundamental observation is:

Theorem 5.32 The elliptic functions ℘ an ℘′ satisfy the equation

℘′(z)2 = 4℘(z)3 − 60G4℘(z) − 140G6.

This is the affine equation for an elliptic curve EΛ with function field C(℘, ℘′). The map

Φ : C/Λ → EΛ ⊂ P2

z �→
{(

℘(z) : ℘′(z) : 1
)

for z /∈ Λ
Φ(Λ) = (0 : 1 : 0)

is an isomorphism of Riemann surfaces, which is a group homomorphism (using the induced natural
additive group structure on C/Λ and the elliptic curve group structure on EΛ).

Hence EΛ is the abelian variety attached to the torus C/Λ, and we can interpret the map Φ as
the inverse of the Abel–Jacobi map from EΛ as curve to its Jacobian variety which is isomorphic to
EΛ.

Remark 5.33 The equation defining EΛ is not quite in the standard Weierstraß form. We obtain it
if we replace ℘′ by y = 1/2℘′ and set x = ℘, g2 := g2(Λ) := 15G4(Λ) and g3 := g3(Λ) :=
35G6(Λ). The resulting equation is

EΛ : y2 = x3 − g2x − g3.

We have seen that for every lattice Λ we can use g2(Λ) and g3(Λ) to obtain the equation of the
corresponding elliptic curve EΛ. The first question is now to describe in terms of the two lattices
Λ, Λ′ what it means that EΛ is isomorphic to EΛ′ .

As we have seen in Lemma 5.2 this is equivalent to the question under which conditions C/Λ is
analytically isomorphic to CΛ′ .
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Example 5.34 Take α ∈ C∗ and define the map tα from C to C by z �→ αz. Define Λ′ := αΛ.
Then tα induces an analytic isomorphism

hα : C/Λ → C/αΛ.

Motivated by the example we define that two lattices Λ1 and Λ2 are homothetic if there is an α ∈ C∗

such that αΛ1 = Λ2.

Theorem 5.35 There is a canonical isomorphism between the set of C-isomorphism classes of el-
liptic curves and the set of homothety classes of lattices in C.

Corollary 5.36 Let Λ be a lattice in C with basis {ω1, ω2}. We can assume (by replacing ω1 by
−ω1 if necessary) that τ := ω2/ω1 is a complex number with positive imaginary part. Let Λτ be
the lattice Z+ τZ. Then the elliptic curve EΛ is isomorphic to EΛτ .

By this result we have attached to every (isomorphism class of) elliptic curves over C a unique
lattice Λτ := Z + τZ such that E is isomorphic to EZ+τZ =: Eτ with τ ∈ C with imaginary part
	m(τ) > 0. But τ is not uniquely determined by Λτ .

Lemma 5.37 Let τ, τ ′ be complex numbers with positive imaginary part. Then Λτ = Λτ ′ if and
only if there exist integers a, b, c, d with ad − bc = 1 and τ ′ = aτ+b

cτ+d ·

Definition 5.38 A complex function f which is holomorphic on the upper half plane

H := {τ ∈ C | 	m(τ) > 0)}

and which satisfies

f(τ) = f

(
aτ + b

cτ + d

)
for all integers a, b, c, d with ad − bc = 1 is called a modular function.

The set of modular functions forms a field F1.

Example 5.39 Define

j : H → C

τ �→ j(τ) := 1728
g2(Λτ )3

4g2(Λτ )3 − 27g3(Λτ )2
·

Then j ∈ F1.

Theorem 5.40

(i) The field of modular functions is equal to C(j).
(ii) The elliptic curve Eτ is isomorphic to Eτ ′ if and only if j(τ) = j(τ ′).

(iii) Let E be an elliptic curve defined overC with absolute invariant jE (cf. Corollary 4.118)
Then there is a τ ∈ H with j(τ) = jE and E is isomorphic to Eτ .

Since j ∈ F1 we have j(τ + 1) = j(τ). (Take a = 1, b = 1, c = 0, d = 1.) We can use this identity
to develop j into a Laurent series “at ∞.”

Define q := e2πiτ and j∗(q) := j(τ). Observe that q approaches 0 when 	m(τ) becomes large.
It turns out that j∗ can be extended to a meromorphic function with a pole in 0 of order 1. Its
Laurent series has integer coefficients. It is called the q-expansion of the j-function.
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Proposition 5.41 The q-expansion of the j-function is given by

j(q) =
(1 + 240

∑∞
n=1 σ3(n)qn)3

q
∏

n∈N(1 − qn)24
·

For a proof we refer to [SIL 1994, Chapter I, Remark 7.4.2].
After having an explicit description of isomorphism classes of elliptic curves over C we now

determine the isogeny classes again by using the theory of complex tori (see Section 5.26) applied
to elliptic curves and get:

Proposition 5.42 Let E and E′ be two elliptic curves defined over C with lattices Λ (respectively
Λ′).

Then E is isogenous to E′ if and only if there exists an α ∈ C∗ with αΛ ⊂ Λ′. If so denote by
ηα the isogeny from E to E′. Then the kernel of ηα is canonically isomorphic to α−1Λ′/Λ.

Corollary 5.43 Assume that E is an elliptic curve over C with jE = j(τ). Then

EndC(E) = {α ∈ C | αΛτ ⊂ Λτ}.

5.1.5.b Elliptic curves with complex multiplication

The ring
EndC(E) = {α ∈ C | αΛτ ⊂ Λτ}

always contains and in general will be equal to Z.
We reformulate the definition of complex multiplication (cf. Definition 4.88) applied to elliptic

curves E over C.

Definition 5.44 The elliptic curve E has complex multiplication if and only if EndC(E) is larger
than Z.

In Example 4.90 we have already discussed that this implies:

Corollary 5.45 Let E be an elliptic curve defined over C with period τ . Then τ is a nonrational
integer in an imaginary quadratic field Kτ and EndC(E) is the order corresponding to Z + τZ in
Kτ .

The converse is true as well.

Proposition 5.46 Let K be an imaginary quadratic field, let O be an order of K , and let A be an
ideal of O. Then A ⊂ C is a lattice, the elliptic curve EA := C/A is an elliptic curve with complex
multiplication and EndC(EA) = O. For two ideals A, A′ of O we get: EA is isomorphic to EA′

over C (i.e., the absolute j-invariants are equal) if and only if A and A′ are in the same ideal class.

So elliptic curves with complex multiplication have algebraic periods τ . But even more important
we get that the absolute invariant j(τ) is a very special algebraic integer, i.e., it is the zero of a
monic polynomial over Z, and is obtained as j-invariant of an ideal in an imaginary quadratic field.
The exact statement is the key result of class field theory of imaginary quadratic fields.

Theorem 5.47 Assume that E is defined overC and has complex multiplication. Let τ be its period.
Then Q(τ) is an imaginary quadratic field, EndQ(τ)(E) = EndC(E) is an order OE in Q(τ) and
the absolute invariant j(τ) is an algebraic integer that lies in the ring class field HOE over Q(τ).
The invariant j(τ) is the j-function evaluated at an ideal of OE .
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Recall that the ring class field of OE is an abelian extension ofQ(τ) whose Galois group is isomor-
phic in a canonical way to the ideal class group of OE . The most important case for us will be that
OE is the ring of integers O of Q(τ). Then HOE is the Hilbert class field H of Q(τ), the maximal
Galois extension of Q(τ), which is unramified and has an abelian Galois group. In particular, we
get that the degree of H overQ(τ) is equal to the order of Cl(O), which is called the class number
of Q(τ) .

On the other side it follows easily from Theorem 5.35 that jEA depends only on the ideal class
group of A in Cl(O) and class field theory tells us that all the algebraic numbers jEA are conjugates
under the action of the Galois group of H overQ(τ). From this we get:

Corollary 5.48 Let K = Q(
√
−d) be an imaginary quadratic field with ring of integers O. Let E

be an elliptic curve with EndC(E) = O. Then the minimal polynomial of jE is the Hilbert class
polynomial

Hd(x) :=
hd∏
i=1

(
x − j(Ai)

)
where j(Ai) is the j-invariant of the elliptic curve corresponding to Ai, the number hd is the order
of the ideal class group of K and Ai are representatives of elements of the class group of O. The
coefficients of the Hilbert class polynomial are rational numbers. As jE is an algebraic integer, they
are integers.

For the proof of Theorem 5.47 and Corollary 5.48, see for example [SIL 1986, Appendix C, Theo-
rem 11.2], or [LAN 1973, Chapter 10, Theorem 1].

Reduction of elliptic curves with complex multiplication

In Section 5.2 below we shall discuss elliptic curves over finite fields. The determination of the
order of the rational points will be one of the most important topics in this part. Here we can give a
bridge from elliptic curves over number fields to elliptic curves over finite fields.

The class polynomial

Hd(x) :=
hd∏
i=1

(
x − j(Ai)

)
can be reduced modulo a prime p to a polynomial Hd(x)p defined over Fp, and it has simple roots
if p does not divide d.

Let Fpr be the smallest field that contains a root jp of Hd(x)p. It is the reduction modulo p of
one of the invariants j(Ai). As the elements j(Ai) are conjugate it follows that all roots of Hd(x)p

are in this field.
By the algebraic theory of elliptic curves we know that there are elliptic curves Ep defined over

Fpr with absolute invariant jp. The curve Ep is determined up to twists, and if jp �= 0, 123 there is
exactly one twist of Ep.

For the sake of simplicity we shall assume now that r = 1 and that the prime number p is decom-
posed in Q(

√
−d). Class field theory of imaginary quadratic fields gives the following remarkable

result.

Theorem 5.49 There is an integer π ∈ Q(
√
−d) such that ππ = p and |p + 1 − (π + π)| is the

number of Fp-rational points on either Ep or one of its twists.

To understand this theorem one needs the theory of elliptic curves over finite fields and in partic-
ular of the Frobenius endomorphism and its related characteristic polynomial (cf. Example 4.87)
made explicit in Example 5.83. The theorem then states that the algebraic integer π, interpreted



100 Ch. 5 Varieties over Special Fields

as endomorphism of Ej(Ai) operates modulo p on Ep or one of its twists as Frobenius endomor-
phism, and so the characteristic polynomial of π, interpreted as an algebraic number, is equal to the
characteristic polynomial of the Frobenius endomorphism.

5.1.6 Hyperelliptic curves over CCCCCC

5.1.6.a Periods and invariants

Let C be a hyperelliptic curve of genus g defined over C with Jacobian variety JC . As we know
JC is as analytic variety isomorphic to a torusCg/ΛC . Since JC is principally polarized ΛC can be
chosen in the form Zd ⊕Ω ·Zd, where the (g× g)-matrix Ω is symmetric and has a positive definite
imaginary part, i.e., lies in the Siegel upper half plane Hg.

The matrix Ω is the period matrix of C. It can be computed by integrating a basis of holomorphic
differentials along paths on the Riemann surface corresponding to C. Since such a basis is explicitly
known for hyperelliptic curves (see Chapter 17) it is in principle possible to compute it. For elliptic
curves E this gives the period τ , a complex number with a positive imaginary part.

The next step for elliptic curves was to determine the isomorphism class when the period is
known. This task was solved by the j-function whose value at τ is the absolute invariant of E. To
construct j we used Eisenstein series as special functions on lattices, i.e., modular forms.

Analogous to the elliptic curve case we define values of complex functions to lattices that are
now Siegel modular forms: let Ω ∈ Hg the period matrix of a principally polarized abelian variety
and let z ∈ Cg be a column vector. The Riemann theta function is given by

θ(z, Ω) =
∑
n∈Zg

exp
(
πi(ntΩn + 2ntz)

)
.

This function is C-valued, holomorphic and symmetric, i.e., θ(z, Ω) = θ(−z, Ω).
For fixed Ω ∈ Hg we get a function from Cg to C and we define the Riemann theta divisor by

Θ(Ω) :=
{
z mod Λ | θ(z, Ω) = 0

}
.

Recall that τ and τ ′ define isomorphic elliptic curves if and only if τ ′ = aτ+b
cτ+d with a, b, c, d ∈ Z

and ad − bc = 1, i.e., if τ and τ ′ are equivalent under the action of SL2(Z), the group of invertible
(2 × 2)-matrices over Z with determinant 1.

An analogous result holds for arbitrary dimension. We define Sp(2g,Z) to be the symplectic
group of dimension g over Z. (For g = 1 this is SL2(Z).) It acts on Hg in a natural way (cf.
[LAN 1982]).

Theorem 5.50 Two period matrices Ω, Ω′ define isomorphic principally polarized abelian varieties
if and only if they lie on the same orbit under the operation of the symplectic group Sp(g,Z) onHg.

For a proof see [LAN 1982].
The theta divisors of two equivalent period matrices Ω, Ω′ do not have to be equal. But if they

are equivalent then there exists an a ∈ Ω
(

1
2Z

g
)

+ 1
2Z

g such that Θ(Ω′) = Θ(Ω)
a where Θ(Ω)

a denotes
the translation of Θ(Ω) by a.

This motivates the introduction of theta characteristics

θ

[
δ

ε

]
(z, Ω) =

∑
n∈Zg

exp
(

πi

(
n +

1
2
δ

)t

Ω
(
n +

1
2
δ

)
+ 2

(
n +

1
2
δ

)t(
z +

1
2
ε

))
(5.2)

with column vectors δ and ε ∈ (Z/2Z)g . If we fix δ, ε and set z = 0, we obtain functions on Hg,
called the theta constants. A theta constant is even, if δtε ≡ 0 (mod 2), and odd otherwise. All
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odd theta constants vanish for principally polarized varieties. There are 2g−1(2g + 1) even theta
constants.

Theorem 5.51 The complete set of theta constants uniquely determines the isomorphism class of a
principally polarized abelian variety of dimension g.

The proof is given in [IGU 1960].

Example 5.52 For g = 2 there are 10 even theta constants. A list of the vectors δ, ε ∈ (Z/2Z)2

used to get them is found in [WEN 2003]. For g = 3 there are 32 even theta constants.

By the theta constants we have found a complete system of invariants for isomorphism classes of
principally polarized abelian varieties of dimension g � 2. But two things are disturbing. First these
invariants are not “independent.” Secondly and worse they are defined analytically. But they define
points in an algebraic variety, the moduli space of isomorphism classes of principally polarized
abelian varieties of dimension g. So we would like to have algebraically defined invariants.

For g = 2, 3 we can make this precise. Due to results of Weil [WEI 1957] we know that every
principally polarized abelian variety A of dimension g � 3 is the Jacobian variety of a curve
C. Because of the famous theorem of Torelli, the isomorphism class of A with its polarization
is determined uniquely by the isomorphism class of C. So the invariants have to be algebraic
expressions in the coefficients of the equation defining C. Recall that for elliptic curves E we can
express jE by the coefficients g2, g3 of a Weierstraß equation.

In fact we can find these algebraic invariants for hyperelliptic curves of genus 2 and 3 using work
of Igusa [IGU 1960] and Shioda [SHI 1967].

5.1.6.b Hyperelliptic curves of genus 222222

For every principally polarized abelian variety A of dimension two there exist three absolute in-
variants j1, j2, and j3 called Igusa invariants, which determine its isomorphism class. They can
be expressed in terms of the theta constants. The explicit formulas can be found in [WEN 2003,
Section 5].

Let C : y2 = x5 +f4x
4 +f3x

3 +f2x
2 +f1x+f0 be the curve with JC = A. Then the invariants

ji of the Jacobian of C can be expressed by

j1 = I5
2/I10, j2 = I3

2I4/I10 and j3 = I2
2I6/I10, (5.3)

where the Ii’s are given below expressed in the coefficients of the curve.
By Spallek [SPA 1994, p. 71] the absolute invariants Ii are given in terms of the coefficients fj

as

I2 = 6f2
3 − 16f4f2 + 40f1,

I4 = 4
`
f2
4 f2

2 − 3f3f
2
2 − 3f2

4 f3f1 + 9f2
3 f1 + f4f2f1 − 20f4

1 + 12f3
4 f0 − 45f4f3f0 + 75f2f0

´
,

I6 = − 2
`−4f2

4 f2
3 f2

2 + 12f3
3 f2

2 + 12f3
4 f3

2 − 38f4f3f
3
2 + 18f4

2 + 12f2
4 f3

3 f1 − 36f4
3 f1

− 38f3
4 f3f2f1 +119f4f

2
3 f2f1−14f2

4 f2
2 f1−13f3f

2
2 f1 +18f4

4 f2
1 −13f2

4 f3f
2
1 −88f2

3 f2
1

− 32f4f2f
2
1 +160f4

1 −30f3
4 f2

3 f0 +99f4f
3
3 f0 +80f4

4 f2f0 −246f2
4 f3f2f0 −165f2

3 f2f0

+ 320f4f
2
2 f0 − 308f3

4 f1f0 + 930f4f3f1f0 − 800f2f1f0 + 450f2
4 f2

0 − 1125f3f2
0

´
,

I10 = f2
4 f2

3 f2
2 f2

1 − 4f3
3 f2

2 f2
1 − 4f3

4 f3
2 f2

1 + 18f4f3f
3
2 f2

1 − 27f4
2 f2

1 − 4f2
4 f3

3 f3
1 + 16f4

3 f3
1

+ 18f3
4 f3f2f

3
1 − 80f4f

2
3 f2f

3
1 − 6f2

4 f2
2 f3

1 + 144f3f
2
2 f3

1 − 27f4
4 f4

1 + 144f2
4 f3f

4
1

− 128f2
3 f4

1 −192f4f2f
4
1 +256f5

1 −4f2
4 f2

3 f3
2 f0 +16f3

3 f3
2 f0 +16f3

4 f4
2 f0 −72f4f3f

4
2 f0

+ 108f5
2 f0 + 18f2

4 f3
3 f2f1f0 − 72f4

3 f2f1f0 − 80f3
4 f3f

2
2 f1f0 + 356f4f

2
3 f2

2 f1f0

+ 24f2
4 f3

2 f1f0 − 630f3f
3
2 f1f0 − 6f3

4 f2
3 f2

1 f0 + 24f4f
3
3 f2

1 f0 + 144f4
4 f2f

2
1 f0

− 746f2
4 f3f2f

2
1 f0 + 560f2

3 f2f
2
1 f0 + 1020f4f

2
2 f2

1 f0 − 36f3
4 f3

1 f0 + 160f4f3f
3
1 f0
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− 1600f2f
3
1 f0 − 27f2

4 f4
3 f2

0 + 108f5
3 f2

0 + 144f3
4 f2

3 f2f
2
0 − 630f4f

3
3 f2f

2
0 − 128f4

4 f3
2 f2

0

+ 560f2
4 f3f

2
2 f2

0 + 825f2
3 f2

2 f2
0 − 900f4f

3
2 f2

0 − 192f4
4 f3f1f

2
0 + 1020f2

4 f2
3 f1f

2
0

− 900f3
3 f1f

2
0 + 160f3

4 f2f1f
2
0 − 2050f4f3f2f1f

2
0 + 2250f2

2 f1f
2
0 − 50f2

4 f2
1 f2

0

+ 2000f3f2
1 f2

0 + 256f5
4 f3

0 − 1600f3
4 f3f

3
0 + 2250f4f

2
3 f3

0 + 2000f2
4 f2f

3
0 − 3750f3f2f

3
0

− 2500f4f1f
3
0 + 3125f4

0 .

Hence we can compute the invariants ji of the curve C if we know either its period matrix or the
curve equation. Conversely, from the invariants we get a system of polynomial equations for the
coefficients of an equation defining C and we can solve this system in principle, e.g., by applying
Buchberger’s algorithm.

But there is a much more efficient way due to Mestre [MES 1991].
To use it we have to define new invariants, which we call Mestre’s invariants. In his paper, Mestre

introduces the invariants A, B, C, D [MES 1991] and invariants j′1, j
′
2, j

′
3 with

j′1 = A5/D, j′2 = A3B/D and j′3 = A2C/D

which satisfy

j′1 =
−j1
1205

, j′2 =
720j′1
6750

− j2
(1203 × 6750)

, j′3 =
j3

1202 × 2025100
+

1080j′2
2025

− 16j′1
375

·

In addition we need

α =
−1

4556250

(
1
j′1

+ 62208
)

+
16j′2
75j′1

+
16j′3
45j′1

− 2
j′22

3j′12
− 4j′2j

′
3

3j′21

which relates Mestre’s invariant D with Igusa’s discriminant ∆ by α = D
∆ ·

Next one defines a conic Q(j1, j2, j3) by the equation

∑
1�i,k�3

Qikxixk = 0

with

Q11 =
6j′3 + j′2

3j′1
,

Q12 = Q21 =
2
(
j′2

2 + j′1j
′
3

)
3j′1

2
,

Q13 = Q31 = Q22α

Q23 = Q32
1

j′1
2

(
j′2

3

3j′1
+

4j′2j
′
3

9
+

2j′3
2

3

)
,

Q33 =
1

j′1
2

(
j′1j

′
2α

2
+

2j′2
2
j′3

9j′1
+

2j′3
2

9

)
·

This conic is intersected with a cubic H(j1, j2, j3) given by the equation

∑
1�i,k,l�3

Hiklxixkxl
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where

H111 =
2
“
j′1j

′
3 − 6j′2j

′
3 + 9j′1

2
α
”

9j′1
2

,

H112 = H211 =
2j′2

3
+ 4j′1j

′
2j

′
3 + 12j′1j

′
3
2

+ j′1
3
α

9j′1
3

,

H113 = H311 = H131 = H122 =
j′2

3
+ 4/3j′1j

′
2j

′
3 + 4j′2

2
j′3 + 6j′1j

′
3
2

+ 3j′1
2
j′2α

9j′1
3

,

H123 =
1

18j′1
3

 
2j′2

4

j′1
+ 4j′2

2
j′3 +

4j′1j
′
3
2

3
+ 4j′2j

′
3
2
+ 3j′1

2
j′2α + 12j′1

2
j′3α

!
,

H133 = H313 = H331 =
1

18j′1
3

 
j′2

4

j′1
+

4j′2
2
j′3

3
+

16j′2
3
j′3

3j′1
+

26j′2j
′
3
2

3
+ 8j′3

3
+ 3j′1j

′
2
2
α + 2j′1

2
j′3α

!
,

H222 =
1

9j′1
3

 
3j′2

4

j′1
+ 6j′2

2
j′3 +

8j′1j
′
3
2

3
+ 2j′2j

′
3
2 − 3j′1

2
j′3α

!
,

H223 = H232 = H322 =
1

18j′1
3

 

−2j′2
3
j′3

3j′1
− 4j′2j

′
3
2

3
− 4j′3

3
+ 9j′1j

′
2
2
α + 8j′1

2
j′3α

!
,

H233 = H323 = H332 =
1

18j′1
3

 
j′2

5

j′1
2 +

2j′2
3
j′3

j′1
+

8j′2j
′
3
3

9
+

2j′2
2
j′3

2

3j′1
− j′1j

′
2j

′
3α + 9j′1

3
α2

!
,

H333 =
1

36j′1
3

 

−2j′2
4
j′3

j′1
2

− 4j′2
2
j′3

2

j′1
− 16j′3

3

9
− 4j′2j

′
3
3

j′1
+ 9j′2

3
α + 12j′1j

′
2j

′
3α + 20j′1j

′
3
2
α

!

·

Note that this is easily done if the conic has a rational point. Then the set of points on the conic can
be parameterized by a parameter t. So in the worst case we have to go to a quadratic extension of
K to perform this step. The intersection consists of six points that are the zeroes of a polynomial
f(t) of degree 6 in the parameter t.

Lemma 5.53 (Mestre) The curve C with Igusa invariants {j1, j2, j3} can be given by the equation

y2 = f(x).

where f is the polynomial of degree 6 constructed above.

We note that this is not the standard form for an equation of genus 2. But we can transform one of
the zeroes of f(x) to be the infinite point on C and then find an equation

y2 = f̄(x)

with f̄ a polynomial of degree 5 for the curve C.
Until now we have done all computations over C. But Mestre’s result is a purely algebraic one,

and so we get:

Theorem 5.54 Let A be a principally polarized abelian variety defined overC with Igusa invariants
{j1, j2, j3}. Let K0 ⊂ C be a field containing these invariants and such that the conic Q(j1, j2, j3)
has a K0-rational point. Then A is the Jacobian variety of a curve C of genus 2 defined over K0.
Its equation is

y2 = f(x),

where f(x) is the polynomial of degree 6 from Lemma 5.53.
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Let K be an extension field of K0 such that f(x) has a zero x0 in K . Then C as curve over K can
be given by the equation

y2 = f̄(x)

which is obtained by transforming the point (x0, 0) to infinity.

5.1.6.c Hyperelliptic curves of genus 333333

Let A be a principally polarized abelian variety of dimension 3. We assume that we know its period
matrix. So we know the theta constants and, by using a theorem of Mumford–Poor, we can decide
whether it is the Jacobian of a hyperelliptic curve (cf. [WEN 2001a, Theorem 4.3]. If so we want to
find the equation of the corresponding curve given in the form

C : y2 = f(x)

where f(x) is a polynomial of degree 7.
In principle we can proceed as in the case of genus 2. Only things become more complicated.

One way proposed in [WEB 1997] is as follows. First one computes the Rosenhain model

y2 = x(x − λ1) · · · (x − λ7)

of C where the complex numbers λi are rational expressions in theta constants. Having this equation
one computes the Shioda invariants j1, j3, j5, j7, j9, which determine the isomorphism class of C
as curve over C.

Then a variant of Mestre’s method allows us to find an equation for C that is defined over field of
degree � 2 overQ(j1, j3, j5, j7, j9). For details we refer to [WEB 1997] and [WEN 2001a].

Remarks 5.55

(i) In [WEB 1997] the theoretical results and the algorithms to compute curves are given
for hyperelliptic curves of genus � 5.

(ii) In the elliptic case we went further. By using the Weierstraß ℘ function and its derivative
we were able to make (the inverse of) the Abel–Jacobi map explicit. In [KAM 1991] it
is shown that an analogous definition of Weierstraß functions and its higher derivatives
can be used to achieve this for hyperelliptic curves of any genus.

5.1.6.d Hyperelliptic curves of genus 222222 and 333333 with CM

In the last section we have seen that the knowledge of the period matrix of a hyperelliptic curve C
of genus 2 or 3 makes it possible to compute its invariants and then to determine its equation in an
algebraic way.

We shall discuss now how the theory of CM-fields makes it possible to determine the invariants in
an algebraic way if JC has complex multiplication. Though the ideas are quite analogous to those
that occurred in the case of complex multiplication of elliptic curves we need considerably more
technical details. The key ingredients were developed in the important book of Taniyama–Shimura
[SHTA 1961]. The reader who is interested in this deep and beautiful theory is encouraged to use
this book as reference for the whole section.

We shall begin by giving a very rough sketch of the general CM theory and then we shall apply it
to the special case of Jacobian varieties of hyperelliptic curves of genus 2 and 3.
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Abelian varieties to CM-types

A number field K with [K : Q] = 2g is called CM-field if K is an imaginary quadratic extension
of a totally real number field K0.

Let ϕi, 1 � i � 2g be the 2g distinct embeddings from K into C. A tuple

(K, Φ) :=
(
K, {ϕ1, ϕ2, . . . , ϕg}

)
is called CM-type, if all embeddings ϕi are distinct and no two of them are complex conjugate to
each other.

Let A � Cg/ΛA be an abelian variety over C with End(A) ⊗ Q � K . Hence A has com-
plex multiplication with ring of endomorphisms being an order O ⊂ K . We have to make the
identification of O with End(A) more explicit.

Definition 5.56 Assume that the operation of α ∈ O on A is given by the action of⎡
⎢⎢⎣

ϕ1(α)
. . .

ϕg(α)

⎤
⎥⎥⎦ .

on Cg. Then A is an abelian variety of CM-type (K, Φ) =
(
K, {ϕ1, · · · , ϕg}

)
.

Proposition 5.57 For every abelian variety A with End(A) ⊗ Q � K there exists a CM-type
(K, Φ) =

(
K, {ϕ1, · · · , ϕg}

)
.

To ease things we restrict ourselves (as in the case of elliptic curves) to the case that End(A) = OK ,
the ring of integers in K .

Theorem 5.58 Let A be an ideal in OK and let (K, Φ) be a CM-type. Take

Φ(A) :=
{(

ϕ1(α), . . . , ϕg(α)
)t | α ∈ A

}
in Cg .

Then Φ(A) is a lattice inCg and the torusCg/Φ(A) is an abelian varietyAA,Φ which has complex
multiplication by OK .

The action of OK on Cg/Φ(A) is given by the action of the g-tuple⎡
⎢⎢⎣

ϕ1(γ)
. . .

ϕg(γ)

⎤
⎥⎥⎦ with γ ∈ OK

on Cg. Conversely every abelian variety A of CM-type (K, Φ) with complex multiplication by OK

is isomorphic to an abelian variety AA,Φ.

The proof of this theorem can be found in [SHTA 1961].

Principal polarizations

We are interested in Jacobian varieties and corresponding curves with complex multiplications and
so we need a finer structure: we want to construct principally polarized abelian varieties and we
have to determine isomorphism classes of abelian varieties with principal polarizations. For this it
is convenient to make an additional assumption that is very often satisfied: the maximal real subfield
K0 of K has class number 1, i.e., the ring of integers OK0 is principal.
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Lemma 5.59 Assume that the maximal real subfield K0 in the CM-field K has class number 1. Let
(K, Φ) be a CM-type, A an ideal of OK and AA,Φ the abelian variety attached to these data.

There exists a basis {α1, . . . , α2g} of Φ(A) such that the Riemann form 5.22 is

[
E(αi, αj)

]
1�i,j�2n

=

[
0 Ig

−Ig 0

]
.

Hence the period matrix of AA,Φ lies in the Siegel upper half plane Hg and we can endow AA,Φ

with a principal polarization determined by an element γ in K (cf. [LAN 1982]).

For a proof see [WEN 2001b].

Definition 5.60 We take the notations as in the Lemma 5.59. We shall write (AA,Φ, γ) for the
abelian variety corresponding to the ideal A, the CM-type Φ and the polarization attached to γ.

As in the case of elliptic curves, we now need a characterization of isomorphism classes of abelian
varieties with principal polarization that correspond to a given CM-type (K, Φ).

For this we need some notation. Let K be a CM-field with CM-type Φ. We assume that the
maximal totally real subfield has class number 1.

Let U+ denote the totally positive units of K0 (i.e., units u in OK such that for all 1 � j � g
we have ϕi(u) is a positive real number). Let U1 be the image of the norm map from K to K0

applied to the units in OK . We denote by ε1, . . . , εd a system of representatives for U+/U1. Note
that the complex conjugation generates the Galois group of K over K0. Using our assumption
that the class number of K0 is 1 we get that for any ideal A of K the ideal AA can be interpreted as
a principal ideal (α) of K0.

Definition 5.61 The subgroup Cl′(OK) of the class group Cl(OK) consists of the ideal classes c
that contain an ideal A with AA = αOK with ϕi(α) totally positive, i.e., ϕi(α) is a real positive
number for every 1 � i � g. The order of Cl(OK)′ is denoted by h′

K .

We have the following theorem:

Theorem 5.62 Let (AOK ,Φ, γ) be a principally polarized abelian variety attached to OK . Let
A1, . . . ,
Ah′

K
be a system of representatives for Cl(OK)′ with AiAi = (αi) and αi totally positive. There

are h′
kd isomorphism classes of principally polarized abelian varieties with complex multiplication

by OK of CM-type (K, Φ).

Let KΦ =
d⋃

l=1

K l
Φ with

K l
Φ =

{
(AAi , εl(αiγ)−1) | i = 1, . . . , h′

k

}
.

The set KΦ is a set of representatives of the isomorphism classes of principally polarized abelian
varieties of CM-type (K, Φ).

Warning: principally polarized abelian varieties of different CM-types can be isomorphic.

Example 5.63 Consider the case where the principally polarized abelian variety has dimension two.
Here, the CM-field is an imaginary quadratic extension of a real quadratic field K0.

If K is Galois, we get all isomorphism classes of principally polarized abelian varieties with
complex multiplication with OK by choosing one CM-type.

If K is non-normal, we need two CM-types to get all isomorphism classes of principally polarized
abelian varieties.



§ 5.1 Varieties over the field of complex numbers 107

Class polynomials for hyperelliptic curves of genus 222222 and 333333
Recall from the previous paragraph that for elliptic curves with complex multiplication by OK the
j-invariant lies in the Hilbert class field of the imaginary quadratic field K . Again the situation is
analogous but more complicated in the higher dimensional case.

We need the notion of the reflex CM-field K̂ ([SHI 1998]), which for g = 1 is equal to K and in
general different from K . We shall not need the explicit definition of the reflex CM-field but use the
arithmetic information from class field theory to determine minimal polynomials for invariants.

Theorem 5.64 Let K be a CM-field of degree 4 overQ.

(i) The Igusa invariants j1(C), j2(C), j3(C) for hyperelliptic curves C of genus 2 with
complex multiplication with the ring of integers OK of K are algebraic numbers that lie
in a class field over the reflex CM-field K̂.

(ii) For hyperelliptic curves C and C′ with complex multiplication with OK we get that for
k ∈ {1, 2, 3} the invariants jk(C) and jk(C′) are Galois conjugates.

(iii) Let {C1, . . . , Cs} be a set of representatives of isomorphism classes of curves of genus 2
whose Jacobian varieties have complex multiplication with endomorphism ring OK . We
denote by jk(i) the k-th Igusa invariant belonging to the curve Ci.
The three class polynomials

HK,k(X) =
s∏

i=1

(
X − j

(i)
k

)
, k = 1, . . . , 3.

have coefficients in Q.

For hyperelliptic curves of genus 3 we get a completely analogous result.

Theorem 5.65 Let K be a CM-field of degree 6 overQ.

(i) The Shioda invariants j1(C), j3(C), j5(C), j7(C), j9(C) for hyperelliptic curves C of
genus 3 with complex multiplication with the ring of integers OK of K are algebraic
numbers that lie in a class field over the reflex CM-field K̂.

(ii) For hyperelliptic curves C and C′ with complex multiplication with OK we get that for
k ∈ {1, 3, 5, 7, 9} the invariants jk(C) and jk(C′) are Galois conjugate.

(iii) Let {C1, . . . , Cs} be a set of representatives of isomorphism classes of curves of genus 3
whose Jacobian varieties have complex multiplication with endomorphism ring OK . We
denote by jk(i) the k-th Igusa invariant belonging to the curve Ci.
The five class polynomials

HK,k(X) =
s∏

i=1

(
X − j

(i)
k

)
, k ∈ {1, 3, 5, 7, 9}.

have coefficients in Q.

Denominators in the class polynomials

The careful reader will have remarked that — contrary to the elliptic case — we did not claim in
Theorems 5.64 and 5.65 that the class polynomials have integer coefficients. In fact this is wrong.

There are two reasons for this. First, small primes occur (for g = 2 up to 5 and for g = 3 up to
7) because we did not normalize the invariants in a careful enough way. But much more serious is
the second reason: it may happen that the Jacobian of a curve has good reduction modulo a place
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p of the field over which it is defined but the curve does not have good reduction. The curve may
become reducible modulo p.

There are famous conjectures about the arithmetic of curves over number fields related to the
ABC-conjecture that this should occur only for places with moderate norm.

In practice this is confirmed. So to compute the coefficients of the class polynomial one computes
a real approximation with high precision and then determines the denominator using the continued
fraction algorithm.

Reduction of hyperelliptic curves of genus 222222 and 333333 with complex multiplication

The invariants of a hyperelliptic curves of genus 2 or 3 with complex multiplication with a CM-field
K are zeroes of polynomials over Q. Let us choose a prime p that does not divide the denominator
of the coefficients of these polynomials. Then we can reduce the class polynomials modulo p.

We can factor the resulting polynomials over Fp and find zeroes in an extension field Fq . By
Galois theory we see that the class polynomials will split in linear factors over Fq. Combining
“related” zeroes we get systems of invariants for which the resulting curves Cq have a Jacobian
variety with ring of endomorphisms containing an isomorphic copy of OK .

So, we have very explicit information about the endomorphisms of the Jacobian variety of Cq ,
which are defined over (possibly a quadratic extension of) Fq. Class field theory of CM-fields can
be used to identify the Frobenius endomorphism.

We explain the easiest case, which is the most important one for practical use: we assume that
the genus of Cq is equal to 2 and that q = p.

Theorem 5.66 Let K be a CM-field of degree 4 and assume that p is a prime � 7, which does not
divide the denominator of the class polynomials HK,k(X) =: Hk(X).

• For every w ∈ OK with ww = p the polynomials Hk(X) have a linear factor over Fp

corresponding to w.
• Let jk be a zero of Hk(X) modulo p. There are two Fp-isomorphism classes Ap,1 and
Ap,2 of principally polarized abelian varieties over Fp with Igusa invariants jk.

• The principally polarized abelian varieties Ap,1 and Ap,2 have complex multiplication
by OK .

• The number of Fp-rational points of Ap,m, m = 1, 2 is given by

4∏
i=1

(
1 + (−1)mwi

)

where w = w1 and wi are conjugates of w.
• The equation ww = p with w ∈ OK has (up to conjugacy and sign) at most two different

solutions, i.e., for every CM-field of degree 4 there are at most four different possible
orders of groups of Fp-rational points of principally polarized abelian varieties, defined
over Fp with complex multiplication by OK .

For genus 3 an analogous result holds. We refer the interested reader to Weng [WEN 2001a].

5.2 Varieties over finite fields

In this section we shall deal with varieties defined over finite fields. We assume that the ground field
K is equal to Fq with q = pd.
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5.2.1 The Frobenius morphism

In this section, we consider two extension fields of Fp. We assume K = Fq with q = pd, and
consider an arbitrary power φk

p of the absolute Frobenius automorphism, which fixes the elements
of Fpk ⊂ Fp. We recall the definition of the Frobenius endomorphism and its action on varieties
over Fq given in Example 4.39, which we shall need in a slightly more general way.

Take k ∈ N and let φpk be the Frobenius automorphism of the field Fpk , sending α ∈ Fpk

to πk(α) = αpk

. We can extend φpk to points of projective spaces over Fqk by sending points
(X0, . . . , Xn) to (Xpk

0 , . . . Xpk

n ). We apply φpk to polynomials with coefficients in the algebraic
closure Fp of Fp by applying it to the coefficients.

If V is a projective variety over Fq with ideal I we can apply φpk to I and get a variety φpk(V )
with ideal φpk (I). The points of V are mapped to points on φpk(V ).

The corresponding morphism from V to φpk(V ) is called the Frobenius morphism with respect
to the field Fpk and is again denoted by φpk . It is the k-th power of the absolute Frobenius φp.

We note that though φpk is by definition a Galois group element it induces a morphism from V to
φpk(V ). We recall that in the language of function fields the corresponding rational map φ∗

pk from
K(φpk(V )) is given as follows: choose an open affine part of V and affine coordinate functions
x1, . . . , xn; then the image of φ∗

pk in K(V ) is generated by xpk

1 , . . . , xpk

n .

It follows that this rational map is purely inseparable of degree pk dim(V ).
In general φpk (V ) will not be isomorphic to V . But if d divides k then V = φpk (V ) since then

φpk(I) = I .

Proposition 5.67 Let s be a natural number such that ks is divisible by d. Put V0 := V and for
i = 1, . . . , s − 1 define Vi := φpk(Vi−1).

Then we get the chain of morphisms

V = V0

φ
pk

→ V1

φ
pk

→ · · ·
φ

pk

→ Vs−1

φ
pk

→ Vs = V

each being purely inseparable of degree pk dim(V ).
The composite of the morphisms is φpks .
Hence for k = 1 we get a decomposition of φq into a chain in which the absolute Frobenius

endomorphism occurs.

5.2.2 The characteristic polynomial of the Frobenius endomorphism

We assume now that C is a projective absolutely irreducible nonsingular curve over Fq of genus
g � 1. As seen above the Frobenius endomorphism operates on the rational functions on C, on
the points of C and — by linear continuation — on the divisors of C. It maps principal divisors to
principal divisors and preserves the degree of divisors. So it operates in a natural way on Pic0

C
Fq

,
the divisor class group of degree 0 of the curve C over Fq.

From the results in the last paragraph and from the fact that the Galois group of Fq is (topologi-
cally) generated by φq we get:

Proposition 5.68 The Frobenius morphism induces a homomorphism of Pic0
C

Fq
and hence an en-

domorphism, also denoted by φq , of the Jacobian variety JC defined over Fq.
This endomorphism is an isogeny that is purely inseparable of degree qg .
The elements fixed by φq in JC(Fq) are JC(Fq) = Pic0

C . Hence JC(Fq) is the kernel of IdJC −φq

and |Pic0
C | = deg(IdJC − φq).
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Now recall that for primes � different from p we have attached a Galois �-adic representation ρ̃JC , �

induced by the action of GFq on points of order �k of JC Theorem 4.82. In fact, we have to replace
the field Fp by Fq and the absolute Frobenius endomorphism by the relative one φq but all the results
about �-adic representations of Galois elements and endomorphisms remain true after this change.

We associate to φq the characteristic polynomial χ
(
T�(φq)

)
JC

(T ) of ρ̃JC , �(φq), which is a monic
polynomial of degree 2g with coefficients in Z and it is independent of the choice of �.

Definition 5.69 The polynomial χ(φq)JC (T ) := χ
(
T�(φq)

)
JC

(T ) is the characteristic polynomial
of the Frobenius endomorphism φq on C and of JC . To simplify notation we also use χ(φq)C(T ) to
denote it.

Since we know that deg([1] − φq) = χ(φq)C(1) we get:

Corollary 5.70 The order of Pic0
C , or equivalently, of JC(Fq) is equal to χ(φq)C(1).

Hence the determination of the number of elements in Pic0
C is easy if we can compute the charac-

teristic polynomial of the Frobenius endomorphism on C.
The following remark is very useful if we want to compute this polynomial.

Lemma 5.71 For n prime to p the restriction of φq to JC [n] has the characteristic polynomial
χ(φq)C(T ) (mod n).

Corollary 5.72 The endomorphism χ(φq)C(φq) is equal to the zero map on JC .

There are two distinguished coefficients of the characteristic polynomial of a linear map: the abso-
lute coefficient, which is (up to a sign) the determinant of the map, and the second highest coeffi-
cient, which is the negative of the sum of the eigenvalues and is called the trace of the map.

In our case we know that χ(φq)C(0) = qg since the degree of φq as endomorphism on JC is
qdim(JC).

The trace of χ(φq)C(T ) is called the trace of the Frobenius endomorphism on C and denoted by
Tr(φq).

Example 5.73 Let E be an elliptic curve over Fq . Then χ(φq)E(T ) = T 2 − Tr(φq)T + q, and so

|E(Fq)| = q + 1 − Tr(φq).

5.2.3 The theorem of Hasse–Weil for Jacobians

The following results are true for arbitrary abelian varieties over finite fields. We shall state them
only for Jacobians of curves C of genus g > 0.

Definition 5.74 The zeroes λ1, . . . , λ2g of χ(φq)C(T ) are called the eigenvalues of the Frobenius
φq on C and on JC .

By definition the eigenvalues of φq are algebraic integers lying in a number field of degree � g.
The product is equal to

2g∏
i=1

λi = qg.

Because of the duality on Jacobian varieties (or as a consequence of the theorem of Riemann–
Roch [STI 1993]) one can make a finer statement.
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Proposition 5.75 We can arrange the eigenvalues of φq on C such that

for all i = 1, . . . , g we have λiλi+g = q.

But there is a much deeper result. It is the analogue of the famous Riemann hypothesis for the Rie-
mann ζ-function and it says that the absolute value of each eigenvalue λi interpreted as a complex
number is, for every curve C of arbitrary positive genus g, equal to

√
q.

This result was proved by Hasse for elliptic curves and by Weil for abelian varieties. A gen-
eralization for arbitrary varieties over finite fields was formulated by Weil. One of the greatest
achievements of mathematics in the twentieth century was the proof of these Weil conjectures by
Deligne.

The general philosophy is that the number of rational points on varieties over finite fields should
not differ “too much” from the number of points of the projective spaces of the same dimension, and
the difference is expressed in terms of the size of the trace of the Frobenius endomorphism acting
on attached vector spaces like Tate modules, or more generally, cohomology groups.

Let us come back to our situation and resume what we know.

Theorem 5.76 Let C be a projective absolutely irreducible nonsingular curve of genus g > 0 over
Fq. Let λ1, . . . , λ2g be the eigenvalues of the Frobenius endomorphism on C.

(i) Each λi is an algebraic integer of degree � 2g.

(ii) We can numerate the eigenvalues such that for 1 � i � g we have

λiλi+g = q.

(iii) For 1 � i � 2g take any embedding of λi into C. Then the complex absolute value |λi|
is equal to

√
q.

For the proof of these fundamental results about the arithmetic of curves and abelian varieties we
refer to [STI 1993] or, in a more general frame, to [MUM 1974, pp. 203–207].

Corollary 5.77 Let C/Fq be a curve of genus g. If

JC(Fq)[n] ⊇ (Z/nZ)t

for some t > g then
n | q − 1.

Proof. We find t linear independent
__
D1, . . . ,

__
Dt elements in JC(Fq)[n], which lie in the eigenspace

ρJC ,n(φq) with eigenvalue 1 (mod n). Hence, there is a 1 � i � g such that λi and λi+g are both
equivalent to 1 modulo n. Since λiλi+g = q we have q ≡ 1 (mod n).

We can combine this corollary with Theorem 4.73 to get the following proposition.

Proposition 5.78 Let C/Fq be a curve of genus g. For the structure of the group of Fq-rational
points on the Jacobian we have

JC(Fq)[n] � Z/n1Z× Z/n2Z× · · · × Z/n2gZ,

where ni | ni+1 for 1 � i < 2g and for all 1 � i � g one has ni | q − 1.

From the Theorem 5.76 we obtain bounds on the number of points on the curve and its Jacobian.
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Corollary 5.79 Let C be as in Theorem 5.76.
Then ∣∣∣ |Pic0

C | − qg
∣∣∣ =

∣∣∣∣∣
2g∏

i=1

(1 − λi) − qg

∣∣∣∣∣ = O
(
qg−1/2

)
.

Take k ∈ N. Since φqk = φk
q we can extend this result:

Corollary 5.80 The number Nk of Fqk -rational points of JC , or equivalently, the number of ele-
ments in Pic0

C·F
qk

is estimated by

∣∣∣Nk − qgk
∣∣∣ =

∣∣∣∣∣
2g∏

i=1

(1 − λk
i ) − qgk

∣∣∣∣∣ = O
(
qk(g−1/2)

)
.

This corollary can be used to compute the ζ-function of the curve C [STI 1993] and to get a bound
for the number of rational points on C.

Corollary 5.81 Let C be as above.
Then

| |C(Fq)| − q − 1| � 2g
√

q.

The estimates for the number of elements of Pic0
C and of C(Fq) are called the Hasse–Weil bounds.

In fact the Serre bound gives the sharper estimate

| |C(Fq)| − q − 1| � g�2√q�.

When one wants to compute the characteristic polynomial of the Frobenius endomorphism it is
very important that one has ad hoc estimates for the size of the coefficients of this polynomial.
Again Theorem 5.76 can be used in an obvious way to get

Corollary 5.82 The characteristic polynomial of φq has a very symmetric shape given by

χ(φq)C(T ) = T 2g + a1T
2g−1 + · · · + agT

g + · · · + a1q
g−1T + qg,

where ai ∈ Z, 1 � i � g.
The absolute value of the i-th coefficient of χ(φq)C(T ) is bounded by

(
2g
i

)
q(2g−i)/2.

Example 5.83 Let E be an elliptic curve over Fq. The eigenvalues λ1 and λ2 of φq on E are
algebraic integers of degree � 2 with absolute value |λi| =

√
q and λ1λ2 = q. The number of

points in E(Fq) is estimated by

| |E(Fq)| − q − 1| � 2
√

q.

The interval [−2
√

q + q + 1, 2
√

q + q + 1] is called the Hasse–Weil interval. All elliptic curves
defined over Fq are forced to have their number of rational points lying in this interval.

5.2.4 Tate’s isogeny theorem

We end this section by stating deep results due to Tate and Tate–Honda [TAT 1966], which demon-
strate the importance of characteristic polynomials of Frobenius endomorphisms.



§ 5.2 Varieties over finite fields 113

Theorem 5.84

(i) Let A and A′ be abelian varieties over Fq . Then A is isogenous to A′ over Fq if and only
if χ(φq)A(T ) = χ(φq)A′(T ).

(ii) Assume that λ1, . . . , λ2g are algebraic integers lying in a number field of degree � 2g and
satisfying the properties of eigenvalues of Frobenius endomorphism as stated in Corol-
lary 4.118. Then there is an abelian variety A over Fq such that λ1, . . . , λ2g are the
eigenvalues of the Frobenius endomorphism on A.

Note that this abelian variety need not be principally polarized, and if it is, it need not to be a
Jacobian of a curve.

Maisner and Nart [MANA 2002] study the problem to decide whether λ1, . . . , λ2g belong to a
hyperelliptic curve.
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6.1 General duality results

Let C be a curve of genus g defined over a field K with Jacobian variety JC .
As mentioned in Section 5.1.3 there is a duality theory of abelian varieties, and Jacobians are

self-dual. Hence, the points of order n form an abelian group V = JC [n] endowed with a natural
bilinear map.

We have already treated the case when the characteristic of K is p and n = p (although without
emphasizing the duality theory behind it) and we have seen in Proposition 4.132 that we can identify
V = JC [p] with a subgroup of the additive group K2g−1.

We shall therefore assume from now on that n is a natural number prime to p. In this case the
duality of JC induces a nondegenerate pairing on JC [n] with values in the group of n-th roots of
unity µn, so JC [n] becomes self-dual with respect to this pairing. In fact this pairing was well-
known already in “classical times” for K = C. It is related to Riemann forms and is discussed in
[MUM 1974, Section 20]. It is defined for arbitrary principally polarized abelian varieties and given
in an explicit form on p. 187 of that book. Using this explicit form it is easy to generalize the pairing
in the abstract setting of abelian varieties by the same formulas. In the case of elliptic curves this
can be found in [SIL 1986]. The resulting pairing is called the Weil pairing.

The Weil pairing has very nice properties that can all be found in [MUM 1974]. It is defined as
pairing on the group of torsion points of order n prime to p and it is compatible with the natural
maps from JC [n] to JC [n′] for n′ dividing n. Hence taking n = �k it can be extended to a pairing
of Tate modules T�(JC).
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Moreover, the pairing is compatible with the action of the absolute Galois group GK of K . A useful
consequence is that JC [n]

(
K
)

= JC(K)[n] implies that K contains the n-th roots of unity. (If K
is a finite field we find another argument in Corollary 5.77 to see this).

One disadvantage is that the Weil pairing is skew symmetric. This implies that there are subspaces
of dimension g in JC [n] such that the restriction of the pairing vanishes identically (“maximal
isotropic subspaces”). So we need the rationality of many n-torsion points in order to get subspaces
of JC [n] on which the Weil pairing is nondegenerate.

Nevertheless the Weil pairing is a possibility for constructing a bilinear structure on DL systems
inside abelian varieties. In this book however we shall prefer a derived pairing which, for our
purposes, has nicer properties both from the theoretical and from the computational point of view:
the Tate pairing.

6.2 The Tate pairing

We shall begin by giving the general background for the construction of the Tate pairing. It involves
Galois cohomology, hence requires some knowledge of nonelementary algebra. We shall then spe-
cialize more and more, and in the end we shall obtain a description of the pairing in the cases that
are of interest to us. At this point, it is quite elementary and does not use any advanced ingredients.
We advise the reader who is only interested in applications to skip as much of the following as he
(dis-)likes and in the worst case to begin reading Section 6.4.

After this warning we begin with the theory. We are interested in Jacobians but to define the Tate
pairing we use results that are true for arbitrary abelian varieties A defined over K . For simplicity
we shall assume that A is principally polarized and so it is isomorphic to its dual variety (as is true
for Jacobians). The assumption that n is prime to p implies that the Kummer sequence

0 → A
(
K
)
[n] → A

(
K
) [n]→ A

(
K
)
→ 0 (6.1)

is an exact sequence of GK-modules.
We can therefore apply Galois cohomology and obtain the exact sequence

0 → A(K)/nA(K) δ→ H1
(
GK , A

(
K
)
[n]
) α→ H1

(
GK , A

(
K
))

[n] → 0.

Since this is an important sequence both in theory and in practice we explain it in more detail.
Recall that for a GK-module M the group Hn(GK , M) is a quotient of the group of n-cocycles

(i.e., of maps c from the n-fold Cartesian product Gn
K to M satisfying a combinatorial condition)

modulo the subgroup of n-coboundaries. Whenever needed we shall give an explicit description of
the cohomology groups that occur.

Example 6.1 Obviously 1-cocycles are maps

c : GK → M

such that for all σ, τ ∈ GK we have

c(στ) = c(σ) + σc(τ)

and 1-coboundaries are maps
c : GK → M

such that there exists an element m ∈ M with

c(σ) = σ · m − m

for all σ ∈ GK .
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Let P ∈ A(K). There exists a point Q ∈ A
(
K
)

such that [n]Q = P . Define

δ′(P ) : GK → A
(
K
)
[n]

σ �→ σ · Q − Q.

We easily check that δ′(P ) is a 1-cocycle with image in A
(
K
)
[n] and that another choice of Q′ with

[n]Q′ = P changes this cocycle by a coboundary and so we get a well defined map from A(K)
to H1

(
GK , A

(
K
)
[n]
)
. Another immediate check shows that the kernel of this map is exactly

[n]A(K). This explains the first part of the Kummer sequence.
We now use the injection of A

(
K
)
[n] into A

(
K
)

to interpret cocycles with values in A
(
K
)
[n]

as cocycles with values in A
(
K
)
. Going to the quotient modulo coboundaries gives the map α.

Since the arguments of the induced cocycles are points of order n it follows that the image of α is
contained in the subgroup of H1

(
GK , A

(
K
))

, which is annihilated by the map “multiplication by
n.”

We can check, either directly or by using properties of cohomology, that α is surjective and that
the kernel of α is equal to the image of δ.

Next we use that A
(
K
)
[n] is self-dual as a GK -module under the Weil pairing, which we denote

by Wn. We obtain a cup product

∪ : H1
(
GK , A

(
K
)
[n]
)
× H1

(
GK , A

(
K
)
[n]
)
→ H2

(
GK , K

∗)
[n]

in the following way:
Represent ζ1, ζ2 ∈ H1

(
GK , A

(
K
)
[n]
)

by cocycles c1, c2. Then ζ1∪ζ2 is the cohomology class
of the 2-cocycle

c : GK × GK → K
∗

given by
c(σ1, σ2) := Wn

(
c1(σ1), c2(σ2)

)
.

This map ∪ is bilinear.
We can apply this to a point P ∈ A(K) and a cohomology class γ ∈ H1

(
GK , A

(
K
))

[n] to
define the Tate pairing

〈· , ·〉T,n : A(K)/nA(K) × H1
(
GK , A

(
K
))

[n] → H2
(
GK , K

∗)
[n]

by
〈P + nA(K), γ〉T,n = δ

(
P + nA(K)

)
∪ α−1(γ).

It is routine to check that 〈· , ·〉T,n is well defined and bilinear.

Remark 6.2 The Tate pairing relates three very interesting groups occurring in Arithmetic Geom-
etry: the Mordell–Weil group of A, the first cohomology group of A, which can be interpreted
as group of principally homogeneous spaces over A, and H2

(
GK , K

∗)
, the Brauer group of the

ground field K , which can be interpreted as group of classes of central simple algebras with center
K with the class of full matrix groups as neutral element.

6.3 Pairings over local fields

We now assume that K is a local field (e.g., a p-adic field) with finite residue field Fq.
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6.3.1 The local Tate pairing

We have the beautiful result of Tate [TAT 1958]:

Theorem 6.3 Let A be a principally polarized abelian variety over K , e.g., A = JC .
Let

〈· , ·〉T,n : A(K)/nA(K) × H1
(
GK , A

(
K
))

[n] → H2
(
GK , K

∗)
[n]

be the Tate pairing as defined above. Then 〈· , ·〉T,n is a nondegenerate Z-bilinear map.

It is thus certainly worthwhile to study in more detail the groups that are involved.
To simplify the situation we shall assume that A has good reduction, i.e., we find equations for

A with coefficients in the ring of integers of K whose reductions modulo the valuation ideal of K
again define an abelian variety over Fq. This situation is typical for the applications that we have
in mind. In fact we shall begin with an abelian variety over Fq and then lift it to an abelian variety
over K . This motivates a change of notation: A �→ Ã and the reduction of Ã is now denoted by A.

Let us consider the first group occurring in Tate duality. Using Hensel’s lemma we get

Ã(K)/nÃ(K) � A(Fq)/nA(Fq).

Remark 6.4 If we assume that n = � is a prime and that A(Fq) has no points of order �2 then
A(Fq)/�A(Fq) is isomorphic to A(Fq)[�] in a natural way.

We now come to the discussion of H1
(
GK , A

(
K
))

[n]. Since unramified extensions of K do not
split elements in this group we can use a well-known inflation-restriction sequence to change our
base field from K to the maximal unramified extension Kur of K , compute the cohomology group
over this larger field, and look for elements that are invariant under the Galois group of Kur/K
which is topologically generated by (a canonical lift of) the Frobenius automorphism φq of Fq .
Note that this automorphism acts both on G

(
K/Kur

)
and on A[n] = A(Kur)[n].

Let Ktame be the unique cyclic extension of Kur of degree n (which has to be fully ramified).
We obtain

Proposition 6.5 The first cohomology group H1
(
GK , A

(
K
))

[n] is equal to the group of elements
in

Hom
(
G(Ktame/Kur), A[n]

)
,

which are invariant under the natural action of the Frobenius automorphism.

After fixing a generator τ of G(Ktame/Kur) we can identify

ψ ∈ Hom(G(Ktame/Kur), A[n])

with
ψ(τ) =: Pτ ∈ A[n]

and hence Hom(G(Ktame/Kur), A[n]) with A[n].
Warning: The identification of Hom(G(Ktame/Kur), A[n]) with A[n] is, in general, not com-

patible with Galois actions. Here the cyclotomic character becomes important: over K(µn) we can
realize a ramified cyclic extension Kn of degree n by choosing an n-th root t of a uniformizing ele-
ment π of K . Since τ maps t to ζnt for some n-th root of unity ζn and the Frobenius automorphism
φq maps ζn to ζq

n we deduce that φq operates on 〈τ〉 by conjugation, sending τ to τ−q .

Corollary 6.6 The first cohomology group H1
(
GK , A

(
K
))

[n] can be identified with the sub-
group A0 of points in A[n] defined by

A0 = {P ∈ A[n] | φq(P ) = [q]P}.
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We summarize what we have found up to now in the case where n is a prime �.

Proposition 6.7 Let K be a local field with residue field Fq, let A be an abelian variety defined
over Fq, let � be a prime number not dividing q, and assume that A(Fq) contains no elements of
order �2. Define A0 = {P ∈ A[�] | φq(P ) = [q]P}.

The Tate pairing induces a nondegenerate pairing

〈· , ·〉T,� : A(Fq)[�] × A0 → Br(K)[�].

Corollary 6.8 Under the assumptions of the propositions we get that A0 is (as an abelian group)
isomorphic to A(Fq)[�].

Example 6.9 Assume that A[�](Fq) is cyclic of order � and generated by P .

1. Assume that � | (q − 1). Then A0 = A[�](Fq), and 〈P, P 〉Fq,� �= 0.

2. Assume that � � q − 1. Then φ with φ(τ) = P is not in H1
(
GK , A

(
K
))

[�]. In
particular ”〈P, P 〉T,�” is not defined. Of course we can extend the ground field until
the pairing over these larger fields permits the argument (P, P ). But the value will then
necessarily be equal to 0.

Example 6.10 If A[�](Fq) is not cyclic and � | q − 1 then for all points P, Q ∈ A[�](Fq) we can
form 〈P, Q〉T,� but it is not clear whether there is a P with 〈P, P 〉T,� �= 0.

We now come to the discussion of the Brauer group. First one has

Theorem 6.11 The Brauer group of K is (canonically) isomorphic to Q/Z.
More precisely, there is a map, the invariant map invK , such that for all n ∈ N we have an

isomorphism
inv : Br(K)[n] → Z/nZ.

Thus computations in Br(K) boil down to the computation of the invariant map. A further study
of the theory of local fields shows that this is closely related to the computation of the discrete
logarithm in F∗q (see [NGU 2001]).

This becomes more obvious if we replace Fq by Fq(µn) = Fqk with k minimal such that n |
(qk−1). Put K1 = K(µn) and let Kn be a cyclic ramified extension of degree n of K1. The value of
the Tate pairing is then in H2(G(Kn/K), K∗

n)[n], and elementary computations with cohomology
groups yield that this group is isomorphic (canonically after the choice of τ ) to F∗qk/

(
F∗qk

)n
.

Proposition 6.12 Let n be equal to a prime number �, and let k be as above. Assume that A(Fq)
contains no points of order �2.

The Tate pairing induces a pairing

〈· , ·〉T,� : A[�](Fq) × A[�](Fqk) → F∗qk/
(
F∗qk

)�
which is nondegenerate on the left, i.e., if 〈P, Q〉T,� = 0 for all Q ∈ A[�](Fqk) then P = 0.

6.3.2 The Lichtenbaum pairing on Jacobian varieties

In Proposition 6.12 we have described a pairing that can, in principle, be used to transfer the dis-
crete logarithm from A[�](Fq) to F∗qk/

(
F∗qk

)�
. However, looking at the conditions formulated in

Section 1.5.2 we see that one crucial ingredient is missing: we must be able to compute the pairing
very fast.
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The next two sections are devoted to this goal in the case that we are interested in.
We come back from the general theory of abelian varieties to the special theory of Jacobian

varieties JC of projective curves C of genus g over finite ground fields Fq.
We want to use the duality theory over local fields and so we lift C to a curve C̃ of genus g over

the local field K with corresponding abelian variety J
eC . We remark that the reduction of J

eC is JC .
The central part of the construction of the Tate pairing was the construction of a 2-cocycle from

G2
K into K

∗
. For a point P ∈ J

eC(K) and an element γ ∈ H1
(
GK , J

eC

(
K
))

[n] we choose a
1-cocycle c in α−1(γ) and define

c(σ1, σ2) = Wn

(
δ′(P )(σ1), c(σ2)

)
where δ′ and α are the maps defined in Section 6.3.1 and Wn is the Weil pairing.

In his paper [LIC 1969] Lichtenbaum used sequences of divisor groups of curves to define a
pairing in the following way.

Put
__
C = C̃ × K. We have discussed the group of divisor classes of degree 0 of

__
C together with

the action of GK on this group in Section 4.4.4. As a consequence we get the exact sequence of
G − K-modules (see 6.1)

1 → Princ __
C → Div0__

C → Pic0__
C → 0.

We can apply cohomology theory to this sequence and obtain a map

δ1 : H1(GK , Pic0__
C) → H2(GK , Princ __

C)

which associates to γ ∈ H1(GK , Pic0__
C) a 2-cocycle from G2

K to Princ __
C .

In other words, given γ we find for each pair (σ1, σ2) ∈ GK a function fσ1,σ2 ∈ K (
__
C) such that

the class of (fσ1,σ2 ; (σ1, σ2) ∈ GK) is equal to δ1(γ).

Definition 6.13 The notations are as above. Let c ∈ Pic0
eC

be a K-rational divisor class of degree 0
with divisor D ∈ c.

The Lichtenbaum pairing

〈· , ·〉L : Pic0
eC
× H1(GK , Pic0__

C) → H2(GK , K
∗
)

maps (c, γ) to the class in H2(GK , K
∗
) of the cocycle

G2
K → K

∗

given by
(σ1, σ2) �→ fσ1,σ2(D) .

(Here D has to be chosen such that it is prime to the set of poles and zeroes of fσ1,σ2 , which is
always possible.)

Since we have seen that JC

(
K
)

= Pic0__
C we can compare Tate’s pairing with 〈· , ·〉L. It is shown

in [LIC 1969, pp. 126-127], that the two pairings are the “same” in the following sense.

Proposition 6.14 For all natural numbers n denote by 〈· , ·〉L,n the pairing induced by 〈· , ·〉L on
Pic0

eC
/nPic0

eC
× H1(GK , Pic0__

C)[n].
Then 〈· , ·〉L,n is equal (up to sign) to the Tate pairing 〈· , ·〉T,n applied to the abelian variety J

eC .

In fact, Lichtenbaum uses this result to prove nondegeneracy of his pairing for a local field K .
The importance of Lichtenbaum’s result for our purposes is that we have a description of the

Tate pairing related to Jacobian varieties that only uses objects directly defined by the curve C̃ . In
particular the Weil pairing has completely disappeared.
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We can now use the general considerations given in Section 6.3.1 and come to the final version of
the pairing in the situation that we are interested in.

Thus we come back to a curve C defined over Fq, choose a lifting to C̃ over K , and compute the
groups occurring in the pairing. As a result we shall obtain a pairing that only involves the curve C
itself.

The first group can be identified with Pic0
C/nPic0

C . To avoid trivial cases we shall assume that
this group is nontrivial, i.e., that Pic0

C contains elements of order n.
The group H1(GK , Pic0__

C)[n] can be identified with the subgroup J0 of points in Pic0__
C [n] defined

by
J0 =

{
c ∈ Pic0__

C [n] | φq(c) = [q]c
}

.

A first application of these results is that we can describe the Lichtenbaum pairing by Galois coho-
mology groups related to a finite extension of K . We first enlarge K to a field K1 that is unramified
and such that over its residue field all elements of J0 are rational. Automatically K1 contains the
n-th roots of unity. It follows that there exists a cyclic ramified extension Kn of degree n of K1.

The image of the pairing 〈·, ·〉L,n will be contained in H2 (G(Kn/K1), K∗
n). Let us fix a gen-

erator τ of the Galois group of Kn/K1. We identify γ in H1(GK , Pic0__
C)[n] with the class of the

cocycle ζ from G(Kn/K1) given by

ζ(τ i) = [i]c̃ for 0 � i � n − 1,

where c̃ ∈ Pic0
eC×Kn

[n] is a lift of c ∈ J0.

The image of γ under the map δ1 will be a 2-cocycle mapping from 〈τ〉 × 〈τ〉 to Princ
eC×Kn

which we must describe. Choose a divisor D ∈ c̃ rational over K1. Thus iD ∈ ζ
(
τ i
)
.

By definition
δ1(γ)

(
τ i, τ j

)
= τ ijD − ri+jD + jD

for 0 � i, j � n − 1, where ri+j is the smallest nonnegative residue of i + j modulo n.
Since τD = D it follows that δ1(γ)

(
τ i, τ j

)
= 0 for i + j < n and δ1(γ)

(
τ i, τ j

)
= nD for

i + j � n. Since D is a divisor of degree 0 in a class of order n the divisor nD is the divisor of a
function fD (which is defined over K1).

Now choose c̃1 ∈ Pic0
eC

and a divisor E ∈ c̃1 such that E is prime to D.
Then

〈c̃1 + nPic0
eC
, γ〉L,n

(
τ i, τ j

)
= 1

if i + j < n and
〈c̃1 + nPic0

eC
, γ〉L,n

(
τ i, τ j

)
= fD(E)

if i + j � n.
Thanks to this result we can immediately identify the element in the Brauer group of K1 which

corresponds to 〈c̃1 + nPic0
eC
, γ〉L,n: it is the cyclic algebra split by Kn corresponding to the class

of the pair (τ, fD(E)) (cf. [NGU 2001]). If we fix τ the class is uniquely determined by the norm
class fD(E)NKn/K1(K

∗
n).

Since Kn/K1 is totally ramified we can compute NKn/K1(K
∗
n) to be (canonically) isomorphic

to F∗qk/
(
F∗qk

)n
.

Hence 〈c̃1 +nPic0
eC
, γ〉L,n is uniquely determined by the image of fD(E) in the residue field Fqk

modulo
(
F∗qk

)n
.

We can obtain this image directly: choosing c1 ∈ Pic0
C , E ∈ c1, c ∈ J0, D ∈ c, and fD a

function on C defined over Fqk with no zeroes and poles in divisors of E, we have

〈c̃1 + nPic0
eC
, γ〉L,n = fD(E)

(
F∗qk

)n
.
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6.4 An explicit pairing

6.4.1 The Tate–Lichtenbaum pairing

We have done all the necessary work so as to be able to describe the Tate pairing in the Lichtenbaum
version for abelian varieties, which are Jacobian varieties of projective curves, in a very elementary
and explicit manner as promised in the beginning of this section. In order to use it, no knowledge
of the preceding sections is necessary. In fact, even the proof of the following theorem can be given
without using Galois cohomology and liftings to local fields by a clever application of Kummer
theory to function fields over finite fields (cf. [HES 2004]). Nevertheless we think that it may be
interesting for some readers to see the structural background involved.

Theorem 6.15 Let Fq be the field with q elements, let n be a number prime to q, and let k ∈ N be
minimal with n | (qk − 1). Let C be a projective irreducible nonsingular curve of genus g defined
over Fq with a rational point.

Define
J0 := {c ∈ Pic0

C×Fq
[n] | φq(c) = [q]c}.

There exists a nondegenerate bilinear map

Tn : Pic0
C/[n]Pic0

C × J0 → F∗qk/
(
F∗qk

)n
defined in the following way:

For c1 ∈ Pic0
C and c2 ∈ J0 we choose divisors E ∈ c1 and D ∈ c2 rational over Fq respectively

Fqk such that no point P of C occurs both in E and in D. Let fD be a function on C rational over
Fqk with principal divisor nD.

Then
Tn(c1, c2) = fD(E)

(
F∗qk

)n
.

Definition 6.16 The Tate–Lichtenbaum pairing is the bilinear map

Tn : Pic0
C/[n]Pic0

C × J0 → F∗qk/
(
F∗qk

)n
described in Theorem 6.15.

Let us consider this pairing from a computational point of view. It is not difficult to find divisors D
and E for given c1, c2. However, for large n it is not obvious how to find fD and how to evaluate it
at E. In Chapter 16 we shall give a polynomial-time algorithm to perform this computation. Here
we describe very briefly the theoretical background of this algorithm.

We must solve the following task: Let C be a curve of genus g defined over some ground field K
with a K-rational point P0, let E be a K-rational divisor of degree 0 on C and c a K-rational divisor
class of degree 0 and of order n on C. Let D1 = A1−gP0 ∈ c be a divisor, where A1 is an effective
divisor of degree g. Any multiple [i]c can be represented in a similar way by Di = Ai − gP0. We
assume that the support of E is prime to the support of all divisors Di. In particular the divisor
nD1 is the principal divisor of a function f on C, which has no poles and zeroes at the points of the
support of E. Hence c(E) = f(E) is a well defined element of K∗.

We want to compute this element fast, and we follow an idea that for elliptic curves has been
described by Miller in an unpublished manuscript [MIL 1986] (now published in [MIL 2004]), and
which, in the general case, is inspired by Mumford’s theory of Theta groups of abelian varieties.

The basic step for the computation is the following. For given positive divisors A, A′ of degree g
find a positive divisor B of degree g and a function h on C such that A + A′ − B − gP0 = div(h).
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Define the following group law on 〈c〉 × K∗:

(ic, a1) ◦ (jc, a2) :=
(
(i + j)c, a1a2hi,j(E)

)
,

with Ai +Aj −Ai+j −gP0 = div(hi,j). The assumptions on E guarantee that each hi,j(E) ∈ K∗,
and the degree of hi,j is at most equal to g. It can be easily seen by induction that m · (c, 1) =(
mc, hm−1(E)

)
, where hm−1 is a function on C satisfying mA − Am−1 − (m − 1)gP0 =

div(hm−1). It follows that repeating n times this process gives the result
(
0, f(E)

)
, where f is

a function on C such that div(f) = nD1.
We can now use the group structure on 〈c〉 × K∗ and apply the square and multiply algorithm to

evaluate f at E in O(lg n) basic steps.

Corollary 6.17 The Tate–Lichtenbaum pairing Tn can be computed in O(lg n) basic steps over Fqk .

Remark 6.18 By a clever choice of P0 we can accelerate the computation. For instance, with
hyperelliptic curves, we shall choose the point at infinity P∞.

6.4.2 Size of the embedding degree

Recall that n is a number prime to q. The embedding degree (with respect to n) is the smallest
number k such that n | qk − 1.

The above result is of practical importance only if k is small.
In general, the necessary conditions for C such that Pic0

C has elements of order � rational over Fq

with � in a cryptographically interesting range, and the conditions for q that for a small k the field
Fqk contains �-th roots of unity, will not be satisfied at the same time.

To see this we look at χ(φqk )C(T ), the characteristic polynomial of φqk . Its zeroes (λ1, . . . , λ2g)
are integers in a number field K and we order them so that λiλg+i = q for 1 � i � g, which is
always possible (cf. Proposition 5.75).

Since Pic0
C has elements of order � there exists an eigenvalue λi of φq such that a prime ideal l

of K dividing (�) divides (1 − λi). Of course this implies that for all natural numbers d the ideal l
divides (1 − λd

i ).
Now assume that Fqk contains the �-th roots of unity and hence that qk ≡ 1 (mod �). Since

λk
i λk

g+i = qk ≡ 1 (mod l) we get that the prime ideal l divides simultaneously (1 − λk
i ) and

(1 − λk
g+i) and so

λk
i + λk

i+g ≡ 2 (mod l).

For elliptic curves this yields

Proposition 6.19 Let E be an elliptic curve defined over Fq and � a prime such that � divides
|E(Fq)|. Let φq be the Frobenius endomorphism acting on E[�]. The corresponding discrete
logarithm in E(Fq)[�] can be reduced to the discrete logarithm in F∗qk [�] by the use of the Tate–
Lichtenbaum pairing if and only if the characteristic polynomial of the endomorphism φk

q on E is
congruent to T 2 − 2T + 1 modulo �.

Avoiding elliptic curves with small k is easy. For randomly chosen elliptic curves E we can expect
that k will be large.

But there is an important class of special elliptic curves for which k is always small: the super-
singular elliptic curves. The crucial facts that we use are that the characteristic p of Fq divides the
trace of the Frobenius acting on supersingular elliptic curves E and that their absolute invariant jE

lies either in Fp or in Fp2 [LAN 1973].
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Let us discuss the easiest case in detail. We assume that p > 3 and jE ∈ Fp. Let E0 be an elliptic
curve defined over Fp with invariant jE . Let T 2 − aT + p be the characteristic polynomial of φp on
E0. We know that a = λp with λ ∈ Z. The estimate

|1 − λp + p| � 2
√

p + (p + 1) with λ ∈ Z

implies that λ = 0, hence the eigenvalues λ1, λ2 of φp acting on E0 satisfy

λ1 = −λ2 and λ1λ2 = p

hence λi = +−
√−p.

Assume now that q = pd. Since E becomes isomorphic to E0 over Fq2 the characteristic poly-
nomial of the Frobenius endomorphism on E over Fq2 is equal to

T 2 − (λ2d
1 + λ2d

2 ) + q2 = T 2 − 2λ2d
1 + λ4d

1 = (T − λ2d
1 )2.

Since by assumption E(Fq) has elements of order �, we obtain that � divides (1 − λ2d
1 ).

Since λ2
1 = −λ1λ2 = −p it follows that � divides 1 − (−p)d. But this implies that k = 1 if d is

even, and k = 2 if d is odd.
The other cases can be treated by similar considerations. As a result we obtain

Proposition 6.20 Let E be a supersingular elliptic curve over Fq with q = pd. Assume that E has
a Fq-rational point of order �. Let k be the smallest natural number such that � | qk − 1. Then

• in characteristic 2 we have k � 4,

• in characteristic 3 we have k � 6,

• over prime fields Fp with p � 5 we have k � 2,

and these bounds are attained.

In general we have

Theorem 6.21 There is an integer k(g) such that for all finite fields Fq and for all supersingular
abelian varieties of dimension g over Fq we have k � k(g).

The number k(g) can be found in [GAL 2001a] and in Section 24.2.2.
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Weil descent — or, as it is alternatively called — scalar restriction, is a well-known technique in
algebraic geometry. It is applicable to all geometric objects like curves, differentials, and Picard
groups, if we work over a separable field L of degree d of a ground field K .

It relates t-dimensional objects over L to td-dimensional objects over K . As guideline the reader
should use the theory of algebraic curves over C, which become surfaces over R. This example,
detailed in Section 5.1.2, already shows that the structure of the objects after scalar restriction can
be much richer: the surfaces we get from algebraic curves carry the structure of a Riemann surface
and so methods from topology and Kähler manifolds can be applied to questions about curves over
C.

This was the reason to suggest that Weil descent should be studied with respect to (constructive
and destructive) applications for DL systems [FRE 1998]. We shall come to such applications in
Sections 15.3 and 22.3.

In the next two sections we give a short sketch of the mathematical properties of Weil descent.
The purpose is to provide a mathematical basis for the descent and show how to construct it. For
a thorough discussion in the frame of algebraic geometry and using the language of schemes, we
refer to [DIE 2001].

7.1 Affine Weil descent

We begin with the easiest case. Let V be an affine variety in the affine space An
L over L defined by

m equations
Fi(x1, . . . , xn) = 0; i = 1, . . . , m

125
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with Fi(x) ∈ L[x1, . . . , xn].
We want to find an affine variety WL/K(V ) defined over K with the following properties:

(W1) For any field K ′ ⊂ K for which the degree of L · K ′ over K ′ is equal to d (i.e., K ′

is linearly disjoint from L over K) we have a natural identification of WL/K(V )(K ′)
with V (L · K ′).

(W2) The variety WL/K(V )L obtained from WL/K(V ) by base extension from K to L is
isomorphic to V d, the d-fold Cartesian product of V with itself.

To achieve this we choose a basis {u1, . . . , ud} of L as K-vector space. Then we define the nd
variables yi,j by

xi = u1y1,i + · · · + udyd,i, for i = 1, . . . , n.

We replace the variables xi in the relations defining V by these expressions.
Next we write the coefficients of the resulting relations as K-linear combinations of the basis

{u1, . . . , ud} and order these relations according to this basis. As result we get m equations of the
form

Gi(y) = gi,1(y)u1 + · · · + gi,d(y)ud = 0

with gi,j ∈ K[y1,1, . . . , yn,d]. Because of the linear independence of the elements ui and because
of condition W1 we see that we have to define W as the Zariski closed subset in And given by the
md equations

gi,j(y) = 0.

Proposition 7.1 Let V and W be as above. Then W is an affine variety defined over K satisfying
the conditions W1 and W2. So W is the Weil descent WL/K(V ) of V .

Example 7.2 Let V be equal to the affine space of dimension n over L with coordinate functions
x1, . . . , xn.

Then WL/K(V ) = And with coordinate functions yi,j defined by

xi = u1y1,i + · · · + udyd,i.

As a special case, take L = C and K = R, n = 1, and take as complex coordinate function the
variable z and as basis of C/R, the elements 1, i with i2 = −1.

As usual we choose real variables x, y satisfying the identity

z = x + iy.

A polynomial or more generally a rational function G(z) in z gives rise to a function in GR(x, y)
that we can interpret as a function from R2 to C. We separate its real and imaginary part and get

G(z) = g1(x, y) + ig2(x, y).

Example 7.3 Assume that L = K(α) with {1, α, α2} a basis of L/K and α3 = b ∈ K and assume
that char(K) �= 3.

Take the affine part of the elliptic curve given by the equation

Ea : x2
1 − x3

2 − 1 = 0.

Replace xi by y1,i + αy2,i + α2y3,i to get the equation

(
y1,1 + αy2,1 + α2y3,1

)2 − (y1,2 + αy2,2 + α2y3,2

)3 − 1 = 0.
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This yields the following system of equations

y2
1,1 + 2by2,1y3,1 − y3

2,1 − b2y3
3,2 − by3

2,3 − 6by1,2y2,2y3,2 − 1 = 0

by2
1,3 + 2y1,1y2,1 − 3y2

1,2y2,2 − 3by2
2,2y3,2 − 3by1,2y

2
3,2 = 0

y2
1,2 + 2y1,1y3,1 − 3y2

1,2y3,2 − 3y1,2y
2
2,2 − 3by2,2y

2
3,2 = 0

which defines the Weil descent WL/K(Ea) of Ea.

Remark 7.4 The example is interesting since it is an open affine part of an abelian variety of di-
mension 3 defined over K , whose rational points are in a natural way equal to the L-rational points
of the elliptic curve E.

7.2 The projective Weil descent

Having defined the Weil descent for affine varieties we proceed in the usual way to define it for
projective varieties V defined over L, which are embedded in some projective space Pn

L.
We cover V by affine subvarieties Vi and apply the restriction of scalars to the Vi to get a col-

lection of affine varieties WL/K(Vi) =: Wi over K . The varieties Vi are intersecting in Zariski
open parts of V and there are rational maps from Vi to Vj induced by the rational maps between the
different embeddings of the affine space An

L into Pn
L (cf. Example 4.44). By using the functoriality

properties of the Weil descent (or by a direct computation in the respective coordinates as in the
examples) one concludes that the affine varieties Wi can be glued together in a projective space
(which is the Weil descent of Pn

L). If we take the coverings fine enough we get as a result of the
gluing process a projective variety WL/K(V ).

Warning. Not every cover of V by affine subvarieties Vi has the property that the varieties
WL/K(Vi) cover WL/K(V ). For instance let E be a plane projective elliptic curve given by the
equation

E : Y 2Z = X3 + a4XZ2 + a6Z
3.

Then E is covered by the affine curves E1 and E2 one gets by intersecting P2
L with the open parts

for which Z �= 0 (respectively Y �= 0) holds. But we also need E3, which is the intersection of
E with the open part of P2 defined by X �= 0 to get WL/K(E) by the gluing procedure described
above.

There is another complication if we want to describe the projective variety WL/K(V ) explicitly
as a subvariety of the projective space PN : the dimension of this space can become rather large.
Here is an estimate for this dimension:

Lemma 7.5 Let V be a projective variety embedded into Pn
L. Then WL/K(V ) can be embedded (in

a canonical way) into P(n+1)d−1.

This lemma follows from the construction via affine covers and the application of the Segre map
(cf. Examples 4.13 and 4.25) of products of projective spaces into a projective space.

We can summarize our results and get the following theorem:

Theorem 7.6 Let L/K be a finite separable field extension of degree d. Let V be an affine or
a projective variety defined over L. The Weil restriction WL/K(V ) satisfies the properties W1
and W2. If V is affine (respectively projective) and has dimension t then WL/K(V ) is an affine
(respectively projective) variety defined over K of dimension td.

Again by functoriality properties one can conclude that the Weil restriction of an algebraic group is
again an algebraic group. Hence we get:
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Corollary 7.7 The Weil restriction of an abelian variety A over L is an abelian variety WL/K(A)
over K .

Let A1 be a Zariski-open nonempty affine subvariety of A. Then WL/K(A1) is an affine Zariski-
open nonempty subvariety of WL/K(A) and hence it is birationally equivalent to WL/K(A).

This corollary justifies Remark 7.4.

7.3 Descent by Galois theory

In the last sections we have introduced an explicit method to construct the Weil descent of varieties
by using affine coordinates. The advantage of this approach is the explicit definition of the Weil
descent by equations. The disadvantage is that the number of variables and the number of relations
grow and so the description becomes very complicated. This is especially striking if we want to
apply the descent to projective varieties or if the degree of L/K is not small. For many purposes
it is enough to have the Weil descent and its properties as background. Then we apply it using
definitions by Galois theory as this is much more elegant.

This approach becomes most natural if we assume that L/K is a Galois extension with relative
Galois group G(L/K) = G. Note that for us the most important case is that K and L are finite
fields and then this assumption is always satisfied.

Let V be a variety defined over L and let σ ∈ G be an automorphism of L fixing K .
We want to define the image of V under σ. We assume that V is affine. If V is projective one can

proceed in a completely analogous way.
We choose affine coordinate functions x = (x1, . . . , xn) of An

L and define the points on V as
the set of zeroes of the equations defining V as usual. Let I be the prime ideal generated by these
equations in L[x]. We apply σ to the coefficients of rational functions F in L(x) and denote by σ ·F
the image.

The ideal Iσ := σ · I is again a prime ideal in L[x] and so it defines an affine variety V σ over L.
Let us extend σ to an automorphism σ̃ of K . By definition we get σ̃ · I = σ · I and so V σ̃ = V σ

does not depend on the choice of the extension. Let P be a point in V (K). Then σ̃(P ) is a point in
V σ(K) and conversely. So V σ(K) = σ̃ · V (K).

For all points Q ∈ V σ(K) and f ∈ L(V ) we get the identity

(σ · f)(Q) = σ̃
(
f
(
σ̃−1(Q)

))
.

In particular, it follows that we can interpret σ · f as rational function on V σ.
We apply this to the functions xi. To clarify what we mean, we denote by xi,σ the function on

V σ induced by the coordinate function xi, i.e., xi,σ is the image of xi in L[x]/(σ · I). We get: let
P be a point in V and let xi(P ) be the value of the i-th coordinate function on V applied to P . Let
xi,σ be the i-th coordinate function on V σ . Then xi,σ = σ ·xi and the value of xi,σ applied to σ̃(P )
is equal to σ̃(xi(P )).

All these considerations are near to tautological statements but they allow us to define an action
of the absolute Galois group GK of K on the variety

W :=
∏
σ∈G

V σ.

Indeed let P := (. . . , Pσ, . . . )σ∈G, with Pσ ∈ V σ(K), be a point in W (K). Let τ̃ be an element
of GK whose restriction to L is equal to τ . Then

τ̃(P ) := (. . . , Qσ, . . . )σ∈G with Qσ = τ̃(Pτ−1◦σ).
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Theorem 7.8 The variety W is equal to the Weil restriction WL/K(V ).

Proof. To prove this theorem we check the properties characterizing the Weil descent.
First W is a variety defined over L. As we have seen its set of points is invariant under the action

of GK . So W is a variety defined over K .
A point P ∈ W is K-rational if and only if it is L-rational and for all τ ∈ G we have

τ(Pτ−1◦σ) = Pσ.

Taking τ = σ−1 this means that Pσ = σ−1PId for all σ ∈ G with P ∈ V (L). It follows that
W (K) = V (L).

Next we extend the ground field K to L and look at WL. On the Galois theoretic side this means
that we restrict the Galois action of GK on W to an action of GL. But this group leaves each V σ

invariant and so WL is isomorphic to
∏

σ∈G V = V d.

We shall be interested in the special case that K = Fq and L = Fqd .

Corollary 7.9 Let V be a (projective or affine) variety defined over Fqd of dimension t. For i =
0, . . . , d − 1 let Vi be the image of V with respect to φi

q (cf. Proposition 5.67).
Then

W (V ) :=
d−1∏
i=0

Vi

is a variety defined over Fq of dimension td which is K-isomorphic to WF
qd /Fq

(V ).
If V is affine (respectively projective) then W (V ) is an affine (respectively projective) variety

defined over K .
If V is an abelian variety over Fqd then W (V ) is an abelian variety over Fq.
The action of φ on W (V ) is given as follows: Let P = (. . . , Pi, . . . ) be a point in W (V )(K).

Then φq(P ) = (. . . , Qi, . . . ) with Qi = φq(P )(i−1 mod d).

Remark 7.10 In general the Weil restriction of a Jacobian variety is not a Jacobian variety.

7.4 Zariski closed subsets inside of the Weil descent

As mentioned already, one main application of the Weil descent method is that in WL/K there are
Zariski closed subsets which cannot be defined in V .

In the following we shall describe strategies to find such subsets.

7.4.1 Hyperplane sections

To simplify the discussion we assume that V is affine with coordinate functions x1, . . . , xn and we
take the description of WL/K(V ) given in Proposition 7.1. There we have introduced nd coordi-
nates functions yi,j for WL/K(V ) by

xi = u1y1,i + · · · + udyd,i, for i = 1, . . . , n,

where {u1, . . . , ud} is a basis of L/K . Take J ⊂ {1, . . . , d}× {1, . . . , n} and adjoin the equations
yi,j = 0 for (i, j) ∈ J to the equations defining WL/K(V ).

The resulting Zariski closed set inside of WL/K(V ) is denoted by WJ . It is the intersection of
the Weil restriction of V with the affine hyperplanes defined by yi,j = 0; (i, j) ∈ J .

“In general” we can expect that WJ is again a variety over K of dimension td − |J |.
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Example 7.11 Let E be an elliptic curve defined over L given by a Weierstraß equation

E : x2
1 + a1x1x2 + a3x1 = f(x2),

where f is monic of degree 3. Take 1 � m � d − 1 and J = {1, . . . , m} × {2}.
Then WJ (K) consists of all points in E(L) whose x2-coordinate is a K-linear combination of

the elements u1, . . . , um.

Remark 7.12 This example is the mathematical background of a subexponential attack to the dis-
crete logarithm in elliptic curves over nonprime fields found recently by Gaudry and Diem (cf.
Section 22.3.5).

7.4.2 Trace zero varieties

We assume for simplicity that L = Fqd and K = Fq and we use the Galois theoretic description of
the Weil descent.

Let V be a variety defined over K . So we get V φq = V . Note that nevertheless WF
qd /Fq

(V )
is not Fq-isomorphic to V d because of the twisted Galois operation. But we can embed V into
WF

qd /Fq
(V ) as diagonal:

Map the point P ∈ V (K) to the point (. . . , φi
q(P ), . . . ) ∈

∏d−1
i=0 V . By this map we can identify

V with a subvariety of WF
qd /Fq

(V ).
Now assume in addition that V = A is an abelian variety. Then we find a complementary abelian

subvariety to A inside of WF
qd /Fq

(A).
We use the existence of an automorphism π of order d of WF

qd /Fq
(A) defined by

P = (. . . , Pi, . . . ) �→ π(P ) = (. . . , Qi, . . . ) with Qi = Pi−1 mod d.

The map π is obviously an automorphism over Fqd . To prove that π is defined over Fq we have to
show that π commutes with the action of φq . But

π(φq(P )) = (. . . , Q′
i, . . . ) with Q′

i = φq(Qi−2 mod d)

and this is equal to φq

(
π(P )

)
.

Denote by A0 the kernel of the endomorphism
∑d−1

i=0 πi. It is an abelian subvariety of A and it is
called the trace zero subvariety of A. Note that the intersection set of A — embedded as diagonal
into WF

qd /Fq
(A) — with A0 consists of the points of A of order dividing d, and the Fq-rational

points of A0 are the points P in A(Fqd) with Tr(φq)(P ) = 0.
To see that A and A0 generate WF

qd /Fq
(A) we use that A is the kernel of π − Id and that A0

contains (π − Id)
(
WF

qd /Fq
(A)
)
.

We summarize:

Proposition 7.13 Let A be an abelian variety defined over Fq. We use the product representation
of WF

qd /Fq
(A) and define π as automorphism induced by a cyclic permutation of the factors. Then

we have the following results:

1. A can be embedded (as diagonal) into WF
qd /Fq

(A). Its image under this embedding is
the kernel of π − Id.

2. The image of π − Id is the trace zero subvariety A0.

3. The Fq-rational points of A0 are the images of points P ∈ A(Fqd) with Tr(π)(P ) = 0.

4. Inside of WF
qd /Fq

(A) the subvarieties A and A0 intersect in the group of points of A of
order dividing d.
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For an example with A = E an elliptic curve and d = 3 we refer to [FRE 2001]; for A = JC being
the Jacobian of a hyperelliptic curve C, see [LAN 2004c]. We further investigate these constructive
applications of Weil descent in Section 15.3.

7.4.3 Covers of curves

Let C be a curve defined over Fqd with Jacobian variety JC . We want to apply Weil descent to get
information about Pic0

C from WF
qd /Fq

(JC)(Fq).
Here we investigate the idea of looking for curves C′ defined over Fq that are embedded into

WF
qd /Fq

(JC). Then the Jacobian of C′ has WF
qd /Fq

(JC) as a factor and we can use information
about Pic0

C′ to study Pic0
C . Of course this is only a promising approach if the genus of C′ is not too

large.
One can try to construct C′ directly, for instance, by using hyperplane sections. But it is very

improbable that this will work if we are not in very special situations. Hence, it is not clear whether
this variant can be used in practice. But this approach leads to interesting mathematical questions:

• Which abelian varieties have curves of small genus as sub-schemes?
• Which curves can be embedded into Jacobian varieties of modular curves?
• Which curves have the scalar restriction of an abelian variety (e.g., an elliptic curve) as

Jacobian?

In [BODI+ 2004] one finds families of curves for which the last question is answered positively.

7.4.4 The GHS approach

In practice another approach is surprisingly successful. A priori it has nothing to do with Weil
descent, but as a background and in order to prove results the Weil descent method is useful.

Let L be a Galois extension of the field K . In our applications we shall take L = Fqd and
K = Fq. Assume that C is a projective irreducible nonsingular curve defined over L, and D is a
projective irreducible nonsingular curve defined over K .

Let
ϕ : DL → C

be a nonconstant morphism defined over L. As usual we denote by ϕ∗ the induced map from Pic0
C

to Pic0
DL

. It corresponds to the conorm map of divisors in the function fields ϕ∗(L(C)
)
⊂ L(DL).

Next we use the inclusion K(D) ⊂ L(DL) to define a correspondence map on divisor classes

ψ : Pic0(C) → Pic0(D)

given by
ψ := NL/K ◦ϕ∗,

where NL/K is the norm of L/K .
Assume that we are interested in a subgroup G (for instance, of large prime order �) in Pic0

C

and assume that we can prove that G
⋂

ker(ψ) = {0}. Then we have transferred the study of G
as subgroup of a Jacobian variety over L to the study of a subgroup of a Jacobian variety over K
which may be easier.

The relation with the Weil descent method is that by the Weil descent of the cover map ϕ we
get an embedding of D into WL/K(JC). This method is the background of the so-called GHS
algorithm. We shall come to this in more detail in 22.3.2.
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The mathematically interesting aspect of this method is that it relates the study of Picard groups
of curves to the highly interesting theory of fundamental groups of curves over non-algebraically
closed ground fields.
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8.1 General principle

Let p be a prime and Fq a finite field with q = pd elements. Consider a projective nonsingular curve
C defined over Fq, e.g., an elliptic or hyperelliptic curve. Let Fqk be a finite extension of Fq of
degree k, then a point on C is called Fqk -rational if a representative of its homogeneous coordinates
is defined over Fqk . Let P be a point in C(Fq) and denote with φq the Frobenius morphism, then
φq(P ) = P if and only if P is Fq-rational. More generally, the number of Fqk -rational points on
C is the number of fixed points of φk

q . A first natural question to ask is thus: how to efficiently
compute |C(Fqk)| for any positive k.

As described in Section 4.4.4, we can embed C in a projective group variety over Fq , called the
Jacobian variety of C and denoted by JC . The Frobenius morphism φq then induces an isogeny of
JC , also denoted by φq , and clearly JC(Fq) = ker(φq − [1]). A second natural question to ask is
thus: how to efficiently compute |JC(Fqk)| for any positive k.

This chapter shows that the above questions are in fact closely related, and introduces different
approaches to solving both of them. The general strategy is based on ideas introduced by Weil,
Serre, Grothendieck, Dwork, etc. in order to prove the Weil conjectures (see Section 8.1.1). The
main idea is the following: the number of Fqk -rational points on C or JC is the number of fixed
points of φk

q . In the complex setting, there exists a general formula due to Lefschetz for the number
of fixed points of an analytic map.

133
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Theorem 8.1 (Lefschetz Fixed Point Theorem) Let M be a compact complex analytic manifold
and f : M → M an analytic map. Assume that f only has isolated nondegenerate fixed points;
then ∣∣{P ∈ M | f(P ) = P}

∣∣ =∑
i

(−1)i Tr
(
f∗; Hi

DR(M)
)
.

The Hi
DR(M) in the above theorem are the de Rham cohomology groups of M and are finite

dimensional vector spaces over C on which f induces a linear map f∗. The number of fixed points
of f is thus the alternating sum of the traces of the linear map f∗ on the vector spaces Hi

DR(M).
The dream of Weil was to mimic this situation for varieties over finite fields, i.e., construct a good

cohomology theory (necessarily over a characteristic zero field) such that the number of fixed points
of the Frobenius morphism is given by a Lefschetz fixed point formula.

The different approaches described in this chapter all fit in the following slightly more general
framework: construct vector spaces over some characteristic zero field together with an action of
the Frobenius morphism φq that provides information about the number of fixed points of φq and
thus the number of Fq-rational points on C or JC .

8.1.1 Zeta function and the Weil conjectures

Let Fq be a finite field with q = pd and p prime. For any algebraic variety X defined over Fq, let
Nk denote the number of Fqk -rational points on X .

Definition 8.2 The zeta function Z(X/Fq; T ) of X over Fq is the generating function

Z(X/Fq; T ) = exp

( ∞∑
k=1

Nk

k
T k

)
.

The zeta function should be interpreted as a formal power series with coefficients in Q. In 1949,
Weil [WEI 1949] stated the following conjectures, all of which have now been proven.

Theorem 8.3 (Weil Conjectures) Let X be a smooth projective variety of dimension n defined
over a finite field with q elements.

1. Rationality: Z(X/Fq; T ) ∈ Q[[T ]] is a rational function.

2. Functional equation: Z(T ) = Z(X/Fq; T ) satisfies

Z

(
1

qnT

)
= +− qnE/2 T E Z(T ),

with E equal to the Euler–Poincaré characteristic of X , i.e., the intersection number of
the diagonal with itself in the product X × X .

3. Riemann hypothesis: there exist polynomials Pi(T ) ∈ Z[T ] for i = 0, . . . , 2n, such that

Z(X/Fq; T ) =
P1(T ) · · ·P2n−1(T )
P0(T ) · · ·P2n(T )

with P0(T ) = 1 − T , P2n(T ) = 1 − qnT and for 1 � r � 2n − 1

Pr(T ) =
βr∏
i=1

(1 − αr,iT )

where the αr,i are algebraic integers of absolute value qr/2.
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Weil [WEI 1948] proved these conjectures for curves and abelian varieties. The rationality of the
zeta function of any algebraic variety was settled in 1960 by Dwork [DWO 1960] using p-adic
methods. Soon after, the Grothendieck school developed 	-adic cohomology and gave another proof
of the rationality and the functional equation. Finally, in 1973, Deligne [DEL 1974] proved the
Riemann hypothesis.

Let φq be the Frobenius endomorphism of JC , then the elements fixed by φq are exactly JC(Fq)
or ker(φq − [1]) = JC(Fq). As introduced in Section 5.2.2, we can associate to φq its characteristic
polynomial χ(φq)C , which is a monic polynomial of degree 2g with coefficients in Z. Furthermore,
by Corollary 5.70 we have that |JC(Fq)| = χ(φq)C(1).

The relation between χ(φq)C and the zeta function of the smooth projective curve C is as follows:

Proposition 8.4 Let C be a smooth projective curve of genus g and let χ(φq)C(T ) ∈ Z[T ] be the
characteristic polynomial of φq . Define the L-polynomial of C by

L(T ) = T 2gχ(φq)C

(
1
T

)
,

then the zeta function of C is given by

Z(C/Fq; T ) =
L(T )

(1 − T )(1 − qT )
·

Let L(T ) = a0 + a1T + · · ·+ a2gT
2g, then the functional equation shows that a2g−i = qg−iai for

i = 0, . . . , g. If we write L(T ) =
∏2g

i=1(1 − αiT ), then the Riemann hypothesis implies |αi| =
√

q
and again by the functional equation, we can label the αi such that αiαi+g = q for i = 0, . . . , g.
This shows that Theorem 5.76 immediately follows from the Weil conjectures.

Taking the logarithm of both expressions for the zeta function leads to

ln Z(C/Fq; T ) =
∞∑

k=1

Nk

k
T k =

2g∑
i=1

ln(1 − αiT ) − ln(1 − T ) − ln(1 − qT ).

Since ln(1 − sT ) = −
∞∑

i=1

(sT )k

k
, we conclude that for all positive k

Nk = qk + 1 −
2g∑

i=1

αk
i .

The zeta function Z(C/Fq; T ) of a curve C contains important geometric information about C and
its Jacobian JC . For example, Stichtenoth [STI 1979] proved the following theorem.

Theorem 8.5 Let L(T ) = a0 + · · · + a2gT
2g, then the p-rank of JC is equal to

max{i | ai �≡ 0 (mod p)}

Furthermore, Stichtenoth and Xing [STXI 1995] showed that JC is supersingular, i.e., isogenous
over Fq to a product of supersingular elliptic curves, if and only if p�dk/2� | ak for all 1 � k � g.

8.1.2 Cohomology and Lefschetz fixed point formula

In this section we indicate how the Weil conjectures, except for the Riemann hypothesis, almost im-
mediately follow from a good cohomology theory. Let X be a projective, smooth algebraic variety
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of dimension n over a finite field Fq of characteristic p and let X ⊗Fq Fq denote the corresponding
variety over the algebraic closure Fq of Fq.

Let 	 denote a prime different from p and let Q� be the field of 	-adic numbers. Grothendieck
introduced the 	-adic cohomology groups Hi(X,Q�) (see [SGA 4]), which he used to prove the
rationality and functional equation of the zeta function. The description of these cohomology groups
is far beyond the scope of this book and we will simply state their main properties. However, for X ,
a smooth projective curve, we have the following theorem.

Theorem 8.6 Let C be a smooth projective curve over a finite field Fq of characteristic p and let 	
be a prime different from p; then there exists an isomorphism

H1(C,Z�) � T�(JC).

To prove the rationality of the zeta function and the factorization of its numerator and denomina-
tor, we only need the following two properties:

• The 	-adic cohomology groups Hi(X,Q�) are finite dimensional vector spaces overQ�

and Hi(X,Q�) = 0 for i < 0 and i > 2n.
• Let f : X → X be a morphism with isolated fixed points and suppose moreover that

each fixed point has multiplicity 1. Then the number N(f, X) of fixed points of f is
given by a Lefschetz fixed point formula:

N(f, X) =
2n∑
i=0

(−1)i Tr
(
f∗; Hi(X,Q�)

)
.

Recall that the number Nk of Fqk -rational points on X equals the number of fixed points of φk
q with

φq the Frobenius morphism. By the Lefschetz fixed point formula, we have

Nk =
2n∑
i=0

(−1)i Tr
(
φk∗

q ; Hi(X,Q�)
)
.

Substituting this in the definition of the zeta function proves the following theorem.

Theorem 8.7 Let X be a projective, smooth algebraic variety over Fq of dimension n, then

Z(X/Fq, T ) =
P1(T ) . . . P2n−1(T )
P0(T ) . . . P2n(T )

with
Pi(T ) = det(1 − φ∗

qT ; Hi
(
X,Q�)

)
.

The above theorem constitutes the first cohomological approach to computing the zeta function of a
projective, smooth algebraic variety: construct a basis for the 	-adic cohomology groups Hi(X,Q�)
and compute the characteristic polynomial of the representation of φq on Hi(X,Q�). Unfortunately,
the definition of the Hi(X,Q�) is very abstract and thus useless from an algorithmic point of view.
For curves not all is lost, since by Theorem 8.6 we have the isomorphism H1(C,Z�) � T�(JC).

The second cohomological approach constructs p-adic cohomology groups defined over the un-
ramified extension Qq of Qp. Several different theories that satisfy a Lefschetz fixed point formula
exist, e.g., Monsky–Washnitzer cohomology [MOWA 1968, MON 1968, MON 1971], Lubkin’s p-
adic cohomology [LUB 1968], crystalline cohomology by Grothendieck [GRO 1968] and Berth-
elot [BER 1974], and finally, rigid cohomology by Berthelot [BER 1986]. The main algorithmic
advantage over the 	-adic cohomology theory is the existence of comparison theorems that provide
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an isomorphism with the algebraic de Rham cohomology, i.e., modules of differentials modulo ex-
act differentials. The algebraic de Rham cohomology itself is very computational in nature and
thus more amenable to computations than 	-adic cohomology. The main disadvantage of the p-adic
approach is that the complexity of the resulting algorithms is exponential in p.

8.2 Overview of ��������-adic methods

Let Fq be a finite field of characteristic p and let C be a smooth, projective curve defined over Fq

of genus g. The Jacobian variety JC of C then is an abelian variety over Fq of dimension g. Let
χ(φq)C(T ) ∈ Z[T ] be the characteristic polynomial of the Frobenius endomorphism φq acting on
the Tate module T�(JC) for 	 a prime different from p, then we can write

χ(φq)C(T ) =
2g∑

i=0

a2g−iT
i with a0 = 1 and a2g = qg.

By the functional equation of the zeta function we have a2g−i = qg−iai for i = 0, . . . , g, so it
suffices to determine the ai for i = 0, . . . , g.

The main idea of the 	-adic methods is to approximate T�(JC) by the 	-torsion points JC [	].
Recall that since 	 �= p, the 	-torsion is a 2g dimensional vector space over Z/	Z and the restriction
of φq to JC [	] is a linear transformation of this vector space. Let P�(T ) denote the characteristic
polynomial of this restriction, then by Lemma 5.71 we have P�(T ) ≡ χ(φq)C(T ) (mod 	).

Furthermore, by the Riemann hypothesis or Corollary 5.82, the coefficients a0, . . . , ag are bound-
ed by

|ai| �
(

2g

i

)
qi/2 �

(
2g

g

)
qg/2.

Using the Chinese remainder theorem, we can therefore uniquely recover χ(φq)C from P�(T ) for
primes 	 � H ln q with H a constant such that

∏
primes � � H ln q

gcd(�, q) = 1

	 > 2
(

2g

g

)
qg/2.

The constant H only depends on the genus g and the prime number theorem implies that H is linear
in g.

For a given prime 	, the polynomial P� can be computed as follows. Assume that JC is embedded
in PN and that an affine part is defined by a system of polynomial equations F1, . . . , Fs ∈ Fq[X ]
with X = (X1, . . . , XN ). Furthermore, assume that the addition law is explicitly given by an N -
tuple of rational functions (G1(X, Y ), . . . , GN (X, Y )) with Y = (Y1, . . . , YN ). Using the double
and add method, we can compute a set of polynomials Q�

1, . . . , Q
�
k�

generating the ideal of the
subvariety of 	-torsion points of JC . Let I� be the radical ideal of 〈F1, . . . , Fs, Q

�
1, . . . , Q

�
k�
〉; to

recover P� we have to find integers 0 � ai < 	 for i = 0, . . . , 2g such that

2g∑
i=0

[a2g−i](X
qi

1 , . . . , Xqi

N ) ∈ I�,

where the addition in the above equation is the group law on JC and [m] denotes multiplication by
m on JC . The resulting algorithm has complexity O

(
(lg q)∆

)
, where ∆ only depends on g, the

dimension of the embedding space PN , the number and degrees of the defining equations of JC and
the group law. More details about this approach can be found in [PIL 1990].
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Remark 8.8 Although the above algorithm has a polynomial time complexity in lg q, it is currently
only practical for elliptic curves and hyperelliptic curves of genus 2. The reason for this is that the
degrees of the polynomials Q�

1, . . . , Q
�
k�

grow as O(	2g), since JC [	] � (Z/	Z)2g . However, for
elliptic curves, the above algorithm can be improved substantially by restricting to a subgroup of
JC [	], which is the kernel of an isogeny of degree 	. Further details can be found in Section 17.2.

8.3 Overview of pppppppp-adic methods

The best known application of p-adic methods in algebraic geometry is undoubtedly Dwork’s in-
genious proof of the rationality of the zeta function [DWO 1960]. Although Dwork’s proof can be
transformed easily in an algorithm to compute the zeta function of any algebraic variety, nobody
seemed to realize this and for more than a decade only 	-adic algorithms were used.

At the end of 1999, Satoh [SAT 2000] introduced the p-adic approach into computational alge-
braic geometry by describing a p-adic algorithm to compute the number of points on an ordinary
elliptic curve over a finite field. Following this breakthrough development, many existing p-adic
theories were used as the basis for new algorithms:

• Dwork’s p-adic analytic methods by Lauder and Wan [LAWA 2002b]
• Serre–Tate canonical lift by Satoh [SAT 2000], Mestre [MES 2000b], etc.
• Monsky–Washnitzer cohomology by Kedlaya [KED 2001]
• Dwork–Reich cohomology by Lauder and Wan [LAWA 2002a, LAWA 2004]
• Dwork’s deformation theory by Lauder [LAU 2004].

Finally, we note that the use of p-adic methods as the basis for an algorithm to compute the zeta
function of an elliptic curve already appeared in the work of Kato and Lubkin [KALU 1982].

In this section we will only review the two p-adic theories that are most important for practical
applications, namely the Serre–Tate canonical lift and Monsky–Washnitzer cohomology.

8.3.1 Serre–Tate canonical lift

Let A be an abelian variety defined over Fq with q = pd and p a prime. Let Qq be an unramified
extension of Qp of degree d with valuation ring Zq and residue field Zq/(pZq) � Fq. Consider
an arbitrary lift A of A defined over Zq , i.e., A reduces to A modulo p, then in general there will
not exist an endomorphism F ∈ End(A) that reduces to the q-th power Frobenius endomorphism
φq ∈ End(A).

Definition 8.9 A canonical lift of an abelian variety A over Fq is an abelian variety A over Qq

such that A reduces to A modulo p and the ring homomorphism End(A) −→ End(A) induced by
reduction modulo p is an isomorphism.

This definition implies that if A admits a canonical lift Ac, then there exists a lift F ∈ End(Ac)
of the Frobenius endomorphism φq ∈ End(A). In fact, the reverse is also true: let A be a lift
of A and assume that F ∈ End(A) reduces to φq ∈ End(A), then A is a canonical lift of A.
Deuring [DEU 1941] proved that for an ordinary elliptic curve, a canonical lift always exists and
is unique up to isomorphism. The question of existence and uniqueness of the canonical lift for
general abelian varieties was settled by Lubin, Serre and Tate [LUSE+ 1964].

Theorem 8.10 (Lubin–Serre–Tate) Let A be an ordinary abelian variety over Fq. Then there exists
a canonical lift Ac of A over Zq and Ac is unique up to isomorphism.
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Recall that an abelian variety A is ordinary if it has maximal p-rank, i.e., A[p] = (Z/pZ)dim(A).
The construction of a p-adic approximation of Ac given A proceeds as follows: let A0 be a lift

of A to Zq and denote with π : A0 → A reduction modulo p. Consider the subgroup A0[p]loc =
A0[p]∩ker(π), i.e., the p-torsion points on A0 that reduce to the neutral element of A. As shown by
Carls [CAR 2003], A1 = A0/A0[p]loc is again an abelian variety such that its reduction is ordinary
and there exists an isogeny I0 : A0 −→ A1, which reduces to the p-th power Frobenius morphism
σ : A −→ Aσ

. Repeating this construction we can define Ai = Ai−1/Ai−1[p]loc for i positive and
we get a sequence of abelian varieties and isogenies

A0
I0−→ A1

I1−→ A2
I2−→ A3

I3−→ . . .

Clearly we have that Akd for k ∈ N reduces to A modulo p; furthermore, the sequence {Akd}k∈N

converges to the canonical lift Ac and the convergence is linear.
Let C be a smooth projective curve defined over Fq of genus g, with Jacobian variety JC . Assum-

ing that JC is ordinary, we can consider its canonical lift Ac. Note that Ac itself does not have to
be the Jacobian variety of a curve [OOTS 1986]. Since End(Ac) is isomorphic to End(JC), there
exists a lift F of the Frobenius endomorphism φq .

To recover the characteristic polynomial of φq , we proceed as follows: let D0(Ac,Qq) denote
the space of holomorphic differential forms of degree 1 on Ac defined over Qq , then we have
dim(D0

(
Ac,Qq)

)
= g, since dim(JC) = g. Given a basis B of D0(Ac,Qq), every endomorphism

λ ∈ EndQq(Ac) can be represented by a g × g matrix M defined overQq by considering the action
of λ∗ on B, i.e., λ∗(B) = MB. The link with the characteristic polynomial of Frobenius χ(φq)C

is then given by the following proposition.

Proposition 8.11 Let F ∈ EndQq(Ac) be the lift of the Frobenius endomorphismφq ∈ EndFq(JC)
and let MF be the matrix through which φ∗

q acts on D0(Ac,Qq). If P (T ) ∈ Zq(T ) is the charac-
teristic polynomial of MF + qM−1

F , then the characteristic polynomial χ(φq)C is given by

χ(φq)C(T ) = T gP
(
T +

q

T

)
· (8.1)

Note that we can also write χ(φq)C(T ) = P1(X)P2(X) with P1 the characteristic polynomial of
MF and P2 the characteristic polynomial of qM−1

F .

The point-counting algorithms based on the canonical lift thus proceed in two stages: in the first
stage, a sufficiently precise approximation of the canonical lift of JC (or its invariants) is com-
puted and in the second stage, the action of the lifted Frobenius endomorphism F is computed on
D0(Ac,Qq).

8.3.2 Monsky–Washnitzer cohomology

In this section we will specialize the formalism of Monsky–Washnitzer cohomology as described in
the seminal papers by Monsky and Washnitzer [MOWA 1968, MON 1968, MON 1971], to smooth
affine plane curves. Further details can be found in the lectures by Monsky [MON 1970] and in the
survey by van der Put [PUT 1986].

Let C be a smooth affine plane curve over a finite field Fq with q = pd elements, and let Qq

be a degree d unramified extension of Qp with valuation ring Zq , such that Zq/pZq = Fq. The
aim of Monsky–Washnitzer cohomology is to express the zeta function of the curve C in terms of a
Frobenius operator F acting on p-adic cohomology groups Hi(C,Qq) defined over Qq associated
to C. Note that it is necessary to work over a field of characteristic 0; otherwise, it would only be
possible to obtain the zeta function modulo p. For smooth curves, most of these groups are zero as
illustrated in the next proposition.



140 Ch. 8 Cohomological Background on Point Counting

Proposition 8.12 Let C be a nonsingular affine curve over a finite field Fq, then the only nonzero
Monsky–Washnitzer cohomology groups are H0(C,Qq) and H1(C,Qq).

In the remainder of this section, we introduce the cohomology groups H0(C,Qq) and H1(C,Qq)
and review their main properties.

Since C is plane, C can be given by a bivariate polynomial equation g(x, y) = 0 with g ∈ Fq[x, y].
Let A = Fq[x, y]/

(
g(x, y)

)
be the coordinate ring of C. Take an arbitrary lift g(x, y) ∈ Zq[x, y] of

g(x, y) and let C be the curve defined by g(x, y) = 0 with coordinate ring A = Zq[x, y]/
(
g(x, y)

)
.

To compute the zeta function of C in terms of a Frobenius operator, we need to lift the Frobenius
endomorphism φq on A to the Zq-algebra A, but as illustrated in the previous section, this is almost
never possible. Furthermore, theZq-algebra A depends essentially on the choices made in the lifting
process as the following example illustrates.

Example 8.13 Consider C : xy−1 = 0 over Fp with coordinate ring A = Fp[x, 1/x], and consider
the two lifts

g1(x, y) = xy − 1 g2(x, y) = x(1 + px)y − 1

then we have that A1 = Zp[x, 1/x] and A2 = Zp[x, 1/(x(1 + px))], which are not isomorphic.

A first attempt to remedy both difficulties is to work with the p-adic completion A∞ of A, which is
unique up to isomorphism and does admit a lift of φq to A∞. But then a new problem arises since
the de Rham cohomology of A∞, which provides the vector spaces we are looking for, is too big.

Example 8.14 Consider the affine line over Fq , then A = Zq[x] and A∞ is the ring of power series

∞∑
i=0

rix
i with ri ∈ Zq and lim

i→∞
ri = 0.

We would like to define H1(A,Qq) as A∞ dx/d(A∞) ⊗Zq Qq, but this turns out to be infinite
dimensional. For example, it is clear that each term in the differential form

∑∞
i=0 pixpi−1dx is exact

but its sum is not, since
∑∞

i=0 xpi

is not in A∞. The fundamental problem is that
∑∞

i=0 pixpi−1

does not converge fast enough for its integral to converge as well.

Monsky and Washnitzer therefore work with a subalgebra A† of A∞, whose elements satisfy growth
conditions.

Definition 8.15 Let A = Zq[x, y]/
(
g(x, y)

)
, then the dagger ring or weak completion A† is defined

as A† = Zq〈x, y〉†/(g(x, y)), where Zq〈x, y〉† is the ring of overconvergent power series{∑
ri,jx

iyj ∈ Zq[[x, y]] | ∃ δ, ε ∈ R, ε > 0, ∀(i, j) : vp(ri,j) � ε(i + j) + δ
}

.

The ring A† satisfies A†/(pA†) = A and depends up to Zq-isomorphism only on A. Further-
more, Monsky and Washnitzer show that if ϕ is an Fq-endomorphism of A, then there exists a
Zq-endomorphism ϕ of A† lifting ϕ. In particular, we can lift the Frobenius endomorphism φq on
A to a Zq-endomorphism F on A†.

To each element s ∈ A† we can associate the differential ds such that the usual Leibniz rule
applies: for s, t ∈ A† : d(st) = sdt + tds, which implies that d(a) = 0 for a ∈ Zq . The set of
all these differentials clearly is a module over A† and is denoted by D1(A†). The following lemma
gives a precise description of this module.

Lemma 8.16 The universal module D1(A†) of differentials satisfies

D1(A†) =
(
A† dx + A† dy

)/(
A†
(

∂g

∂x
dx +

∂g

∂y
dy

))
.
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Taking the total differential of the equation g(x, y) = 0 gives ∂g
∂x dx + ∂g

∂y dy = 0, which explains
the module A†( ∂g

∂x dx + ∂g
∂y dy) in the above lemma. The map d : A† −→ D1(A†) is a well defined

derivation, so it makes sense to consider its kernel and cokernel.

Definition 8.17 The cohomology groups H0(A,Qq) and H1(A,Qq) are defined by

H0(A,Qq) = ker(d) ⊗Zq Qq and H1(A,Qq) = coker(d) ⊗Zq Qq. (8.2)

By definition we have H1(A,Qq) =
(
D1(A†)/d(A†)

)
⊗Zq Qq; the elements of d(A†) are called

exact differentials. One can prove that H0(A,Qq) and H1(A,Qq) are well defined, only depend on
A, and are finite dimensional vector spaces overQq.

Proposition 8.18 Let C be a nonsingular affine curve of genus g, then dim
(
H0(A,Qq)

)
= 1 and

dim
(
H1(A,Qq)

)
= 2g + m − 1, where m is the number of points needed to complete C to a

smooth projective curve.

Let F be a lift of the Frobenius endomorphism φq to A†, then F induces an endomorphism F∗ on
the cohomology groups. The main theorem of Monsky–Washnitzer cohomology is the following
Lefschetz fixed point formula.

Theorem 8.19 (Lefschetz fixed point formula) Let C/Fq be a nonsingular affine curve over Fq ,
then the number of Fqk -rational points on C is equal to∣∣C(Fqk)

∣∣ = Tr
(
qkF−k∗; H0(C,Qq)

)
− Tr

(
qkF−k∗; H1(C,Qq)

)
.

Since H0(C,Qq) is a one-dimensional vector space on which F∗ acts as the identity, we conclude
that Tr

(
qkF−k∗; H0(C,Qq)

)
= qk. To count the number of Fqk -rational points on C, it thus suf-

fices to compute the action of F∗ on H1(C,Qq).
The algorithms based on Monsky–Washnitzer cohomology thus also proceed in two stages: in the

first stage, a sufficiently precise approximation of the lift F is computed and in the second stage, a
basis of H1(C,Qq) is constructed together with reduction formulas to express any differential form
on this basis. More algorithmic details can be found in Section 17.3.
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Given an element x of a group (G,×) and an integer n ∈ Z one describes in this chapter efficient
methods to perform the exponentiation xn. Only positive exponents are considered since xn =
(1/x)−n but nothing more is assumed especially regarding the structure and the properties of G.
See Chapter 11 for specific improvements concerning finite fields. Two elementary operations are
used, namely multiplications and squarings. The distinction is made for performance reasons since
squarings can often be implemented more efficiently; see Chapters 10 and 11 for details. In the
context of elliptic and hyperelliptic curves, the computations are done in an abelian group denoted
additively (G,⊕). The equivalent of the exponentiation xn is the scalar multiplication [n]P . All
the techniques described in this chapter can be adapted in a trivial way, replacing multiplication by
addition and squaring by doubling. See Chapter 13 for additional details concerning elliptic curves
and Chapter 14 for hyperelliptic curves.

Exponentiation is a very important operation in algorithmic number theory. For example, it is
intensively used in many primality testing and factoring algorithms. Therefore efficient methods
have been studied over centuries. In cryptosystems based on the discrete logarithm problem (cf.
Chapter 1) exponentiation is often the most time-consuming part, and thus determines the efficiency
of cryptographic protocols like key exchange, authentication, and signature.

Three typical situations occur. The base point x and the exponent n may both vary from one
computation to another. Generic methods will be used to get xn in this case. If the same exponent
is used several times a closer study of n, especially the search of a short addition chain for n, can
lead to substantial improvements. Finally, if different powers of the same element are needed, some
precomputations, whose cost can be neglected, give a noticeable speedup.

145
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Most of the algorithms described in the remainder of this chapter can be found in [MEOO+ 1996,
GOR 1998, KNU 1997, STA 2003, BER 2002].

9.1 Generic methods

In this section both x and n may vary. Computing xn naïvely requires n − 1 multiplications, but
much better methods exist, some of them being very simple.

9.1.1 Binary methods

It is clear that x2k

can be obtained with only k squarings, namely x2, x4, x8, . . . , x2k

. Building upon
this observation, the following method, known for more than 2000 years, allows us to compute xn

in O(lg n) operations, whatever the value of n .

Algorithm 9.1 Square and multiply method

INPUT: An element x of G and a nonnegative integer n = (n�−1 . . . n0)2.

OUTPUT: The element xn ∈ G.

1. y ← 1 and i ← � − 1

2. while i � 0

3. y ← y2

4. if ni = 1 then y ← x × y

5. i ← i − 1

6. return y

This method is based on the equality

x(n�−1... ni+1ni)2 =
(
x(n�−1... ni+1)2

)2 × xni .

As the bits are processed from the most to the least significant one, Algorithm 9.1 is also referred to
as the left-to-right binary method.

There is another method relying on

x(nini−1... n0)2 = xni2
i × x(ni−1... n0)2

which operates from the right to the left.

Algorithm 9.2 Right-to-left binary exponentiation

INPUT: An element x of G and a nonnegative integer n = (n�−1 . . . n0)2.

OUTPUT: The element xn ∈ G.

1. y ← 1, z ← x and i ← 0

2. while i � � − 1 do

3. if ni = 1 then y ← y × z
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4. z ← z2

5. i ← i + 1

6. return y

Remarks 9.3

(i) Algorithm 9.1 is related to Horner’s rule, more precisely computing xn is similar to
evaluating the polynomial

∑�−1
i=0 niX

i at X = 2 with Horner’s rule.

(ii) Further enhancements may apply to the products y × x in Algorithm 9.1 since one of
the operands is fixed during the whole computation. For example, if x is well chosen the
multiplication can be computed more efficiently. Such an improvement is impossible
with Algorithm 9.2 where different terms of approximately the same size are involved
in the products y × z.

(iii) In Algorithm 9.2, whatever the value of n, the extra variable z contains the successive
squares x2, x4, . . . which can be evaluated in parallel to the multiplication.

The next example provides a comparison of Algorithms 9.1 and 9.2.

Example 9.4 Let us compute x314. One has 314 = (100111010)2 and 	 = 9.

Algorithm 9.1

i 8 7 6 5 4 3 2 1 0
ni 1 0 0 1 1 1 0 1 0
y x x2 x4 x9 x19 x39 x78 x157 x314

Algorithm 9.2

i 0 1 2 3 4 5 6 7 8
ni 0 1 0 1 1 1 0 0 1
z x x2 x4 x8 x16 x32 x64 x128 x256

y 1 x2 x2 x10 x26 x58 x58 x58 x314

The number of squarings is the same for both algorithms and equal to the bit length 	 ∼ lg n of n.
In fact this will be the case for all the methods discussed throughout the chapter.

The number of required multiplications directly depends on ν(n) the Hamming weight of n, i.e.,
the number of nonzero terms in the binary expansion of n. On average 1

2 lg n multiplications are
needed.

Further improvements introduced below tend to decrease the number of multiplications, leading
to a considerable speedup. Many algorithms also require some precomputations to be done. In
the case where several exponentiations with the same base have to be performed in a single run,
these precomputations need to be done only once per session, and if the base is fixed in a given
system, they can even be stored, so that their cost might become almost negligible. This is the case
considered in Algorithms 9.7, 9.10, and 9.23. Depending on the bit processed, a single squaring
or a multiplication and a squaring are performed at each step in both Algorithms 9.1 and 9.2. This
implies that it can be possible to retrieve each bit and thus the value of the exponent from an anal-
ysis of the computation. This has serious consequences when the exponent is some secret key. See
Chapters 28 and 29 for a description of side-channel attacks. An elegant technique, called Mont-
gomery’s ladder, overcomes this issue. Indeed, this variant of Algorithm 9.1 performs a squaring
and a multiplication at each step to compute xn.
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Algorithm 9.5 Montgomery’s ladder

INPUT: An element x ∈ G and a positive integer n = (n�−1 . . . n0)2.

OUTPUT: The element xn ∈ G.

1. x1 ← x and x2 ← x2

2. for i = � − 2 down to 0 do

3. if ni = 0 then

4. x1 ← x2
1 and x2 ← x1 × x2

5. else

6. x1 ← x1 × x2 and x2 ← x2
2

7. return x1

Example 9.6 To illustrate the method, let us compute x314 using, this time, Algorithm 9.5. Starting
from (x1, x2) = (x, x2), the next values of (x1, x2) are given below.

i 7 6 5 4 3 2 1 0

ni 0 0 1 1 1 0 1 0

(x1, x2) (x2, x3) (x4, x5) (x9, x10) (x19, x20) (x39, x40) (x78, x79) (x157, x158) (x314, x315)

See also Chapter 13, for a description of Montgomery’s ladder in the context of scalar multiplication
on an elliptic curve.

9.1.2 Left-to-right 2k2k2k2k2k2k2k2k-ary algorithm

The general idea of this method, introduced by Brauer [BRA 1939], is to write the exponent on a
larger base b = 2k. Some precomputations are needed but several bits can be processed at a time.

In the following the function σ is defined by σ(0) = (k, 0) and σ(m) = (s, u) where m = 2su
with u odd.

Algorithm 9.7 Left-to-right 2k-ary exponentiation

INPUT: An element x of G, a parameter k � 1, a nonnegative integer n = (n�−1 . . . n0)2k and
the precomputed values x3, x5, . . . , x2k−1.

OUTPUT: The element xn ∈ G.

1. y ← 1 and i ← � − 1

2. (s, u) ← σ(ni) [ni = 2su]

3. while i � 0 do

4. for j = 1 to k − s do y ← y2

5. y ← y × xu

6. for j = 1 to s do y ← y2
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7. i ← i − 1

8. return y

Remarks 9.8

(i) Lines 4 to 6 compute y2k

xni i.e., the exact analogue of y2xni in Algorithm 9.1. To
reduce the amount of precomputations, note that (y2k−s

xu)2
s

= y2k

xni is actually
computed.

(ii) The number of elementary operations performed is lg n + lg n
(
1 + o(1)

)
lg n/ lg lg n.

(iii) For optimal efficiency, k should be equal to the smallest integer satisfying

lg n � k(k + 1)22k

2k+1 − k − 2
·

See [COH 2000] for details. This leads to the following table, which gives for all inter-
vals of bit lengths the appropriate value for k.

k 1 2 3 4 5 6 7

No. of binary digits [1, 9] [10, 25] [26, 70] [70, 197] [197, 539] [539, 1434] [1434, 3715]

Example 9.9 Take n = 11957708941720303968251 whose binary representation is

(10100010000011101010001100000111111101011001011110111000000001111111111011)2.

As its binary length is 74, take k = 4. The representation of n in radix 24 is

( 2
2×1

8
8×1

8
8×1

3 10
2×5

8
8×1

12
4×3

1 15 13 6
2×3

5 14
2×7

14
2×7

0 1 15 15 11)24 .

Thus the successive values of y are 1, x, x2, x4, x5, x10, x20, x40, x80, x81, x162, x324, . . . , xn. Let
us denote a multiplication by M and a squaring by S. Then the precomputations cost 7M + S and
additionally one needs 17M + 72S, i.e., 97 elementary operations in total. By way of comparison,
Algorithm 9.1 needs 112 operations, 39M + 73S.

9.1.3 Sliding window method

The 2k-ary method consists of slicing the binary representation of n into pieces using a window of
length k and to process the parts one by one. Letting the window slide allows us to skip strings of
consecutive zeroes. For instance, let n = 334 = (101001110)2. Take a window of length 3 or, in
other words, precompute x3, x5 and x7 only. The successive values of y computed by Algorithm 9.7
are 1, x5, x10, x20, x40, x41, x82, x164, x167 and x334 as reflected by

334 = (101
5

001
1

110
2×3

)2.

But one could compute 1, x5, x10, x20, x40, x80, x160, x167, x334 instead. This saves one multipli-
cation and amounts to allowing non-adjacent windows

334 = (101
5

00111
7

0)2

where the strings of many consecutive zeroes are ignored.
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Here is the general algorithm.

Algorithm 9.10 Sliding window exponentiation

INPUT: An element x of G, a nonnegative integer n = (n�−1 . . . n0)2, a parameter k � 1 and
the precomputed values x3, x5, . . . , x2k−1.

OUTPUT: The element xn ∈ G.

1. y ← 1 and i ← � − 1

2. while i � 0 do

3. if ni = 0 then y ← y2 and i ← i − 1

4. else

5. s ← max{i − k + 1, 0}
6. while ns = 0 do s ← s + 1

7. for h = 1 to i − s + 1 do y ← y2

8. u ← (ni . . . ns)2 [ni = ns = 1 and i − s + 1 � k]

9. y ← y × xu [u is odd so that xu is precomputed]

10. i ← s − 1

11. return y

Remarks 9.11

(i) In Line 6 the index i is fixed, ni = 1 and the while loop finds the longest substring
(ni . . . ns) of length less than or equal to k such that ns = 1. So u = (ni . . . ns)2 is odd
and belongs to the set of precomputed values.

(ii) Only the values xu occurring in Line 9 actually need to be precomputed and not all the
values x3, x5, . . . , x2k−1.

(iii) In certain cases it is possible to skip some squarings at the beginning, at the cost of an ad-
ditional multiplication. For the sake of clarity assume that k = 5 and that the binary ex-
pansion of n is (1000000)2. Then Algorithm 9.10 computes x, x2, x4, x8, x16, x32, x64.
But one could perform x31 × x instead to obtain x32 directly, taking advantage of the
precomputations. However, this trick is interesting only if the first value of u is less than
2k−1.

Example 9.12 With n = 11957708941720303968251 and k = 4 the sliding window method
makes use of the following decomposition

(101
5

0001
1
00000111

7
0101

5
00011

3
000001111

15
111

7
01011

11
001011

11
1101

13
11
3

000000001111
15

1111
15

1101
13

1
1
)2.

The successive values of y are 1, x5, x10, x20, x40, x80, x81, x162, x324, x648, . . . , xn. In this case
93 operations are needed, namely 21M + 72S, precomputations included.

9.1.4 Signed-digit recoding

When inversion in G is fast (or when x is fixed and x−1 precomputed) it can be very efficient to
multiply by either x or x−1. This can be used to save additional multiplications on the cost of
allowing negative coefficients and hence using the inverse of precomputed values. The extreme
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example is the computation of x2k−1. With the binary method, cf. Algorithm 9.1, one needs k − 1
squarings and k− 1 multiplications. But one could also perform k squarings to get x2k

followed by
a multiplication by x−1. This remark leads to the following concept.

Definition 9.13 A signed-digit representation of an integer n in radix b is given by

n =
�−1∑
i=0

nib
i with |ni| < b.

A signed-binary representation corresponds to the particular choice b = 2 and ni ∈ {−1, 0, 1}.
It is denoted by (n�−1 . . . n0)s and usually obtained by some recoding technique. The represen-

tation is said to be in non-adjacent form, NAF for short, if nini+1 = 0, for all i � 0. It is denoted
by (n�−1 . . . n0)NAF.

For example, take n = 478 and let 1̄ = −1. Then (101̄11001̄10)s is a signed-binary representation
of n. The first recoding technique was proposed by Booth [BOO 1951]. It consists of replacing
each string of i consecutive 1 in the binary expansion of n by 1 followed by a string of i − 1
consecutive 0 and then 1̄. For 478 = (111011110)2 it gives (1001̄10001̄0)s. Obviously, the signed-
binary representation of n is not unique. However, the NAF of a given n is unique and its Hamming
weight is minimal among all signed-digit representations of n. For example, the NAF of 478 is equal
to (10001̄0001̄0)NAF. On average the number of nonzero terms in an NAF expansion of length 	
is equal to 	/3. See [BOS 2001] for a precise analysis of the NAF density. There is a very simple
algorithm to compute it [REI 1962, MOOL 1990].

Algorithm 9.14 NAF representation

INPUT: A positive integer n = (n�n�−1 . . . n0)2 with n� = n�−1 = 0.

OUTPUT: The signed-binary representation of n in non-adjacent form (n′
�−1 . . . n′

0)NAF.

1. c0 ← 0

2. for i = 0 to � − 1 do

3. ci+1 ← �(ci + ni + ni+1)/2�
4. n′

i ← ci + ni − 2ci+1

5. return (n′
�−1 . . . n′

0)NAF

Remarks 9.15

(i) Algorithm 9.14 subtracts n from 3n with the rule 0 − 1 = 1 and discards the least
significant digit of the result. For each i, ci is the carry occurring in the addition n +
2n. Let si = ci + ni + ni+1 − 2ci+1 so that the binary expansion of 3n is equal to
(s�−1 . . . s0n0)2. Now n′

i = ci + ni − 2ci+1 ∈ {1, 0, 1} . The following observation
ensures the non-adjacent property of the expansion [JOYE 2000]. If n′

i �= 0, we have
ci + ni = 1, which implies that ci+1 = ni+1. So n′

i+1 = 2(ni+1 − ci+2) must be zero.

(ii) Finding a signed-binary representation in non-adjacent form can be done by table lookup.
Indeed ci+1 and n′

i, computed in Lines 3 and 4, only depend on ni+1, ni and ci giving
just eight cases.

(iii) Algorithm 9.14 operates from the right to the left. Since most of the exponentiation
algorithms presented so far process the bits from the left to the right, the signed-binary
representation must first be computed and stored. To enable “on the fly” recoding, which
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is particularly interesting for hardware applications, cf. Chapter 26, Joye and Yen de-
signed a left-to-right signed-digit recoding algorithm. The result is not necessarily in
non-adjacent form but its Hamming weight is still minimal [JOYE 2000].

(iv) Algorithms 9.1, 9.2, 9.7, and 9.10 can be updated in a trivial way to deal with signed-
binary representation.

(v) A generalization of the NAF is presented below; see Algorithm 9.20.

Example 9.16 Again take n = 11957708941720303968251. Algorithm 9.14 gives

n = (101000100001001̄010100101̄0000100000001̄01̄01̄0101̄00001̄001̄0000000100000000001̄01̄)NAF.

Now one can combine this representation to a sliding window algorithm of length 4 to get the
following decomposition

(101
5

0001
1
00001001̄

7
0101

5
00101̄

3
00001

1
0000000 1̄01̄

−5
0 1̄01

−3
0 1̄
−1

0000 1̄001̄
−9

00000001
1
0000000000 1̄01̄

−5
)NAF.

The number of operations, precomputations included, is 90, namely 18M + 72S.

Koyama and Tsuruoka [KOTS 1993] designed another transformation, getting rid of the condition
nini+1 = 0 but still minimizing the Hamming weight. Its average length of zero runs is 1.42 against
1.29 for the NAF.

Algorithm 9.17 Koyama–Tsuruoka signed-binary recoding

INPUT: The binary representation of n = (n′
�−1 . . . n′

0)2.

OUTPUT: The signed-binary representation (n� . . . n0)s of n in Koyama–Tsuruoka form.

1. m ← 0, i ← 0, j ← 0, u ← 0, v ← 0, w ← 0, y ← 0 and z ← 0

2. while i < �lg n� do

3. if n′
i = 1 then y ← y + 1 else y ← y − 1

4. i ← i + 1

5. if m = 0 then

6. if y − z � 3 then

7. while j < w do nj = bj and j ← j + 1

8. nj ← −1, j ← j + 1, v ← y, u ← i and m ← 1

9. else if y < z then z ← y and w ← i

10. else

11. if v − y � 3 then

12. while j < u do nj = bj − 1 and j ← j + 1

13. nj ← 1, j ← j + 1, z ← y, w ← i and m ← 0

14. else if y > v then v ← y and u ← i

15. if m = 0 or (m = 1 and v � y) then

16. while j < i do nj = bj − m and j ← j + 1

17. nj ← 1 − m and nj+1 ← m

18. else

19. while j < u do nj = bj − 1 and j ← j + 1

20. nj ← 1 and j ← j + 1
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21. while j < i do nj = bj and j ← j + 1

22. nj ← 1 and nj+1 ← 0

23. return (n� . . . n0)s

This approach gives good results when combined with the sliding window method.

Example 9.18 For the same n = 11957708941720303968251, a sliding window exponentiation of
length 4 based on the expansion given by Algorithm 9.17 corresponds to

(101
5

0001
1
00001

1
000 1̄01̄1̄

−11
00011

3
00001

1
0000000 1̄01̄

−5
00 1̄1̄01̄

−13
0000 1̄001̄

−9
00000001

1
0000000000 1̄01̄

−5
)s.

In total 89 operations are necessary, i.e., 17M + 72S, including the precomputations.

Now one introduces a generalization of the NAF, which combines window and signed methods as
suggested in [MOOL 1990] and explained in [COMI+ 1997, COH 2005].

Definition 9.19 Let w be a parameter greater than 1. Then every positive integer n has a unique
signed-digit expansion

n =
�−1∑
i=0

ni2i

where

• each ni is zero or odd
• |ni| < 2w−1

• among any w consecutive coefficients at most one is nonzero.

An expansion of this particular form is called width-w non-adjacent form, NAFw for short, and is
denoted by (n�−1 . . . n0)NAFw

.

In [AVA 2005a], Avanzi shows that the NAFw is optimal, in the sense that it is a recoding of
smallest weight among all those with coefficients smaller in absolute value than 2w−1. See also
[MUST 2004] for a similar result.

A generalization of Algorithm 9.14 allows us to compute the NAFw of any number n > 0.

Algorithm 9.20 NAFw representation

INPUT: A positive integer n and a parameter w > 1.

OUTPUT: The NAFw representation (n�−1 . . . n0)NAFw of n.

1. i ← 0

2. while n > 0 do

3. if n is odd then

4. ni ← n mods 2w

5. n ← n − ni

6. else ni ← 0

7. n ← n/2 and i ← i + 1

8. return (n�−1 . . . n0)NAFw
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Remarks 9.21

(i) The function mods used in Line 4 of Algorithm 9.20 returns the smallest residue in
absolute value. Hence, n mods 2w belongs to [−2w−1 + 1, 2w−1].

(ii) For w = 2 the NAFw corresponds to the classical NAF, cf. Definition 9.13.

(iii) The length of the NAFw of n is at most equal to �lg n� + 1. The average density of the
NAFw expansion of n is 1/(w + 1) as n tends to infinity. For a precise analysis, see
[COH 2005].

(iv) A left-to-right variant to compute an NAFw expansion of an integer can be found both
in [AVA 2005a] and in [MUST 2005]. The result may differ from the expansion pro-
duced by Algorithm 9.20 but they have the same digit set and the same optimal weight.

(v) Let w > 1 and precompute the values x+− 3, . . . , x+− (2w−1−1). Then in Algorithm 9.1 it
is sufficient to replace the statement

4. if ni = 1 then y ← x × y
by

4. if ni �= 0 then y ← xni × y
to take advantage of the NAFw expansion of n = (n�−1 . . . n0)NAFw

to compute xn.

(vi) See [MÖL 2003] for a further generalization called the signed fractional window method,
where only a subset of

{
x+− 3, . . . , x+− (2w−1−1)

}
is actually precomputed.

Example 9.22 For n = 11957708941720303968251 and w = 4 one has

n = (500010000000700050000300001000000010005000300010007000000010000000000005)NAFw

where ni = −ni. With this representation and the modification of Algorithm 9.1 explained above
xn can be obtained with 3M+S for the precomputations and then 12M+69S, that is 85 operations
in total.

9.1.5 Multi-exponentiation

The group G is assumed to be abelian in this section.
It is often needed in cryptography, for example during a signature verification, cf. Chapter 1, to

evaluate xn0
0 xn1

1 where x0, x1 ∈ G and n0, n1 ∈ Z. Instead of computing xn0
0 and xn1

1 separately
and then multiplying these terms, it is suggested in [ELG 1985] to adapt Algorithm 9.1 in the
following way, in order to get xn0

0 xn1
1 in one round. Indeed, start from y ← 1. Scan the bits of n0

and n1 simultaneously from the left to the right and do y ← y2. Then if the current bits of n0
n1

are
1
0

, 0
1 or 1

1 multiply by x0, x1 or x0x1 accordingly.
For example, to compute x51

0 x166
1 write the binary expansion of 51 and 166

51 = (00110011)2
166 = (10100110)2

and apply the rules above so that the successive values of y are at each step 1, x1, x2
1, x0x

5
1, x3

0x
10
1 ,

x6
0x

20
1 , x12

0 x41
1 , x25

0 x83
1 , and finally x51

0 x166
1 .

This trick is often credited to Shamir although it is a special case of an idea of Straus [STR 1964]
described below. Note that the binary coefficients of nj are denoted by nj,k. If necessary, the
expansion of nj is padded with zeroes in order to be of length 	.
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Algorithm 9.23 Multi-exponentiation using Straus’ trick

INPUT: The elements x0, . . . , xr−1 ∈ G and the �-bit positive exponents n0, . . . , nr−1. For
each i = (ir−1 . . . i0)2 ∈ [0, 2r − 1], the precomputed value gi =

Qr−1
j=0 x

ij

j .

OUTPUT: The element xn0
0 · · ·xnr−1

r−1 .

1. y ← 1

2. for k = � − 1 down to 0 do

3. y ← y2

4. i ←Pr−1
j=0 nj,k2j [i = (nr−1,k . . . n0,k)2]

5. y ← y × gi

6. return y

Remarks 9.24

(i) Computing xn0
0 . . . x

nr−1
r−1 in a naïve way requires r	 squarings and r	/2 multiplications

on average. With Algorithm 9.23, precomputations cost 2r − r− 1 multiplications, then
only 	 squarings and (1 − 1/2r)	 multiplications are necessary on average. However
one needs to store 2r − r values.

(ii) One can use Algorithm 9.23 to compute xn. To do so, write n = (n�−1 . . . n0)b in
base b, then set xi = xbi

and compute xn =
∏�−1

i=0 xni

i . This approach can be seen as a
baby-step giant-step algorithm, where the giant steps xbi

are computed first.

(iii) All the improvements of Algorithm 9.1 described previously apply to Algorithm 9.23
as well. In particular the use of parallel sliding window leads to a faster method; see
[AVA 2002, AVA 2005b, BER 2002] for a general overview on multi-exponentiation.

Example 9.25 Let us compute x31021. One has 31021 = (7 36 45)64, so that xn = x45
0 x36

1 x7
2

where x0 = x, x1 = x64 and x2 = x642
. First precompute the gi’s

i 0 1 2 3 4 5 6 7

gi 1 x0 x1 x0x1 x2 x0x2 x1x2 x0x1x2

Then one gets

k 5 4 3 2 1 0

n2,k 0 0 0 1 1 1

n1,k 1 0 0 1 0 0

n0,k 1 0 1 1 0 1

i 3 0 1 7 4 5

y x0x1 x2
0x

2
1 x5

0x
4
1 x11

0 x9
1x2 x22

0 x18
1 x3

2 x45
0 x36

1 x7
2

To improve Straus’ method in case of a double exponentiation within a group where inversion can
be performed efficiently, Solinas [SOL 2001] made signed-binary expansions come back into play.

Definition 9.26 The joint sparse form, JSF for short, of the 	-bit integers n0 and n1 is a representa-
tion of the form (

n0

n1

)
=
(

n0,� . . . n0,0

n1,� . . . n1,0

)
JSF
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such that

• of any three consecutive positions, at least one is a zero column, that is for all i and all
positive j one has ni,j+k = n1−i,j+k = 0, for at least one k in {0, +− 1}

• adjacent terms do not have opposite signs, i.e., it is never the case that ni,jni,j+1 = −1
• if ni,j+1ni,j �= 0 then one has n1−i,j+1 = +− 1 and n1−i,j = 0.

The joint Hamming weight is the number of positions different from a zero column.

Solinas also gives an algorithm to compute the JSF of two integers.

Algorithm 9.27 Joint sparse form recoding

INPUT: Nonnegative �-bit integers n0 and n1 not both zero.

OUTPUT: The joint sparse form of n0 and n1.

1. j ← 0, S0 = (), S1 = (), d0 ← 0 and d1 ← 0

2. while n0 + d0 > 0 or n1 + d1 > 0 do

3. �0 ← d0 + n0 and �1 ← d1 + n1

4. for i = 0 to 1 do

5. if �i ≡ 0 (mod 2) then ri ← 0

6. else

7. ri ← �i mods 4

8. if �i ≡ +− 3 (mod 8) and �1−i ≡ 2 (mod 4) then ri ← −ri

9. Si ← ri ||Si [ri prepended to Si]

10. for i = 0 to 1 do

11. if 2di = 1 + n′
i then di ← 1 − di

12. ni ← �ni/2�
13. j ← j + 1

14. return S0 and S1

Remarks 9.28

(i) The joint sparse form of n0 and n1 is unique. The joint Hamming weight of the JSF
of n0 and n1 is equal to 	/2 on average and the JSF is optimal in the sense that it has
the smallest joint Hamming weight among all joint signed representations of n0 and n1

[SOL 2001].

(ii) The naïve computation of xn0
0 xn1

1 involving NAF representations of n0 and n1 requires
2	 squarings and 2	/3 multiplications on average. Only 	 squarings and 	/2 multiplica-
tions are necessary with the JSF, neglecting the cost of the precomputations of x0x1 and
x0/x1. Applying Straus’ trick with two integers in NAF results in a Hamming weight
of 5	/9 on average.

(iii) In [GRHE+ 2004], Grabner et al. introduce the simple joint sparse form whose joint
Hamming weight is also minimal but which can be obtained in an easier way.
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Example 9.29 Let us compute x51
0 x166

1 . The joint NAF expansion of 51 and 166 is

51 = (0101̄0101̄)NAF

166 = (1010101̄0)NAF.

Its joint Hamming weight is 8. The JSF of 51 and 166, as given by Algorithm 9.27, is

(
51
166

)
=
(

00101̄0011
101̄01̄1̄01̄0

)
JSF

with a joint Hamming weight equal to 6.

The next section is devoted to the case when several exponentiations to the same exponent n have
to be performed.

9.2 Fixed exponent

The methods considered in this section essentially give better algorithms when the exponent n is
fixed. They rely on the concept of addition chains. However, the computation of a short addition
chain for a given exponent can be very costly. But if the exponent is to be used several times it is
probably a good investment to carry out this search.

In the following, different kinds of addition chains are discussed, then efficient methods to actu-
ally find short addition chains are introduced before related exponentiation algorithms are described.

9.2.1 Introduction to addition chains

Definition 9.30 An addition chain computing an integer n is given by two sequences v and w such
that

v = (v0, . . . , vs), v0 = 1, vs = n
vi = vj + vk for all 1 � i � s with respect to
w = (w1, . . . , ws), wi = (j, k) and 0 � j, k � i − 1. (9.1)

The length of the addition chain is s.
A star addition chain satisfies the additional property that at each step vi = vi−1 + vk for some

k such that 0 � k � i − 1.

Note that one should write vi = vj(i) + vk(i) since the indexes depend on i. They are omitted for
the sake of simplicity. Sometimes only v is given since it is easy to retrieve w from v. For example
v = (1, 2, 3, 6, 7, 14, 15) is an addition chain for 15 of length 6. It is implicit in the computation
of x15 by Algorithm 9.1. In fact binary or window methods can be seen as methods producing and
using special classes of addition chains but it is often possible to do better, that is to find a shorter
chain. For instance (1, 2, 3, 6, 12, 15) computes also 15 and is of length 5.

For a given n, the smallest s for which there exists an addition chain of length s computing n is
denoted by 	(n). It is not hard to see that 	(15) = 5 but the determination of 	(n) can be a difficult
problem even for rather small n.
As complexities of squarings and multiplications are usually slightly different, note that a carefully
chosen complexity measure should take into account not only the length of the chain but also the
respective numbers of squarings and multiplications involved. For example (1, 2, 4, 5, 6, 11) and
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(1, 2, 3, 4, 8, 11) compute 11 and have the same length 5. However the first chain needs 3 multipli-
cations whereas the latter requires only 2.

There is an abundant literature about addition chains. It is known [SCH 1975, BRA 1939] that

lg(n) + lg
(
ν(n)

)
− 2.13 � 	(n) � lg(n) + lg(n)

(
1 + o(1)

)
/ lg
(
lg(n)

)
,

where ν(n) is the Hamming weight of n.
As said before, finding an addition chain of the shortest length can be very hard. To make this pro-

cess easier, it seems harmless to restrict the search to star addition chains. But Hansen [HAN 1959]
proved that for some n, the smallest being n = 12509, there is no star addition chain of minimal
length 	(n). The shortest length 	(n) has been determined for all n up to 220, pruning trees to speed
up the search [BLFL]. See also Thurber’s algorithm, which is able to find all the addition chains for
a given n [THU 1999]. The hardness of this search depends primarily on ν(n), so that it is longer to
find the minimal length of 191 = (10111111)2 than 1048577 = (100000000000000000001)2, but
the running time can be quite long, even for small integers with a rather low density.

The concept of addition chain can be extended in at least three different ways.

Definition 9.31 An addition-subtraction chain is similar to an addition chain except that the condi-
tion vi = vj + vk is replaced by vi = vj + vk or vi = vj − vk.

For example, an addition chain for 314 is v = (1, 2, 4, 8, 9, 19, 38, 39, 78, 156, 157, 314). The addi-
tion–subtraction chain v = (1, 2, 4, 5, 10, 20, 40, 39, 78, 156, 157, 314) is one term shorter.

Definition 9.32 An addition sequence for the set of integers S = {n0, . . . , nr−1} is an addition
chain v that contains each element of S. In other words, for all i there is j such that ni = vj .

For example, an addition sequence computing {47, 117, 343, 499, 933, 5689} is

(1, 2, 4, 8, 10, 11, 18, 36, 47 , 55, 91, 109, 117 , 226, 343 , 434, 489, 499 , 933 , 1422, 2844, 5688, 5689 ).

In [YAO 1976], it is shown that the shortest length of an addition sequence computing the set of
integers {n0, . . . , nr−1} is less than

lg N + cr lg N/ lg lg N,

where N = maxi{ni} and c is some constant.

Definition 9.33 Let k and s be positive integers. A vectorial addition chain is a sequence V of
k-dimensional vectors of nonnegative integers vi for −k + 1 � i � s together with a sequence w,
such that

v−k+1 = [1, 0, 0, . . . , 0, 0]
v−k+2 = [0, 1, 0, . . . , 0, 0]

...
v0 = [0, 0, 0, . . . , 0, 1]

vi = vj + vk for all 1 � i � s with − k + 1 � j, k � i − 1
vs = [n0, . . . , nr−1]
w = (w1, . . . , ws), wi = (j, k). (9.2)

For example, a vectorial addition chain for [45, 36, 7] is

V =
`
[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [2, 2, 0], [4, 4, 0], [5, 4, 0], [10, 8, 0],

[11, 9, 0], [11, 9, 1], [22, 18, 2], [22, 18, 3], [44, 36, 6], [45, 36, 6], [45, 36, 7]
´
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w =
`
(−2,−1), (1, 1), (2, 2), (−2, 3), (4, 4), (1, 5), (0, 6), (7, 7), (0, 8), (9, 9), (−2, 10), (0, 11)

´
.

Since k = 3, the first three terms of V are v−2 = [1, 0, 0], v−1 = [0, 1, 0], and v0 = [0, 0, 1]. This
chain is of length 12 and is implicitly produced by Algorithm 9.23.

Addition sequences and vectorial addition chains are in some sense dual. We refer the inter-
ested reader to [BER 2002, STA 2003] for details and to [KNPA 1981] for a more general ap-
proach. In [OLI 1981] Olivos describes a procedure to transform an addition sequence computing
{n0, . . . , nr−1} of length 	 into a vectorial addition chain of length 	 + r − 1 for [n0, . . . , nr−1].

To illustrate his method let us deduce a vectorial addition chain for [45, 36, 7] from the addition
sequence v = (1, 2, 4, 6, 7, 9, 18, 36, 45) computing {7, 36, 45}. Let {ej | 0 � j � k} be the
canonical basis of Rk+1. The idea is then to build an array by induction, starting in the lower right
corner with a 2-by-2 array, and then processing the successive elements vh of the addition sequence,
following two rules:

• if vh = 2vi then the line to be added on top is the double of line i and the new two
columns on the left are 2eh and 2eh + ei

• if vh satisfies vh = vi + vj then the new line on top is the sum of lines i and j and the
two columns on the left are eh + ei and eh + ej .

The expression of vh in terms of the vi’s is written on the right. The first steps are:

2 2 2 = 1 + 1

0 1 1
=⇒

2 2 4 4 4 = 2 + 2

0 1 2 2 2 = 1 + 1

0 0 0 1 1

=⇒

1 1 2 3 6 6 6 = 4 + 2

1 0 2 2 4 4 4 = 2 + 2

0 1 0 1 2 2 2 = 1 + 1

0 0 0 0 0 1 1

At the end one has

1 1 2 2 4 5 5 5 5 5 5 10 10 20 40 45 45 = 36 + 9 ←
1 0 2 2 4 4 4 4 4 4 4 8 8 16 32 36 36 = 18 + 18 ←
0 0 0 1 2 2 2 2 2 2 2 4 4 8 16 18 18 = 9 + 9

0 1 0 0 0 1 1 1 1 1 1 2 2 4 8 9 9 = 7 + 2

0 0 0 0 0 0 1 0 1 1 1 1 2 3 6 7 7 = 6 + 1 ←
0 0 0 0 0 0 0 0 1 0 1 1 2 3 6 6 6 = 4 + 2

0 0 0 0 0 0 0 0 0 0 1 0 2 2 4 4 4 = 2 + 2

0 0 0 0 0 0 0 1 0 0 0 1 0 1 2 2 2 = 1 + 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1

Then discard all the lines except the ones marked by an arrow and corresponding to 7, 36, and 45.
Consider the columns from the left to the right, eliminate redundancies and finally add the canonical
vectors of Rr so that a vectorial addition sequence for [45, 36, 7] is(

[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [2, 2, 0], [4, 4, 0], [5, 4, 0],

[5, 4, 1], [10, 8, 1], [10, 8, 2], [20, 16, 3], [40, 32, 6], [45, 36, 7]
)
.

Conversely the procedure to get an addition sequence from a vectorial addition exists as well
[OLI 1981].
Before explaining how to find short chains, let us remark that the set of vectors (n0, . . . , nr−1, 	)
such that there is an addition sequence of length 	 containing n0, . . . , nr−1 has been shown to
be NP-complete [DOLE+ 1981]. This does not imply, as it is sometimes claimed, that finding a
shortest addition chain for n is NP-complete. However, we have seen that dedicated algorithms to
find a shortest addition chain are in practice limited to small exponents.
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9.2.2 Short addition chains search

In the following, different heuristics to find short addition chains are discussed. They are rather
efficient but do not necessarily find a shortest possible chain. Most of the methods described here
use the concept of dictionary.

Definition 9.34 Given an integer n, a dictionary D for n is a set of integers such that

n =
k∑

i=0

bi,dd2i, with bi,d ∈ {0, 1} and d ∈ D.

Note that all the algorithms introduced in Section 9.1 can be used to produce addition chains and
implicitly use a dictionary. For example, the dictionary associated to window methods of length k
is the set {1, 3, . . . , 2k − 1}. For the NAFw it is {+− 1, +− 3, . . . , +− (2k−1 − 1)}.

In [GOHA+ 1996, O’CO 2001] the dictionary is simply made of the elements 2i −1 for 0 < i �
w, for some fixed parameter w.

The power tree method [KNU 1997] is quite simple to implement but it does not always return
an optimal addition chain, the first counter example being n = 77. Like other algorithms exploring
trees it cannot be used for exponents of cryptographic relevance, as the size grows too fast in the bit
size of the exponent and is too large for the required sizes.

A more sophisticated method is described in [KUYA 1998] and is related to the Tunstall method;
see [TUN 1968]. Namely, choose a parameter k, let p be the number of zeroes in the expansion of
n divided by its length 	 and let q = 1 − p. If the expansion is signed let q̂ = (1 − p)/2. Then
form a tree having a root of weight 1 and while the number of leaves is less than k + 1 add leaves
to this tree according to the following procedure. Take the leaf of highest weight w and create two
children with weight wp and wq, labeled respectively by 0 and 1. If the expansion is signed create
three children with weight wp, wq̂, and wq̂, labeled respectively by 0, 1̄0, and 10, instead. At the
end read the labels from the root to the leaves and concatenate 1 (10 if signed) at the beginning of
each sequence. The dictionary D is the set of odd integers obtained by removing the zeroes at the
end of each sequence. The result is a function of 	 and of the number of zeroes in the signed-binary
expansion of n. The best choice for the size of the dictionary depends on 	 and can be as large as
20 for 512-bit exponents [KUYA 1998].

Example 9.35 Take n = 587257 and k = 4. The signed-binary recoding Algorithm 9.14 gives
n = (100100001̄01̄000001̄001)NAF. One has p = 7/10 and q̂ = 3/20. After two iterations, there
are five leaves and D = {(00), (010), (01̄0), (10), (1̄0)} as shown below

=⇒

•

• • • =⇒

•
0

��������
10

1̄0

��������

• • •

•
0

��������
10

1̄0

�������� • •

•
0

��������
10

1̄0

��������

Then concatenate (10) at the beginning of each sequence of D and remove all the zeroes at the end
to finally get D = {1, 3, 5, 7, 9}. From this one can compute n = 219 + 216 − 5 × 29 − 7.

Yacobi suggests a completely different approach [YAC 1998], namely to use the well-known
Lempel–Ziv compression algorithm [ZILE 1977, LEZI 1978] to get the dictionary.

At the beginning the dictionary is empty and new elements are added while the binary expansion
of the exponent is scanned from the right to the left. Take the longest word in the dictionary that
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fits as prefix of the unscanned part of the exponent and concatenate it to the next unscanned digit
of the exponent to form a new element of the dictionary. Repeat the process until all the digits are
processed. There is also a sliding version that skips strings of zeroes.

Example 9.36 For n = 587257 one gets (1000 1111 010 111 11 10 0 1)2 and the dictionary
{1, 0, 2, 3, 7, 2, 15, 0, 2}, which actually gives rise to D = {1, 3, 7, 15}. One has n = 1 × 219 +
15 × 212 + 1 × 210 + 7 × 26 + 3 × 24 + 1 × 23 + 1 so that an addition chain for n is

(1, 2, 3, 4, 7, 8, 15, 16, 32, 64, 128, 143, 286, 572, 573, 1146, 2292, 4584,

9168, 9175, 18350, 36700, 36703, 73406, 73407, 146814, 293628, 587256, 587257)

whose length is 28.
The sliding version returns D = {1, 3, 5, 7} from the decomposition

(10000111 101 01 111 11001)2.

In this case n = 1× 219 + 7× 213 + 5× 210 + 1× 28 + 7× 26 + 3× 23 + 1 and an addition chain
for n is

(1, 2, 3, 5, 7, 8, 16, 32, 64, 71, 142, 284, 568, 573, 1146, 2292, 2293, 4586,

9172, 18344, 18351, 36702, 73404, 73407, 146814, 293628, 587256, 587257)

of length 27.

This method can also be used with signed-digit representations and is particularly efficient when the
number of zeroes is small.

In [BEBE+ 1989] continued fractions and the Euclid algorithm are used to produce short addition
chains. First let ⊗ and ⊕ be two simple operations on addition chains, defined as follows. If
v = (v0, . . . , vs) and w = (w0, . . . , wt) then

v ⊗ w = (v0, . . . , vs, vsw0, . . . , vswt)

and if j is an integer

v ⊕ j = (v0, . . . , vs, vs + j).

Now let 1 < k < n be some integer. Then

(1, . . . , k, . . . , n) = (1, . . . , n mod k, . . . , k) ⊗ (1, . . . , �n/k�)⊕ (n mod k). (9.3)

The point is to choose the best possible k. If k = �n/2� then the addition chain is equal to the one
obtained with binary methods. Instead the authors propose a dichotomic strategy, that is to take

k = γ(n) =
⌊

n

2��lg n�/2�

⌋
·

The rule (9.3) is then applied recursively in minchain(n), which uses the additional procedure
chain(n, k),
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minchain(n)
1. if n = 2� then return (1, 2, 4, . . . , 2�)
2. if n = 3 then return (1, 2, 3)
3. return chain

(
n, 2�lg n/2�)

and
chain(n, k)

1. q ← �n/k� and r ← n mod k

2. if r = 0 then return
(
minchain(k) ⊗ minchain(q)

)
3. else return chain(k, r) ⊗ minchain(q) ⊕ r

Note that these algorithms are able to find short addition sequences as well.

Example 9.37 For n = 87, one has k = �87/8� = 10 and the successive calls are

chain(87, 10)
chain(10, 7) ⊗ minchain(8) ⊕ 7
(chain(7, 3) ⊗ minchain(1) ⊕ 3) ⊗ minchain(8) ⊕ 7(
(minchain(3) ⊗ minchain(2) ⊕ 1) ⊗ minchain(1) ⊕ 3

)
⊗ minchain(8) ⊕ 7

so that the final result is the optimal addition chain (1, 2, 3, 6, 7, 10, 20, 40, 80, 87).

In [BEBE+ 1994], the authors generalize this approach, introducing new strategies to determine a
set of possible values for k. So the choice of k is no longer deterministic and it is necessary to
backtrack the best possible k. For the factor method, see also [KNU 1997], one has{

k ∈ {n − 1} if n is prime

k ∈ {n − 1, p} if p is the smallest prime dividing n.

For the total strategy, k ∈ {2, 3, . . . , n − 1}. For the dyadic strategy,

k ∈
{⌊ n

2j

⌋
, j = 1, . . .

}
·

Note that only Fermat’s strategy, where

k ∈
{⌊ n

22j

⌋
, j = 0, 1, . . .

}
has a reasonable complexity and is well suited for large exponents.

Example 9.38 The corresponding results for 87 are all optimal and given in the next table.

Strategy Initial k Result

Factor 3 (1, 2, 3, 6, 12, 24, 48, 72, 84, 87)
Total 17 (1, 2, 4, 8, 16, 17, 34, 68, 85, 87)
Dyadic 2 (1, 2, 4, 6, 10, 20, 40, 80, 86, 87)
Fermat 5 (1, 2, 3, 5, 10, 20, 40, 80, 85, 87)

In [BOCO 1990] Bos and Coster use similar ideas to produce an addition sequence. See also
[COSTER]. Starting from 1, 2 and the requested numbers . . . , f2, f1, f they replace at each step
the last term by new elements produced by one of four different methods. A weight function helps
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to decide which rule should be used at each stage. Here is a brief description of these strategies with
some examples.

Approximation

Condition 0 � f − (fi + fj) = ε with fi � fj and ε small
Insert fi + ε
Example 49 67 85 117→ 49 50 67 85 (because 117 - (49 + 67) = 1)

Division

Condition f is divisible by p ∈ {3, 5, 9, 17}. Let (1, 2, . . . , αr = p) be an addition chain for p
Insert f/p, 2f/p, . . . , αr−1f/p
Example 17 48→ 16 17 32 (because 48/3= 16 and (1,2,3) computes 3)

Halving

Condition f/fi � 2u and �f/2u� = k
Insert k, 2k, . . . , k2u

Example 14 382→ 14 23 46 92 184 368 (because 382/14 � 24 and �382/24� = 23)

Lucas

Condition f and fi belong to a Lucas series (fi = u0, f = uk, k � 3 and ui+1 = ui + ui−1)
Insert u1, u2, . . . , uk−1

Example 4 23→ 4 5 9 14 (because 4,5,9,14,23 is a Lucas series)

For faster results use only Approximation and Halving steps. The choice is simpler and does not
require any weight function.

Example 9.39 This method applied to {1, 2, 47, 117, 343, 499, 933, 5689} returns

(1, 2, 4, 8, 10, 11, 18, 36, 47 , 55, 91, 109, 117 , 226, 343 , 434, 489, 499 , 933 , 1422, 2844, 5688, 5689 ).

The method of Bos and Coster when combined to a sliding window of big length allows us to
compute xn with a dictionary of small size and no precomputation. The following example is taken
from [BOCO 1990].

Example 9.40 Let n = 26235947428953663183191 and take a window of length 10 (except for
the first digit corresponding to a window of length 13). Then

n=(1011000111001
5689

0000001110100101
933

001110101
117

000000101111
47

00000111110011
499

00101010111
343

)2

so that the dictionary is D = {47, 117, 343, 499, 933, 5689} and the corresponding addition chain
built with D is of length 89. By way of comparison, Algorithms 9.1 and 9.10 need respectively 110
and 93 operations.

Finally, see [NEMA 2002] for techniques related to genetic algorithms.

9.2.3 Exponentiation using addition chains

Once an addition chain for n is found it is straightforward to deduce xn.
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Algorithm 9.41 Exponentiation using addition chain

INPUT: An element x of G and an addition chain computing n i.e., v and w as in (9.1).

OUTPUT: The element xn.

1. x1 ← x

2. for i = 1 to s do xi ← xj × xk [w(i) = (j, k)]

3. return xs

Example 9.42 Let us compute x314, from the addition chain for 314 given below

i 0 1 2 3 4 5 6 7 8 9 10 11 12

vi 1 2 4 8 9 18 19 38 39 78 156 157 314

wi — (0, 0) (1, 1) (2, 2) (3, 0) (4, 4) (5, 0) (6, 6) (7, 0) (8, 8) (9, 9) (10, 0) (11, 11)

xi x x2 x4 x8 x9 x18 x19 x38 x39 x78 x156 x157 x314

Vectorial addition chains are well suited to multi-exponentiation. Here again G is assumed to be
abelian.

Algorithm 9.43 Multi-exponentiation using vectorial addition chain

INPUT: Elements x0, . . . , xr−1 of G and a vectorial addition chain of dimension r computing
[n0, . . . , nr−1] as in (9.2).

OUTPUT: The element xn0
0 · · ·xnr−1

r−1 .

1. for i = −k + 1 to 0 do yi ← xi+k−1

2. for i = 1 to s do yi ← yj × yk [w(i) = (j, k)]

3. return ys

The vectorial addition chain for [45, 36, 7] implicitly produced by Algorithm 9.23 is of length 12.
A careful search reveals a chain of length 10 as it can be seen in the next table, which displays the
execution of Algorithm 9.43 while computing x45

0 x36
1 x7

2 with it. Recall that y−2 = x0, y−1 = x1

and y0 = x2.

i 1 2 3 4 5 6 7 8 9 10

wi (−2,−1) (1, 1) (2, 2) (−2, 3) (0, 4) (4, 5) (0, 6) (6, 7) (8, 8) (5, 9)

yi x0x1 x2
0x

2
1 x4

0x
4
1 x5

0x
4
1 x5

0x
4
1x2 x10

0 x8
1x2 x10

0 x8
1x

2
2 x20

0 x16
1 x3

2 x40
0 x32

1 x6
2 x45

0 x36
1 x7

2

9.3 Fixed base point

In some situations the element x is always the same whereas the exponent varies. Precomputations
are the key point here.
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9.3.1 Yao’s method

A simpler version of Algorithm 9.44, which can be seen as the dual of the 2k-ary method, was first
described in [YAO 1976]. A slightly improved form is presented in [KNU 1981, answer to exercise
9, Section 4.6.3]. Note that it is identical to the patented BGMW’s algorithm [BRGO+ 1993].

Let n, ni, bi, 	 and h be integers. Suppose that

n =
�−1∑
i=0

nibi with 0 � ni < h for all i ∈ [0, 	 − 1]. (9.4)

Let xi = xbi . The method relies on the equality

xn =
�−1∏
i=0

xni

i =
h−1∏
j=1

[ ∏
ni=j

xi

]j
.

Algorithm 9.44 Improved Yao’s exponentiation

INPUT: The element x of G, an exponent n written as in (9.4) and the precomputed values
xb0 , xb1 , . . . , xb�−1 .

OUTPUT: The element xn.

1. y ← 1, u ← 1 and j ← h − 1

2. while j � 1 do

3. for i = 0 to � − 1 do if ni = j then u ← u × xbi

4. y ← y × u

5. j ← j − 1

6. return y

Remarks 9.45

(i) The term
[ ∏

ni=j

xi

]j
is computed by repeated iterations in Line 4.

One obtains the correct powers xni

i as in each round the result is multiplied with u and
xi is included in u for ni rounds.

(ii) The choice of h and of the bi’s is free. One can set h = 2k and bi = hi so that the ni’s
are simply the digits of n in base h.

(iii) One needs 	 + h − 2 multiplications and 	 + 1 elements must be stored to compute xn.

Example 9.46 Let us compute x2989. Set h = 4, bi = 4i then 2989 = (2 3 2 2 3 1)4 and 	 = 6.
Suppose that x, x4, x16, x64, x256 and x1024 are precomputed and stored.

j 3 2 1

u x4x256 = x260 x260x16x64x1024 = x1364 x1364x = x1365

y x260 x260x1364 = x1624 x1624x1365 = x2989
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9.3.2 Euclidean method

The Euclidean method was first introduced in [ROO 1995], see also [SEM 1983]. Algorithm 9.47
computes xn generalizing a method to compute the double exponentiation xn0

0 xn1
1 discussed by

Bergeron et al. [BEBE+ 1989] which is similar to the technique introduced in Section 9.2.2 to find
short addition chains. The idea is to recursively use the equality

xn0
0 xn1

1 = (x0x
q
1)

n0 × x
(n1 mod n0)
1 where q = �n1/n0�.

Algorithm 9.47 Euclidean exponentiation

INPUT: The element x of G, an exponent n as in (9.4) and the precomputed values x0 =
xb0 , x1 = xb1 , . . . , x�−1 = xb�−1 .

OUTPUT: The element xn.

1. while true do

2. Find M such that nM � ni for all i ∈ [0, � − 1]

3. Find N �= M such that nN � ni for all i ∈ [0, � − 1], i �= M

4. if nN �= 0 then

5. q ← �nM/nN�, xN ← xM
q × xN and nM ← nM mod nN

6. else break

7. return xnM
M

Example 9.48 Take the same exponent 2989 = (2 3 2 2 3 1)4 and let us evaluate x2989.

n5 n4 n3 n2 n1 n0 M N q x5 x4 x3 x2 x1 x0

— — — — — — — — — x1024 x256 x64 x16 x4 x

2 3 2 2 3 1 4 1 1 x1024 x256 x64 x16 x260 x

2 0 2 2 3 1 1 2 1 x1024 x256 x64 x276 x260 x

2 0 2 2 1 1 5 3 1 x1024 x256 x1088 x276 x260 x

0 0 2 2 1 1 3 2 1 x1024 x256 x1088 x1364 x260 x

0 0 0 2 1 1 2 1 2 x1024 x256 x1088 x1364 x2988 x

0 0 0 0 1 1 1 0 1 x1024 x256 x1088 x1364 x2988 x2989

0 0 0 0 0 1 0 1 — x1024 x256 x1088 x1364 x2988 x2989

9.3.3 Fixed-base comb method

This algorithm is a special case of Pippenger’s algorithm [BER 2002, PIP 1979, PIP 1980]. It is also
often referred to as Lim–Lee method [LILE 1994]. It is essentially a special case of Algorithm 9.23
where the different base points are in fact distinct powers of a single base. Suppose that n =
(n�−1 . . . n0)2. Select an integer h ∈ [1, 	]. Let a = �	/h� and choose v ∈ [1, a]. Let r = �a/v�
and write the ni’s in an array with h rows and a columns as below (pad the representation of n with
zeroes if necessary)
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a − 1 · · · 1 0
na−1 · · · n1 n0

n2a−1 · · · na+1 na

...
...

...
...

nah−1 · · · nah−a+1 nah−a

For each s, the column number s can be read as the binary representation of an integer denoted by
I(s). For example the last column I(0) is the binary representation of I(0) = (nah−a . . . nan0)2.
The algorithm relies on the following equality

xn =
r−1∏
k=0

⎛
⎝v−1∏

j=0

G[j, I(jr + k)]

⎞
⎠

2k

where

G[j, i] =

(
h−1∏
s=0

xis2as

)2jr

for j ∈ [0, v − 1] and i = (ih−1 . . . i0)2 ∈ [0, 2h − 1].

Algorithm 9.49 Fixed-base comb exponentiation

INPUT: The element x of G and an exponent n. Let h, a, v, r and G[j, i] be as above.

OUTPUT: The element xn.

1. y ← 1 and k ← r − 1

2. for k = r − 1 down to 0 do

3. y ← y2

4. for j = v − 1 down to 0 do

5. I ←Ph−1
s=0 nas+jr+k2s [I = I(jr + k)]

6. y ← y × G[j, I ]

7. return y

Example 9.50 Once again, let us compute x2989. Set h = 3 and v = 2 so that a = 4 = rv, hence
r = 2. Form the following array from the digits of 2989 = (101110101101)2

s 3 2 1 0

ns . . . n0 1 1 0 1
na+s . . . na 1 0 1 0

n2a+s . . . n2a 1 0 1 1
I(s) 7 1 6 5

The precomputed values are

i 0 1 2 3 4 5 6 7

G[0, i] 1 x x16 xx16 x256 xx256 x16x256 xx16x256

G[1, i] 1 x4 x64 x4x64 x1024 x4x1024 x64x1024 x4x64x1024
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The algorithm proceeds as follows

k 1 1 1 0 0 0

j — 1 0 — 1 0

jr + k — 3 1 — 2 0

I — 7 6 — 1 5

G[j, I ] — x1092 x272 — x4 x257

y 1 x1092 x1364 x2728 x2732 x2989

Remarks 9.51

(i) One needs at most a + r − 2 multiplications and v(2h − 1) precomputed values. If
squarings can be achieved efficiently or “on the fly” (for example in finite fields of even
characteristic represented through normal bases, see Section 11.2.1.c), only 2h−1 values
must be stored.

(ii) The adaptation of this method to larger base representations or signed representations
such as the non-adjacent form is straightforward.
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In most of the cases, the integer ring Z is the fundamental mathematical layer of many cryptosys-
tems. Once it is possible to compute with integers, one can build on top of them finite fields, then
curves and even more complicated objects. More generally, rational, real, complex, and p-adic
numbers, but also polynomials with coefficients in these sets, rely on integers and their arithmetic
is greatly influenced by the underlying integer algorithms. That is why integer arithmetic is so
important and should be performed as efficiently as possible.

Practical considerations are therefore the core of this chapter. For instance, we first recall some
elementary notions on computers to describe how numbers are internally represented and how we
can manipulate them. Then we describe the four operations and related items such as square root
computations or extended gcd algorithms.

All the techniques for an efficient implementation from scratch are presented in the following
chapter. However, there already exist a great number of libraries that are highly optimized and
available on the Internet. Most of them are written in C, like GMP [GMP], BigNum [BIGNUM] or
FreeLip [FREELIP].
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Sometimes, different algorithms are given for the same operation. In this case, the size of the
operands mainly determines which method should be used. The algorithms presented here have
been directly taken from [MEOO+ 1996], [KNU 1997], [CRPO 2001], and [COH 2000].

10.1 Multiprecision integers

Without special software or hardware, computers can only operate on rather small integers. In
order to consider larger quantities, we first need to recall some elementary facts on integers and
computers.

10.1.1 Introduction

Let b � 2 be an integer called the base or the radix. Every integer u > 0 can be written in a unique
way as the sum

u = un−1b
n−1 + · · · + u1b + u0

provided 0 � ui < b and un−1 �= 0. This is what we will call the base b representation of u and
will be denoted by (un−1 . . . u0)b. When b is understood, it will be usually omitted and u simply
written as u = (un−1 . . . u0). The ui’s are the digits of u, un−1 and u0 being respectively the most
significant digit of u and the least significant digit of u. The precision of u is the largest i such that
ui−1 > 0. It corresponds to the length n of (un−1 . . . u0)b and is denoted |u|b.

Remarks 10.1

(i) The base b representation of zero is always (0)b.

(ii) It is sometimes useful to add a certain number of zeroes at the beginning of the repre-
sentation of u, i.e., to consider (0 . . . 0 un−1 . . . u0)b. This operation, which obviously
does not change the value of u, is called padding.

In a computer, the base b is usually a power of 2 and a number is internally stored as a sequence of
0 and 1 called bits. The important elementary operations on bits are the following. Given two bits
x and y, we can compute the

• complement of x denoted by x, which is equal to 1 if and only if x equals 0
• conjunction of x and y, x ∧ y, which is equal to 1 if and only if x and y both equal 1
• disjunction of x and y, x∨y, which is equal to 1 if and only if at least one of x, y equals 1
• exclusive disjunction of x and y, also called XOR. The result x XOR y is equal to 1 if

and only if exactly one of the two values x, y equals 1.

Usually computers cannot manipulate bits directly. The smallest quantity of main memory that
a computer can address is a byte, which is nowadays almost always a sequence of eight bits. A
processor can operate on several bytes at the same time by means of a register. This important
hardware component determines very low-level properties of a processor. The size of a register,
called a word, is one of the main characteristics of a chip. Modern computers commonly use words
of 32 or 64 bits, however it is not unusual, especially in the smart card world, to work with 8 or
16-bit devices.
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10.1.2 Internal representation

A single precision integer, also called a 1-word integer, or just a single needs only a word to be
represented. For 32-bit architectures such integers belong to [0, 232−1]. The concept of multipreci-
sion was introduced in order to manipulate objects that do not fit in a word. In this case, an array of
consecutive words is allocated and for instance a n-word integer is an integer whose representation
requires n words.

There are several ways to store information in the memory of a computer, the order being espe-
cially important. Usually a byte comes with the most significant bit first. To describe the ordering
of bytes within a word, there is a specific terminology. Namely, in little endian format the least
significant byte is stored first, whereas in big endian representation, the sequence begins with the
most significant byte. For instance, on a 32-bit PC, the single 262657 = 218 +29 +1 is represented
in little endian format by 00000001 00000010 00000100 00000000. The representation of the same
integer in big endian, commonly used in RISC architectures, is 00000000 00000100 00000010
00000001. To represent multiple precision integers, the same kind of choice occurs for words as
well. Note that when the least significant word comes first, as it is the case for many multiprecision
implementations, an integer can have different representations with as many high order zeroes as
wanted. To illustrate the exposition, we will give examples more classically written with the most
significant word first.

For example, take u = (1128103691808033)10 and b = 232. Then u has 51 digits in base 2,
namely

u = (1000000001000000001
262657

00011011110100011110110100100001
466742561

)2

so that u = (262657 466742561)232. Thus u is a 2-word integer, also called a double precision
integer or just a double.

We will also have to deal with negative values. They can be represented in two different ways.

• In signed-magnitude notation, the sign of an integer is independently coded by a bit,
byte, or word. For instance, 0 for positive values and 1, or b− 1 for negative ones. Thus
u =

(
s, (un−1 . . . u0)b

)
stands for un−1b

n−1 + · · · + u0 or −(un−1b
n−1 + · · · + u0)

depending on the value of s. Therefore 0 has two representations
(
0, (0 . . .0)b

)
and say(

b − 1, (0 . . .0)b

)
. As a consequence, the opposite of u is easily obtained since we only

need to modify s.
• In complement format, if the highest bit of the most significant word is 0 then the in-

teger (un−1 . . . u0)b is nonnegative and must be understood as un−1b
n−1 + · · · + u0.

Otherwise (un−1 . . . u0)b is equal to −bn + un−1b
n−1 + · · ·+ u0 which is always neg-

ative. The representation (0 . . . 0)b of 0 is unique and if u is nonzero, the opposite of u
is (un−1 . . . u0)b + 1 where ui = b − 1 − ui is the bitwise complement of ui. Comput-
ing the opposite is therefore more costly with this representation as each bit needs to be
changed. Note also that padding u with zeroes drastically changes the representation of
the opposite in this case.

Example 10.2 With a radix b equal to 4, 152 is represented by (0, (2120)4) in signed-magnitude
format and −152 is trivially (3, (2120)4). In complement notation, 152 = (02120)4 and (31213)4+
1 that is (31220)4 stands for −44 + 43 + 2 × 42 + 2 × 4 = −152.

In base 2, complement notation is called two’s complement notation and the highest bit of an integer
codes its sign in both representations. Therefore the same sequence of bits corresponds to different
values. For instance (10011000)2 is equal to −24 in signed-magnitude format whereas it is equal
to −104 in two’s complement notation.
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10.1.3 Elementary operations

Computers have highly optimized built-in operations for single precision integers. Thus in the
sequel we will describe the arithmetic of multiprecision integers, assuming the existence of the
following low-level operations:

• Comparison of two singles returning a boolean 0 or 1. For instance, the equality = and
the natural ordering < of two integers can be directly determined.

• Bitwise complement of a single u, that is u = b − 1 − u.
• Bitwise conjunction, disjunction and exclusive disjunction of the singles u and v, that is

respectively u ∧ v, u ∨ v and u XOR v.
• The right and left shifts of t bits of the single u, respectively denoted by u >> t and

u << t, corresponding to �u/2t� and u2t mod b.
• Addition of two singles u and v giving a single w and a carry bit k equal to 0 or 1 so

that the correct result is u + v = kb + w.
• Subtraction of a single v from a single u, that is u − v, giving as a result a single w and

a carry k. If u � v then w = u − v and k = 0, otherwise w = b + u − v > 0 and
k = −1. The nonnegative quantity −k is sometimes called the borrow bit.

• Multiplication of two singles u and v giving a double w = u × v.
• Division of a double u by a single v, when the quotient q = �u/v� and the remainder

r = u mod v are both singles. This operation computes q and r simultaneously.

Two remarks should be made on these basic operations. First the more complicated operations
such as multiplication and especially double by single division are not always available in modern
processors as integer instructions, but only as floating point ones. Second and more importantly
usual high-level languages such as C do not allow, at least in their basic versions, to access the carry
or borrow bit, or the high part of a multiply instruction, or to have simultaneously the quotient and
remainder of a double by single division. If high efficiency is desired it is thus necessary to bypass
these restrictions, either by choosing a C compiler and library allowing you to do these things, or to
implement them in explicit or inline assembly language programs.

In addition to the above, there are other useful basic operations such as extracting the top bit of a
word or counting the parity of the number of bits equal to 1, which do not exist as CPU instructions
and should be very carefully implemented. Note also that on some architectures, floating registers
provide faster operations than integer ones and should be used instead for multiprecision operations,
cf. [ZIM 2001] and [HAME+ 2003, § 5.1.2].

In the following, we present several algorithms for addition, subtraction, multiplication, and di-
vision of multiprecision positive integers written in base b. Even if they work in general for every
radix, in practice b is almost always a power of 2, namely 28, 216, 232, or 264. However, for clarity,
algorithms will be often illustrated with b = 10. We start with the simplest operations, addition and
subtraction.

10.2 Addition and subtraction

Algorithm 10.3 is an obvious generalization of the schoolbook method for any radix b.
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Algorithm 10.3 Addition of nonnegative multiprecision integers

INPUT: Two n-word integers u = (un−1 . . . u0)b and v = (vn−1 . . . v0)b.

OUTPUT: The (n + 1)-word integer w = (wn . . . w0)b such that w = u + v, wn being 0 or 1.

1. k ← 0 [k is the carry]

2. for i = 0 to n − 1 do

3. wi ← (ui + vi + k) mod b [0 � wi < b]

4. k ← �(ui + vi + k)/b� [k = 0 or 1]

5. wn ← k

6. return (wn . . . w0)b

Example 10.4 Take b = 10, u = (9635)10 and v = (827)10 and let us compute u + v using
Algorithm 10.3. The algorithm proceeds as follows

i ui + vi k w4 w3 w2 w1 w0

0 12 0 — — — — 2

1 5 1 — — — 6 2

2 14 0 — — 4 6 2

3 9 1 — — 4 6 2

— — 1 1 0 4 6 2

and the result is 9635 + 827 = 10462 as expected.

The subtraction algorithm is very similar to the addition algorithm. Indeed, a simple change of sign
in Algorithm 10.3 is enough to get u − v instead of u + v provided u � v.

Algorithm 10.5 Subtraction of nonnegative multiprecision integers

INPUT: Two n-word integers u = (un−1 . . . u0)b and v = (vn−1 . . . v0)b such that u � v.

OUTPUT: The n-word integer w = (wn−1 . . . w0)b such that w = u − v.

1. k ← 0 [k is the carry]

2. for i = 0 to n − 1 do

3. wi ← (ui − vi + k) mod b [0 � wi < b]

4. k ← �(ui − vi + k)/b� [k = 0 or −1]

5. return (wn−1 . . . w0)b [if k = −1 then u < v]

Remarks 10.6

(i) When working with a fixed number of words, the for loops of Algorithms 10.3 and 10.5
should be unrolled by hand for faster results. Also the computation of wi and k, in
Lines 3 and 4 should be implemented as a single operation.

(ii) For adding or subtracting integers of different lengths we must first pad the smallest
number with as many zeroes as necessary so that they are both of the same length. For
efficiency this padding is not done explicitly but implicitly.
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(iii) One can apply Algorithm 10.5 without checking if u � v. If k = −1 at the end, then
the output is related to the complement representation of the negative number u− v. To
obtain |u − v| one can repeat Algorithm 10.5 with u = (0 . . . 0)b and v = w. Note that
the second subtraction is actually a computation of the complement of w and it is faster
implemented via a simplified version of the algorithm with the value u = 0 hardwired.

Example 10.7 Let us compute u − v when u is smaller than v. Take u = 2165 and v = 58646.

i ui − vi k w4 w3 w2 w1 w0

0 −1 0 — — — — 9
1 2 −1 — — — 1 9
2 −5 0 — — 5 1 9
3 −6 −1 0 3 5 1 9
4 −5 −1 4 3 5 1 9

2-nd execution with u = (00000)10 and v = w

0 −9 0 — — — — 1
1 −1 −1 — — — 8 1
2 −5 −1 — — 4 8 1
3 −3 −1 — 6 4 8 1
4 −4 −1 5 6 4 8 1

So |u − v| = 56481 and it can be deduced that u − v = −56481 since k = −1 at the end of the
execution. The complement representation of −56481 is 943519.

10.3 Multiplication

Multiplication is a very important operation. Its optimization is crucial since it is the most time-
consuming part for a wide range of applications. For instance, the efficiency of division algorithms
depends to a large extent on the speed of the multiplication that is used. The complexity of a
multiplication algorithm is therefore an important parameter for a complete arithmetic system. In
the following, the number of elementary operations necessary to multiply two n-word integers will
be denoted by M(n). In the remainder, we shall often encounter situations where the best algorithm
to be used to perform a given task is chosen in a set and determined by parameters such as the size
of the arguments and the adopted computer architecture. This is the case for multiplication. We
describe in detail the schoolbook and the Karatsuba multiplication, which are the only interesting
ones for the range of integers we consider. However, many other algorithms exist. See [BER 2001a]
for a comprehensive presentation of multiplication methods.

10.3.1 Schoolbook multiplication

One starts with the simplest method known for at least four millennia.

Algorithm 10.8 Multiplication of positive multiprecision integers

INPUT: An m-word integer u = (um−1 . . . u0)b and an n-word integer v = (vn−1 . . . v0)b.

OUTPUT: The (m + n)-word integer w = (wm+n−1 . . . w0)b such that w = uv.

1. for i = 0 to n − 1 do wi ← 0 [see the remark below]

2. for i = 0 to n − 1 do
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3. k ← 0 [k is the carry]

4. if vi = 0 then wm+i ← 0 [optional test]

5. else

6. for j = 0 to m − 1 do

7. t ← viuj + wi+j + k
ˆ
0 � t < b2

˜

8. wi+j ← t mod b [0 � wi+j < b]

9. k ← �t/b� [0 � k < b]

10. wm+i ← k

11. return (wm+n−1 . . . w0)b

Remarks 10.9

(i) In fact Algorithm 10.8 performs the following multiply and add operation

(wn+m−1 . . . w0)b ← (un−1 . . . u0)b × (vm−1 . . . v0)b + (wn−1 . . . w0)b.

(ii) Actually, the schoolbook method consists in computing the intermediate results uvi be-
fore adding them. Here we multiply and add the terms simultaneously inside the j loop.

(iii) Checking if vi = 0 in Line 4 is useless unless b is small.

Example 10.10 Take u = (9712)10 and v = (526)10. So m = 4 and n = 3. Let us compute uv
with Algorithm 10.8. The table shows the relevant values after execution of Line 9.

i j viuj wi+j t k w6 w5 w4 w3 w2 w1 w0

0 0 12 0 12 1 0 0 0 0 0 0 2

1 6 0 7 0 0 0 0 0 0 7 2

2 42 0 42 4 0 0 0 0 2 7 2

3 54 0 58 5 0 0 5 8 2 7 2

1 0 4 7 11 1 0 0 5 8 2 1 2

1 2 2 5 0 0 0 5 8 5 1 2

2 14 8 22 2 0 0 5 2 5 1 2

3 18 5 25 2 0 2 5 2 5 1 2

2 0 10 5 15 1 0 2 5 2 5 1 2

1 5 2 8 0 0 2 5 8 5 1 2

2 35 5 40 4 0 2 0 8 5 1 2

3 45 2 51 5 5 1 0 8 5 1 2

At the end of each i loop, is computed respectively 9712×6 = 58272, 9712×20+58272 = 252512,
and 9712× 500 + 252512 = 5108512.

The number of elementary multiplications carried out by the schoolbook method is nm. Thus
M(n) = O(n2) for Algorithm 10.8.
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10.3.2 Karatsuba multiplication

In the mid-1950’s, Kolmogorov made the conjecture that the lower estimate of M(n) was of the
order of n2, whatever the method used. However, in 1960, one of his students, namely Karatsuba,
discovered a method in O(nlg 3), where lg is the logarithm to base 2. The method was later pub-
lished in [KAOF 1962]. The interesting genesis of the so-called Karatsuba method is explained in
[KAR 1995].

For the sake of clarity, set R = bn, d = 2n and let u = (ud−1 . . . u0)b and v = (vd−1 . . . v0)b

be two d-word integers. The method relies on the following observation. Split both u and v in two,
namely the least and most significant parts, so that u = U1R + U0 and v = V1R + V0. Then one
can check that

uv = U1V1R
2 +

(
(U0 + U1)(V0 + V1) − U1V1 − U0V0

)
R + U0V0.

One needs a priori four multiplications to compute uv but as a multiplication by R is just a shift, one
performs actually some additions and only three multiplications, which are U1V1, (U1 + U0)(V0 +
V1), and U0V0. Moreover, a recursive approach allows us to reduce the size of the operands until
they are sufficiently small so that the schoolbook multiplication is faster. In practice, this holds when
d becomes smaller than a threshold d0, depending essentially on the processor used. Granlund
performed tests with GMP on several architectures to determine the optimal value of d0. Results
spread from 8 up to more than 100 [GRA 2004, GMP].

Algorithm 10.11 Karatsuba multiplication of positive multiprecision integers

INPUT: An n-word integer u = (un−1 . . . u0)b, an m-word integer v = (vm−1 . . . v0)b, the size
d = max{m, n}, and a threshold d0.

OUTPUT: The (m + n)-word integer w = (wm+n−1 . . . w0)b such that w = uv.

1. if d � d0 then return uv [use Algorithm 10.8]

2. p ← �d/2� and q ← �d/2�
3. U0 ← (uq−1 . . . u0)b and V0 ← (vq−1 . . . v0)b

4. U1 ← (up+q−1 . . . uq)b and V1 ← (vp+q−1 . . . vq)b [pad with 0’s if necessary]

5. Us ← U0 + U1 and Vs ← V0 + V1

6. compute recursively U0V0, U1V1 and UsVs [corresponding sizes being q, p and q]

7. return U1V1b
2q +

`
(UsVs − U1V1 − U0V0)

´
bq + U0V0

Remark 10.12 The number of elementary operations required by Algorithm 10.11 to multiply two
n-word integers shall be denoted by K(n). As K(n) � 3 K(n/2) + cn/2 for some constant c, one
finds by induction that K(n) = O(nlg 3) ≈ O(n1.585).

Example 10.13 Let us multiply u = 564986 and v = 1279871 by Algorithm 10.11 with d0 = 4.
So one has d = 7, q = 4 and R = 104. Put

U1 = 56, U0 = 4986
V1 = 127, V0 = 9871

Us = 5042, Vs = 9998.

With Algorithm 10.8, compute

U0V0 = 49216806, U1V1 = 7112 and UsVs = 50409916
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to obtain

uv = 7112 × 108 + (50409916− 7112 − 49216806)× 104 + 49216806
= 723109196806.

Other multiplication algorithms, like Toom–Cook or Fast Fourier Transform methods [KNU 1997]
based on interpolation are asymptotically more efficient, but the gain occurs only for very large n,
out of the range of the sizes used nowadays for cryptosystems based on elliptic and hyperelliptic
curves.

10.3.3 Squaring

It seems simpler to square a number than to multiply two arbitrary integers. This feeling is supported
by the existence of a specific algorithm suggested by the formula

(
n−1∑
i=0

uib
i

)2

=
n−1∑
i=0

u2
i b

2i + 2
∑
i<j

uiujb
i+j .

Thus a schoolbook squaring takes only (n2 + n)/2 elementary multiplications (against n2 for the
general algorithm).

Algorithm 10.14 Squaring of a positive multiprecision integer

INPUT: An n-word integer u = (un−1 . . . u0)b.

OUTPUT: The (2n)-word integer w = (w2n−1 . . . w0)b such that w = u2.

1. for i = 0 to 2n − 1 do wi ← 0

2. for i = 0 to n − 1 do

3. t ← u2
i + w2i

4. w2i ← t mod b and k ← �t/b�
5. for j = i + 1 to n − 1 do

6. t ← 2uiuj + wi+j + k

7. wi+j ← t mod b and k ← �t/b�
8. wi+n ← k

9. return (w2n−1 . . . w0)b

Remarks 10.15

(i) In the j loop, one has 0 � k � 2(b− 1). This implies that during the process, namely in
wi+n ← k an overflow could occur. However, at the end all the wj’s are single precision
integers.

(ii) In practice, Algorithm 10.14 is about 20% faster than the standard multiplication u× u.

(iii) Consider any commutative ring R of characteristic different from 2. In the unlikely
event that a squaring is more than twice as fast as a multiplication we can use 4uv =
(u + v)2 − (u − v)2 to get uv. Note that this identity can be used in practice, see
[CRPO 2001, exercise 9.6].
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Example 10.16 Let us follow the computation of the square of u = (769)10 by Algorithm 10.14.
Below are displayed the values of some relevant parameters after Lines 4 and 7 execute.

i j u2
i w2i 2uiuj wi+j t k w5 w4 w3 w2 w1 w0

0 — 81 0 — — 81 8 0 0 0 0 0 1

1 — — 108 0 116 11 0 0 0 0 6 1

2 — — 126 0 137 13 0 0 13 7 6 1

1 — 36 7 — — 43 4 0 0 13 3 6 1

2 — — 84 13 101 10 0 10 1 3 6 1

2 — 49 10 — — 59 5 5 9 1 3 6 1

It is also possible to write a specific squaring procedure inspired by Karatsuba’s idea. Indeed, one
can check that if u = U1R + U0 and Us = U0 + U1, as defined in Section 10.3.2, then

u2 = U2
1 R2 + (U2

s − U2
1 − U2

0 )R + U2
0

so that intermediate steps only require squarings as well. The minimal word size d1, for which it is
faster to use, Karatsuba method against a naïve approach, should be greater than the threshold d0

used for Karatsuba multiplication in Algorithm 10.11. Set approximately d1 = 2d0 [GRA 2004].

10.4 Modular reduction

In many situations, only the remainder of a Euclidean division is required. In the following, one
describes two general methods to reduce a number modulo an integer N . In practice N will often
be prime, and the corresponding reduction is an essential operation for prime field arithmetic. We
also consider moduli of special form and introduce a reduction method modulo several primes.

The obvious way to obtain u mod N consists in dividing u by N and computing the remain-
der. The following methods allow more efficient execution. Sometimes an almost reduced element
which is not minimal is accepted as an intermediate result.

10.4.1 Barrett method

If u and N are both real numbers or formal series, there is another method to divide u by N . First,
compute the inverse of N to a sufficient precision and then multiply it by u. The inverse is often
computed with Newton method, i.e., the iteration

x ← x − x(Nx − 1)

starting from an initial approximation x0. Such a precomputation of N−1 proves useful if many
reductions modulo N are necessary.

There is a similar technique for integers. Let N be an n-word integer. We define the reciprocal
integer of N as R(N) =

⌊
b2n/N

⌋
. Now if u is a 2n-word integer we see that

q =
⌊

u

N

⌋
is also equal to

⌊
u

bn−1
b2n

N

bn+1

⌋

which can be approximated by

q̂ =

⌊⌊
u

bn−1

⌋
R

bn+1

⌋
·
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In addition we have q−2 � q̂ � q and it can be shown that q̂ = q in about 90% of the cases whereas
q̂ will be 2 in error in only 1% of the cases. This is the so-called Barrett method [BAR 1987]. See
[BOGO+ 1994] for further improvements.

For modular reduction this approximation is sufficient as û = u− q̂N is in the same residue class
modulo N as u and will be minimal if q̂ = q. If û > N , one needs at most 2 subtractions by N to
obtain the minimal representative.

When a lot of divisions are performed with a fixed divisor, for instance when computing in a finite
field, this approach is very efficient. Indeed R is precomputed and the quotient and remainder of a
Euclidean division by some power of b can be trivially determined.

Algorithm 10.17 Division-free modulo of positive multiprecision integers

INPUT: A 2n-word integer u = (u2n−1 . . . u0)b and the n-word integer N = (Nn−1 . . . N0)b

with Nn−1 �= 0. The quantity R =
¨
b2n/N

˝
is precomputed.

OUTPUT: The n-word integer r = (rn−1 . . . r0)b such that u ≡ r (mod N).

1. q̂ ← ¨�(u/bn−1)�R/bn+1
˝

[q − 2 � q̂ � q ]

2. r1 ← u mod bn+1, r2 ← (q̂N) mod bn+1 and r ← r1 − r2

3. if r < 0 then r ← r + bn+1

4. while r � N do r ← r − N

5. return r

Of course, Algorithm 10.17 can be trivially modified such that it computes the quotient q as well.
Even if R is precomputed and thus the performance is not crucial, we now present an algorithm
inspired by the Newton method, which computes it in an efficient way.

Algorithm 10.18 Reciprocation of positive multiprecision integers

INPUT: An n-word integer N = (Nn−1 . . . N0)b.

OUTPUT: The (n + 2)-word integer R =
¨
b2n/N

˝
.

1. R ← bn

2. repeat

3. s ← R

4. R ← 2R − ¨N�R2/bn�/bn
˝

[discrete Newton iteration]

5. until R � s

6. t ← b2n − NR

7. while t < 0 do R ← R − 1 and t ← t + N [performed at most twice]

8. return R

Remarks 10.19

(i) The complexity of Algorithm 10.17 is at first glance equal to 2 multiplications of size
n. However, the n lowest words of the product �(u/bn−1)�R will be discarded when
dividing by bn+1 so that it is no use to compute them. In the same manner, only the n
lowest words of the product q̂N are required. Therefore it can be shown that comput-
ing the remainder of a 2n-word u modulo the n-word N has asymptotically the same
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complexity as an n-word multiplication [MEOO+ 1996, p. 604], cf. also Section 11.1.1.

(ii) The number of iterations through Algorithm 10.18 is O
(
lg lg(N + 2)

)
.

Example 10.20 Let u = 893994278 and N = 21987 and take b = 2. First, one computes R
with Algorithm 10.18. Since n = 15, set R = 215 and the successive values of R are indicated
below

s R t

— 32768 —
32768 43549 —
43549 48264 —
48264 48829 —
48829 48836 —
48836 48836 —

— 48836 −15308
— 48835 6679

Finally R is 48835. Then the determination of the quotient can be done with Algorithm 10.17.
Indeed n = 15, u = (1101010100100101 00010100100110)2 and we can see that �u/2n−1� =
(1101010100100101)2 = 54565. After computing the highest bits of the product of this last term
by R, another shift gives an approximation of the quotient q̂ = 40659 whereas the exact value
of q is 40660. Then one computes r1 = 17702, r2 = 58393 with another partial product and
r = r1 − r2 = −40691. Since r < 0 one sets r = r + 216 = 24845 which is larger than N so that
the remainder of u modulo N is finally equal to r − N = 2858.

10.4.2 Montgomery reduction

Montgomery introduced a clever way to represent elements of Z/NZ such that arithmetic and es-
pecially multiplication becomes easy [MON 1985]. It can be viewed as a generalization of Hensel
odd division for computing inverses of 2-adic numbers [HEN 1908]. In practice, N will often be a
prime number.

Definition 10.21 Let R be some integer greater than N and coprime with it. The Montgomery
representation of x ∈ [0, N − 1] is [x] = (xR) mod N . The Montgomery reduction of u ∈
[0, RN − 1] is REDC(u) = (uR−1) mod N .

When R is a power of the radix b there is an efficient algorithm to perform the reduction of u.
Indeed let N ′ = (−N−1) mod R and let k be the unique integer in [0, N − 1] such that k ≡ uN ′

(mod R). Then clearly (u + kN) is a multiple of R. Let t = (u + kN)/R. As N and R are
relatively prime, this implies that t ≡ uR−1 (mod N). Finally, 0 � u < RN by assumption and
it can be easily shown that 0 � t < 2N so that t or t − N is equal to the desired result REDC(u).

The following algorithm makes use of these ideas, with some improvements, to handle multi-
precision integers.
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Algorithm 10.22 Montgomery reduction REDC of multiprecision integers

INPUT: An n-word integer N = (Nn−1 . . . N0)b such that gcd(N, b) = 1, R = bn, N ′ =
(−N−1) mod b and a 2n-word integer u = (u2n−1 . . . u0)b < RN .

OUTPUT: The n-word integer t = (tn−1 . . . t0)b such that t = REDC(u) = (uR−1) mod N .

1. (t2n−1 . . . t0)b ← (u2n−1 . . . u0)b

2. for i = 0 to n − 1 do

3. ki ← (tiN
′) mod b

4. t ← t + kiNbi

5. t ← t/R

6. if t � N then t ← t − N

7. return t

Remarks 10.23

(i) It is immediate that [x] = REDC
(
(xR2) mod N

)
and that REDC([x]) = x for all x ∈

[0, N − 1]. The value R2 mod N can also be precomputed.

(ii) Algorithm 10.22 requires n2 + n single precision multiplications to compute Mont-
gomery reduction.

(iii) Since N ′ is precomputed once N is fixed, the way it is obtained is not crucial for the
overall performance of the method. However, Dussé and Kaliski designed a short proce-
dure to efficiently compute it [DUKA 1990]. One can use also an idea of Jebelean who
gave an efficient recursive method to compute an inverse modulo some power of 28, see
Remark 10.40 (ii).

(iv) Classical reduction computes the remainder processing the digits of u from the left to
the right. Montgomery reduction is in one sense dual since it operates from the right to
the left.

(v) If u � RN then Algorithm 10.22 does not return t = uR−1 mod N but t ≡ uR−1

(mod N). A divisibility criterion makes use of this remark, see Section 10.5.3.

Example 10.24 Let N = 2011 and b = 23 so that R = 84 = 4096. Let u = 8170821 =
(37126505)8. One can check that u < RN . A direct computation gives

N ′ = 941 = (1655)8
uN ′ = (37126505)8 × (1655)8 = (71222163241)8

k ≡ (3241)8 (mod R)
u + kN = (54140000)8

t = (54140000)8/R = (5414)8.

As t � N , Montgomery reduction of u is t − N = (5414)8 − (3733)8 = (1461)8 = 817.

Now let us use Algorithm 10.22 instead. If we consider N = (3733)8 = 2011 as a 4-word integer
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in base b = 23, one first sets N ′ = (−N−1) mod 8 = 5 and the successive steps are

i ti ki kiNbi t

— — — — (37126505)8
0 5 1 (3733)8 (37132440)8
1 4 4 (175540)8 (37330200)8
2 2 2 (766600)8 (40317000)8
3 7 3 (13621000)8 (54140000)8

— — — — (5414)8
— — — — (1461)8

In [BOGO+ 1994] the authors give the following table that compares the complexities of classical,
Barrett, and Montgomery reduction for n-bit integers.

Algorithm Classical Barrett Montgomery

Multiplications n(n + 2.5) n(n + 4) n(n + 1)
Divisions n 0 0

Precomputations Normalization of N �b2n/N� Reduction

Restrictions None u < b2n u < Nbn

For cryptographic applications the Montgomery method is reported to be faster than Barrett, see
tests in [BOGO+ 1994] and an interesting discussion of these two methods in [CRPO 2001].

10.4.3 Special moduli

Special moduli are usually considered only for arithmetic modulo primes p, i.e., finite field arith-
metic; however, as previously, the following algorithms depend by no means on this restriction.
Note that even if the overall modular arithmetic is performed more efficiently, one must be aware
that restricting the range of values for the modulus could also benefit a potential attacker.

The primes p we shall consider can be seen as generalizations of the concept of Mersenne primes,
that are prime numbers of the form p = 2k − 1. In practice, reduction modulo a Mersenne prime is
completely trivial since it requires only one field addition. Indeed, if 0 � x < p2 then x can easily
be written as x = x12k + x0 with x0 and x1 less than 2k. As 2k ≡ 1 (mod p), it follows that
x ≡ x1 + x0 (mod p). For example, take p = 27 − 1 and x = 10905 = (10101010011001)2. One
has immediately

x ≡
(
(1010101)2 + (0011001)2

)
(mod 127)

≡ (1101110)2 (mod 127)
= 110 mod 127.

The indexes k less than 1000 that give a Mersenne prime are 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107,
127, 521, and 607. In cryptography, they are used to define prime fields or extension fields. We
consider such optimal extension fields, [AVMI 2004], in Section 11.3. However, their lack in the
interval [2128, 2520], which is of great interest for elliptic and hyperelliptic curve cryptography, led
to different kinds of generalizations. First Crandall introduced primes of the form 2k − c with c > 0
sufficiently small [CRA 1992]. In fact, it is no more complicated to consider p = bk +c with b some
power of 2 and |c| small. The fundamental relation is

x ≡
(
(x mod bk) − c�x/bk�

)
(mod p).
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One deduces the following algorithm.

Algorithm 10.25 Fast reduction for special form moduli

INPUT: A positive integer x and a modulus p = bk + c such that |c| � bk−1 − 1.

OUTPUT: The positive residue x modulo p.

1. q0 ← �x/bk�, r0 ← x − q0b
k, r ← r0, i = 0 and c′ = |c|

2. while qi > 0 do

3. qi+1 ← �qic
′/bk�

4. ri+1 ← qic
′ − qi+1b

k

5. r ← r + (−1)i+1ri and i ← i + 1

6. while r � p do r ← r − p

7. while r < 0 do r ← r + p

8. return r

Remarks 10.26

(i) If x is a 2k-word integer in base b and if |c| � bk/2 − 1 then at most 3 multiplications
by c′ are required to find the final residue [MEOO+ 1996].

(ii) It is also possible to consider a prime number p that divides N = bk + c. If the cofactor
N/p is sufficiently small, the computations can be done modulo N without any addi-
tional cost since multiplications are usually performed at a word level. At the end of the
whole process the result is reduced modulo p.

Example 10.27 Take b = 8, k = 6, c = 3, and let us reduce x = 35061808269, equal to
(405166136215)8 in base eight, modulo the prime number 86 +3. Execution of Algorithm 10.25 is
as follows.

i qi ri r

0 (405166)8 (136215)8 (136215)8
1 (1)8 (417542)8 −(261325)8
2 (0)8 (3)8 −(261322)8

— — — (516461)8

Finally 171313 = (516461)8 and one checks that x ≡ 171313 (mod 86 + 3).

Another possible generalization of the definition of a Mersenne prime [SOL 1999a] is to consider
primes p of the form

p = 2nkw +− 2nk−1w +− · · · +− 2n1w +− 1

where w = 16, 32 or 64. These primes are often referred to as NIST primes [FIPS 186-2]. The
fundamental reduction relation is

2nkw ≡ −+2nk−1w −+ · · · −+2n1w −+1 (mod p).

Used recursively, it allows us to reduce x < p2 written as

x = x2nk−12(2nk−1)w −+x2nk−22(2nk−2)w −+ · · · −+x12w −+x0.
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For example, the field Fp where p = 2192 − 264 − 1 is recommended by standards for elliptic curve
cryptography. If x < p2 then x can be written

x = x52320 + x42256 + x32192 + x22128 + x1264 + x0

and using

2320 ≡ 2192 + 2128 (mod p)
2256 ≡ 2128 + 264 (mod p)
2192 ≡ 264 + 1 (mod p)

one obtains

x ≡ x42256 + (x5 + x3)2192 + (x5 + x2)2128 + x1264 + x0 (mod p)
x ≡ (x5 + x3)2192 + (x5 + x4 + x2)2128 + (x4 + x1)264 + x0 (mod p)
x ≡ (x5 + x4 + x2)2128 + (x5 + x4 + x3 + x1)264 + (x5 + x3 + x0) (mod p).

10.4.4 Reduction modulo several primes

Reducing x simultaneously modulo several primes p1, . . . , pk can be done [MOBO 1972] using a re-
mainder tree in time n(lg n)2+o(1) where n is the total number of bits in x, p1, . . . , pk. For instance,
if one wants to reduce x modulo p1, p2, p3 and p4, the idea is first to compute x mod p1p2p3p4,
second reduce the result modulo p1p2, modulo p3p4, and finally modulo each pi, according to the
following diagram

x mod p1p2p3p4

��������������

��������������

x mod p1p2

����
��

��
�

���
��

��
��

x mod p3p4

����
��

��
�

���
��

��
��

x mod p1 x mod p2 x mod p3 x mod p4

In [BER 2004b], Bernstein introduces the scaled remainder tree where computations are done mod-
ulo 1. Indeed modular reductions are replaced by real divisions, which are in turn replaced by
multiprecision multiplications. This gives an algorithm with the same asymptotical complexity
n(lg n)2+o(1) but with a smaller o(1). Note that similar techniques also apply to polynomials.

10.5 Division

Let us divide u by v, that is compute the quotient q = �u/v� and the remainder r = u mod v,
where u and v are positive integers. Note that when only the remainder is needed, more efficient
methods are discussed in Section 10.4.

Before addressing the general case, let us see what can be done when v has special properties,
and first of all when v = 2.

In many subsequent algorithms, one has to compute the even part and the odd part of u, that is
respectively the biggest power 2k that divides u and u/2k. If the processor has no specific instruction
to count the number of low zero bits, one can compute u ∧ (u + 1) to find the lowest bit of u that
is nonzero. However, the simplest method, in this case, is certainly to shift u to the right as many
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times as necessary. This process can be sped up with some precomputations, as suggested by the
following piece of code for 32-bits architecture. The i-th entry in array T contains the maximal
exponent r � 5 such that 2r divides i.

1. T ← [5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0]
2. i ← u ∧ 31
3. u ← u >> T [i]
4. while u ∧ 1 = 0 do u ← u >> 1 and T [i] ← T [i] + 1

At the end, the even part is 2T [i] and u holds the odd part. Note that the instructions in the while
loop are performed only in case i = 0 when 2k divides u with k > 5.

Another simple case of interest is when v is a single precision integer. The next algorithm will
often be used in the sequel, at least implicitly.

Algorithm 10.28 Short division of positive multiprecision integers

INPUT: An n-word integer u = (un−1 . . . u0)b and a nonzero single v = (v0)b.

OUTPUT: The n-word integer q = (qn−1 . . . q0)b and the single r = (r0)b such that u = vq+r.

1. r0 ← 0 [r0 is the remainder]

2. for i ← n − 1 down to 0 do

3. t ← (r0b + ui)

4. qi ← �(r0b + ui)/v0� and r0 ← t mod v0 [qn−1 may be 0]

5. return (q, r)

Example 10.29 Let us divide (8789)10 by 7 using Algorithm 10.28.

i ui t qi r0

3 8 8 1 1

2 7 17 2 3

1 8 38 5 3

0 9 39 5 4

At the end, q = (1255)10 and r0 = 4 as expected since 8789 = 7 × 1255 + 4.

10.5.1 Schoolbook division

The next algorithm due to Knuth [KNU 1997] is a refined version of the customary method taught
at school for performing division of multidigit numbers.

Algorithm 10.30 Schoolbook division of positive multiprecision integers

INPUT: An (m + n)-word integer u = (um+n−1 . . . u0)b and an n-word integer
v = (vn−1 . . . v0)b where vn−1 > 0 and n > 1.

OUTPUT: The (m+1)-word integer q = (qm . . . q0)b and the n-word integer r = (rn−1 . . . r0)b

such that u = vq + r.

1. um+n ← 0 and d ← 1

2. while vn−1 < b/2 do

3. v ← 2v, u ← 2u and d ← 2d [normalization]
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4. for i = m down to 0 do

5. q̂ ← min(�(ui+nb + ui+n−1)/vn−1�, b − 1)

6. while q̂(vn−1b + vn−2) > (ui+nb2 + ui+n−1b + ui+n−2) do

7. q̂ ← q̂ − 1

8. (ui+n . . . ui)b ← (ui+n . . . ui)b − q̂(vn−1 . . . v0)b

9. if (ui+n . . . ui)b < 0 then [occurs with probability 2/b]

10. q̂ ← q̂ − 1

11. (ui+n . . . ui)b ← (ui+n . . . ui)b + (0 vn−1 . . . v0)b

12. qi ← q̂

13. r ← u/d [unnormalization]

14. return (q, r)

Remarks 10.31

(i) The for loop computes qi =
⌊
(ui+n . . . ui)b/(vn−1 . . . v0)b

⌋
. These steps are similar to

the Line 4 of Algorithm 10.28. This determination relies on a guess, i.e., the approxi-
mation of qi by q̂, Line 5. One always has qi � q̂.

(ii) At the beginning, u and v are multiplied by d, a suitable power of 2, such that vn−1 �
b/2. This normalization is particularly well suited when the radix is a power of 2. It
ensures that q̂ � qi + 2. Thus the statement q̂ ← q̂ − 1 in Line 7 is encountered at most
twice. The normalization does not change the quotient whereas the remainder must be
divided by d at the end.

Example 10.32 Let us divide (115923)10 by (344)10. So n = 3 and m = 3. Because of the
normalization, one sets u = (231846)10, v = (688)10 and d = 2.

i 3 2 1 0

(ui+nb + ui+n−1) 2 23 25 48

q̂ = min(�(ui+nb + ui+n−1)/vn−1�, b − 1) 0 3 4 8

ui+nb2 + ui+n−1b + ui+n−2 23 231 254 480

q̂(vn−1b + vn−2) 0 3 × 68 = 204 4 × 68 = 272 8 × 68 = 544

q̂ in Line 8 0 3 3 7

(ui+n . . . ui)b 231 2318 2544 4806

q̂(vn−1 . . . v0)b 0 3 × 688 = 2064 3 × 688 = 2064 7 × 688 = 4816

qi 0 3 3 6

(ui+n . . . ui)b in Line 12 (0231)10 (0254)10 (0480)10 (0678)10

Finally 231846 = 688 × 336 + 678 so that 115923 = 344 × 336 + 339.
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Remark 10.33 Another normalization allows us to do less elementary divisions. Following an idea
of Quisquater [QUI 1990, QUI 1992], let v′ be the smallest multiple of v bigger than bn+1. Let
q′ = u/v′ and r′ = u mod v′. The approximation of the digits of q′ is now trivial since the first two
digits of v′ are (10)b, but as above, some corrections might be necessary. When q′ is determined we
easily deduce q and r from q′ and r′.
When several divisions by the same v are carried out this technique is even more interesting as
we compute v′ only once. Therefore this idea is useful to speed up prime field reductions; see
Section 11.1.2.a.

Example 10.34 Let u = (797598)10 and v = (983)10; we have v′ = 11v = (10813)10. We obtain
q′1 = 7 and u − 70v′ = 40688. Then we should set q′0 = 4 but this approximation is one in excess
so that q′0 = 3 and u − 73v′ = 8249. So

u = q′v′ + r′ with q′ = 73 and r′ = 8249.

Now r′ = 8v + 385 so that

u = (11 × 73 + 8)v + 385 = 811v + 385.

We perform only 2 true divisions instead of n. When b is larger the saving is noticeable [ZIM 2001].

Another simplification is possible since we can suppose that:

the length of u is 2n, the length of v is n, v is normalized, i.e., b/2 � vn−1 < b
and q is of length n, i.e., u < bnv. (10.1)

Indeed, if u has length 2n and u � bnv, it is sufficient to do u ← u − bnv to get u < bnv, v being
normalized. Now suppose that u is not of length 2n but n + m. Two possibilities arise.

• When m � n, one can divide (un+m−1 . . . um−n)b of length 2n by (vn−1 . . . v0)b to
get the first digits q∗ of q and set u ← u − q∗vbk (where k is a suitable power) until the
length of u is less than 2n.

• If m � n one divides (un+m−1 . . . un−m)b of length 2m by (vn−1 . . . vn−m)b of length
m. The result q∗ is an approximation by excess of q. We easily derive q from q∗ if
u − q∗v < 0.

In the following we shall often assume (10.1).

10.5.2 Recursive division

In Algorithm 10.30 the next digit of the quotient is determined by the division of the 3-word number
ui+nb2 + ui+n−1b + ui+n−2 by the double precision integer vn−1b + vn−2. But this is actually
performed by means of a division of the double precision integer ui+nb+ ui+n−1 by the single one
vn−1 and some possible corrections. Burnikel and Ziegler [BUZI 1998] apply this idea recursively
to blocks of digits. Here we present a slightly different version [HAQU+ 2002] and introduce the
concatenation of U0 of length n and U1 i.e., U1b

n + U0 denoted by (U1 ||U0)b.
This method is sometimes referred to as the Karatsuba division.
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Algorithm 10.35 Recursive division of positive multiprecision integers

INPUT: A 2n-word u = (u2n−1 . . . u0)b, an n-word v = (vn−1 . . . v0)b as in (10.1). The size n
is a parameter whereas the threshold n0 is fixed.

OUTPUT: The n-word integers q = (qn−1 . . . q0)b and r = (rn−1 . . . r0)b such that u = vq+r.

1. if n � n0 then determine q and r with Algorithm 10.30

2. p ← �n/2� and t ← �n/2�
3. U1 ← (u2n−1 . . . u2t)b and U0 ← (u2t−1 . . . u0)b [u = (U1 ||U0)b]

4. V1 ← (vn−1 . . . vt)b and V0 ← (vt−1 . . . v0)b [v = (V1 ||V0)b]

5. Q1 ← (qn−1 . . . qt)b and Q0 ← (qt−1 . . . q0)b [q = (Q1 ||Q0)b]

6. if U1 < bpV1 then

7. (Q1, r) ← (�U1/V1�, U1 mod V1)

8. r ← U0 + b2tr − btV0Q1

ˆ
r ← (r ||U0)b − btV0Q1

˜

9. else

10. Q1 ← bp − 1 and r ← u − bnv + btv
ˆ
r ← u − btv(bp − 1)

˜

11. while r < 0 do Q1 ← Q1 − 1 and r ← r + btv

12. write r = R0 + bpR1 and V = V ′
0 + bpV ′

1

13. if R1 < btV ′
1 then

14. (Q0, R1) ← (�R1/V ′
1�, R1 mod V ′

1)

15. else Q0 ← bt − 1 and r ← r − btV ′
1 + bn−t

`
(�v/bn−t�) mod bt

´

16. r ← r − V ′
0Q0

17. while r < 0 do q ← q − 1 and r ← r + v

18. return (q, r)

Remarks 10.36

(i) The computations Lines 7 and 14 are obtained in a recursive way. In the first case, one
calls Algorithm 10.35 with parameters U1, V1, p, while they are R1, V ′

1 and t in the
second one.

(ii) For optimal results, the threshold n0 should be set after several tests.

(iii) The complexity of Algorithm 10.35 is 2 K(n) on average.

(iv) It is possible to modify Algorithm 10.35 to compute only the quotient. However this
strategy might fail (with a probability less than 1/b) and the algorithm returns a quantity
bigger than q that can be corrected very easily in most of the cases. The complexity
is then 1.5 K(n) on average and only 2 K(n) in bad cases [HAQU+ 2002] instead of
2.5 K(n) with the original algorithm of Burnikel and Ziegler.

(v) There is an asymptotically faster method, based on the recursive middle product in-
troduced in [HAQU+ 2004]. The complexity to divide 2n-word by n-word integers is
about 1.2 K(n) in this case. However, it is not relevant for sizes used in curve-based
cryptography.

Example 10.37 Set n0 = 2 and let us divide u = (6541237201)10 by v = (65427)10 using
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Algorithm 10.35. The intermediate steps are as follows:

• n = 5, p = 3, t = 2, U1 = (654123)10, U0 = (7201)10, V1 = (654)10 and V0 = (27)10.
• U1 � 1000 × V1 so Q1 = 999 and r = u − 999 × 100 × v = 5079 901.
• R1 = (5079)10, R0 = (901)10, V ′

1 = (65)10 and V ′
0 = (427)10.

• R1 < 100 × 65 so we get Q0 = �5079/65� = 78 and R1 = 5079 mod 65 = 9 by a
recursive call which reduces in this case to a schoolbook division.

• Finally q = (Q1 ||Q0)10 = 99978, r = (R1 ||R0)10 = (9 || 901)10 = 9901 and r −
V ′

0Q0 = −23405 < 0.

Thus we set r = r + v = 42022 and q = 99977 and terminate the algorithm. It is easy to check that
these are the correct values.

10.5.3 Exact division

If u and v are positive numbers, then it is possible to test if v divides u without exactly computing
the remainder u mod v. This is helpful as there are specialized algorithms for exact division.

Indeed, first remark that if v | u, the largest power of 2 dividing u must be bigger than the one of
v. So we can assume without loss of generality that v is odd. The idea is now to use Montgomery
reduction REDC modulo v, see Algorithm 10.22. More precisely, set t ← u and repeat t ← REDC(t)
until t < v. At the end, t ≡ u/2k (mod v) for some k. Obviously, v divides u if and only if t is
zero.

Example 10.38 Let v be the 2-word integer (573160 4090964624)232 and u be the 4-word integer
(2242222213 1590893749 2725169084 656228000)232. As v is not odd, one computes the even
parts of u and v, i.e., respectively 25 and 24 and one continues the computations with u ← u/24

and v ← v/24, which is now odd. With the notations of Section 10.4.2, let R = 264 so that t =
REDC(u) = (2242205646 805464192)232. As t � v, one applies another Montgomery reduction
which returns 0. This shows that u ≡ 0 (mod v).

Now let us introduce Jebelean method [JEB 1993a] to compute the quotient �u/v� when it is known
that u ≡ 0 (mod v) i.e., �u/v� = u/v.

Once again it is assumed here that the base b is a power of 2. The proposed algorithm relies on
the following observation. Let us write u = Ub + u0, v = V b + v0 and q = Qb + q0, where
0 � u0, v0, q0 < b. So u = vq implies that Ub+u0 = vQb+V q0b+ v0q0. Thus u0 = v0q0 mod b
and u−vq0 = vQb. If gcd(v0, b) = 1 this shows that q0 = (u0v

−1
0 ) mod b and the same arguments

work for (u − vq0)/b = vQ allowing us to find q1 and so on. Moreover only the (m + 1) lowest
digits of u take part in the computation of u − vq0. So we can perform this subtraction modulo
bm+1.

Algorithm 10.39 Exact division of positive multiprecision integers in base b = 2�

INPUT: An (m + n)-word integer u = (um+n−1 . . . u0)b and a n-word divisor v of u of the form
v = (vn−1 . . . v0)b.

OUTPUT: The (m + 1)-word integer q = (qm . . . q0)b such that u = vq.

1. while 2 | v do v ← v/2 and u ← u/2

2. t ← v−1
0 mod b [see Remark 10.40 (ii)]
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3. for i = 0 to m do

4. qi ← (u0t) mod b

5. u ← `
(u − vqi) mod bm+1−i

´
/b

6. return q

Remarks 10.40

(i) At the end of the first line gcd(v0, 2) = 1. Since b = 2� this implies that gcd(v0, b) = 1.

(ii) The quantity v−1
0 mod b is computed once but is used at each iteration. It can be ob-

tained in a very efficient way. Indeed, if t = (a−1) mod b then a−1 = (2t − at2) mod
b2. This trick used a couple of times after a search in a table of inverses modulo 28 gives
good results [JEB 1993a].

(iii) A slightly different procedure allows us to compute the quotient �u/v� when the remain-
der r = u mod v is known. Obviously it is enough to replace the last two statements in
the for loop by qi ←

(
(u0 − ri)t

)
mod b and u ←

(
(u − ri − vqi) mod bm+1−i

)
/b.

(iv) Krandick and Jebelean [KRJE 1996] designed a method to compute the highest digits
of the quotient without computing the remainder. Their method is well suited to com-
pute the first half of the digits of an exact division, the other half being computed by
Algorithm 10.39.

Example 10.41 One checks that v = (238019)10 divides u = (322413634849)10. One has n =
m = 6. Let us find the quotient q = u/v with Algorithm 10.39. The inverse of 9 modulo 10 is
t = 9. Next table shows the progress of Algorithm 10.39 along the execution of the for loop.

i 0 1 2 3 4 5 6

qi = (u0t) mod b 1 7 5 4 5 3 1

(u − vqi) mod bm+1−i 3396830 673550 77260 55650 15470 87490 70730

u 339683 67355 7726 5565 1547 8749 7073

Finally q = (1354571)10.

10.6 Greatest common divisor

The following algorithms are described in [COH 2000, LER 1997]. We introduce Euclid, Lehmer
and binary methods and give in fact the extended versions of these variants. Indeed, given two inte-
gers x and N , the algorithms given below not only compute d = gcd(x, N) but also the integers u
and v such that xu + Nv = d. Usually, this is the preferred method to compute the inverse of an el-
ement in (Z/NZ)∗, see also Section 11.1.3 for specific methods to compute such a modular inverse.
Another very important application is linked to the Chinese remainder theorem, cf. Corollary 2.24
and Algorithm 10.52 below.
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10.6.1 Euclid extended gcd

Algorithm 10.42 Euclid extended gcd of positive integers

INPUT: Two positive integers x and N such that x < N .

OUTPUT: Integers (u, v, d) such that xu + Nv = d with d = gcd(x, N).

1. A ← N , B ← x, UA ← 0 and UB ← 1

2. repeat

3. q ← �A/B�

4.

"
A

B

#

←
"
0 1

1 −q

#"
A

B

#

5.

"
UA

UB

#

←
"
0 1

1 −q

#"
UA

UB

#

6. until B = 0

7. d ← A, u ← UA and v ← (d − xu)/N

8. return (u, v, d)

Remarks 10.43

(i) If we introduce the variables VA and VB such that

VA = 1, VB = 0 and

[
VA

VB

]
←
[
0 1
1 −q

][
VA

VB

]

we see that xUA + NVA and xUB + NVB are constantly equal to respectively A and
B during the execution of the algorithm. If the inversion routine is not implemented
one can simply add these two variables and update them during each round to avoid the
division in Line 7.

(ii) Throughout Algorithm 10.42 |UA|, |UB| (resp. |VA|, |VB |) are less than or equal to N/A
(resp. x/A).

(iii) The number of necessary steps is O(lg N) (see [COH 2000] for more precise results).
As a consequence, the complexity of Algorithm 10.42 is O(lg2 N) when it is carefully
implemented.

Example 10.44 Let us compute x−1 mod N for x = 45 and N = 127.

q UA VA A xUA + NVA UB VB B xUB + NVB

— 0 1 127 127 1 0 45 45
2 1 0 45 45 −2 1 37 37
1 −2 1 37 37 3 −1 8 8
4 3 −1 8 8 −14 5 5 5
1 −14 5 5 5 17 −6 3 3
1 17 −6 3 3 −31 11 2 2
1 −31 11 2 2 48 −17 1 1
2 48 −17 1 1 −127 45 0 0

So 48x − 17N = 1 which implies that x−1 mod N = 48.
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Most of the running time is taken by computing the quotient q ← �A/B�. Moreover, in 41% of
the cases one obtains q = 1, which motivates choosing this value in all cases on the cost of more
rounds, as is the case for the binary gcd algorithm, cf. Section 10.6.3. Note that Gordon proposed
to use an approximation of the quotient by a suitable power of 2 [GOR 1989]. When x and n are
multiprecision integers a variant due to Lehmer also avoids a full determination of the quotient.

10.6.2 Lehmer extended gcd

Lehmer’s idea [LEH 1938] is to approximate �A/B� with the most significants digits of A and B
and to update them when necessary in computing the matrix product

[
A

B

]
←
[

α β

α′ β′

][
A

B

]
(10.2)

which performs several cumulated steps. The single precision integers α, α′, β and β′ are computed
by a subalgorithm successively improved by Collins [COL 1980], Jebelean [JEB 1993b] and Lercier
[LER 1997]. Here we state the skeleton of this algorithm, the improvements differ in the way Line
3 is performed.

Algorithm 10.45 Lehmer extended gcd of multiprecision positive integers

INPUT: Two m-word multiprecision positive integers x and N in base b = 2� such that x < N .

OUTPUT: Integers (u, v, d) such that xu + Nv = d with d = gcd(x, N).

1. A ← N , B ← x, UA ← 0 and UB ← 1

2. while |B|2 > � do

3. compute α, α′, β and β′ by subalgorithm 10.46 with arguments A and B

4.

"
A

B

#

←
"

α β

α′ β′

#"
A

B

#

5.

"
UA

UB

#

←
"

α β

α′ β′

#"
UA

UB

#

6. compute (u, v, d) by Algorithm 10.42 with arguments A and B

7. u ← uUA + vUB , v ← (d − xu)/N

8. return (u, v, d)

From Â and B̂, i.e., the  most significants bits of A and B expressed in base b = 2�, Lehmer
derives two approximated quotients. Whenever they differ, A and B must be updated as in (10.2).
Collins and Jebelean have an equivalent condition to determine α, α′, β, and β′ with only one
quotient. Now experiments show that if the size of Â and B̂ is about b then the order of magnitude
of α, α′β, β′is less than

√
b. In order to increase the size of these coefficients Lercier [LER 1997]

mixes single and double precision approximations. We present this last improvement now.
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Sub-algorithm 10.46 Partial gcd of positive multiprecision integers in base b = 2�

INPUT: Two positive integers A and B.

OUTPUT: Integers α, α′, β and β′ as above.

1. Â ←
—

A
2max(|A|2)−�,0)

� h
Â ← the � most significants bits of A

i

2. B̂ ←
—

B
2max(|A|2−�,0)

� h
B̂ might be 0

i

3. α ← 1, β ← 0, α′ ← 0, β′ ← 1 and T ← 0

4. if B̂ �= 0 then q ← �Â/B̂� and T ← Â mod B̂

5. if T � 2�/2 then

6. while true do

7. q′ ← �B̂/T � and T ′ ← B̂ mod T

8. if T ′ < 2�/2 then break

9. Â ← B̂, B̂ ← T

10. T ← α − qα′, α ← α′ and α′ ← T

11. T ← β − qβ′, β ← β′ and β′ ← T

12. T ← T ′ and q ← q′

13. if β = 0 then α ← 0, β ← 1, α′ ← 1, β′ ← −�A/B� and return (α, β, α′, β′)

14. Â ←
—

A
2max(|A|2−2�,0)

� h
Â ← the 2� most significants bits of A

i

15. B̂ ←
—

B
2max(|A|2−2�,0)

�

16.

"
Â

B̂

#

=

"
α β

α′ β′

#"
Â

B̂

#

17. Â ←
—

Â

2max(|Â|2−�,0)

� h
Â ← the � most significants bits of Â

i

18. B̂ ←
—

B̂

2max(|Â|2−�,0)

�
and T ← 0

19. if B̂ �= 0 then q ← �Â/B̂� and T ← Â mod B̂

20. if T � 2�/2 then

21. while true do

22. q′ ← �B̂/T � and T ′ ← B̂ mod T

23. if T ′ < 2�/2 then return (α, β, α′, β′)

24. Â ← B̂, B̂ ← T

25. T ← α − qα′, α ← α′ and α′ ← T

26. T ← β − qβ′, β ← β′ and β′ ← T

27. T ← T ′ and q ← q′

28. return (α, β, α′, β′)
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Remark 10.47 With Lehmer’s original algorithm [COH 2000] A and B decrease by 13 bits (respec-
tively 29 bits) on average for each iteration when b = 232 (respectively 264). With Sub-algorithm
10.46 the gain is of 22 bits (respectively 53 bits) on average.

Example 10.48 With b = 216 let us compute the extended gcd of N = 26498041357 and x =
8378459450. With the initial algorithm of Lehmer, the intermediate steps are

"
α β

α′ β′

#
A B UA UB u v d

— 26498041357 8378459450 0 1 — — —"
1 −3

−6 19

#
1362663007 202481408 −3 19 — — —

"
−4 27

11 −74

#
16345988 5668885 525 −1439 — — —

"
−9 26

17 −49

#
277118 106431 −42139 79436 — — —

"
−3 8

5 −13

#
20094 1987 761905 −1243363 — — —

— — — — — 10055119245 −3179344757 1

With Sub-algorithm 10.46 less steps are needed, namely

"
α β

α′ β′

#
A B UA UB u v d

— 26498041357 8378459450 0 1 — — —"
−43 136

123 −389

#
54706849 38360861 136 −389 — — —

"
115 −164

−291 415

#
106431 64256 79436 −201011 — — —

— — — — — 10055119245 −3179344757 1

10.6.3 Binary extended gcd

To compute the gcd of two integers A and B one can also repeatedly apply the following rules:

• if A and B are both even then gcd(A, B) = 2 gcd(A/2, B/2)
• if A is even and B is odd then gcd(A, B) = gcd(A/2, B)
• if A and B are both odd then |A − B| is even so that gcd(A, B) = gcd(A, |A − B|/2).

In addition |A − B| � max{A, B}.

Since A and B are not necessarily of the same order of magnitude, it is wise to reduce the size of the
operands once. So only one division with remainder is required by the following algorithm, which
is therefore especially interesting in computing the gcd of multiprecision integers.
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Algorithm 10.49 Extended binary gcd of positive integers

INPUT: Two positive integers x and N such that x < N .

OUTPUT: Integers (u, v, d) such that xu + Nv = d with d = gcd(x, N).

1. q ← �N/x�, T ← N mod x, N ← x and x ← T [reduce size once]

2. if x = 0 then u ← 0, v ← 1, d ← N and return (u, v, d)

3. k ← 0 and f ← 0 [f is a flag]

4. while N ≡ 0 (mod 2) and x ≡ 0 (mod 2) do

5. k ← k + 1, N ← N/2 and x ← x/2

6. if x ≡ 0 (mod 2) then

7. T ← x, x ← N , N ← T and f ← 1 [swap x and N ]

8. UB ← 1, A ← N , B ← x and v′ ← x

9. if N ≡ 1 (mod 2) then UA ← 0 and t′ ← −x

10. else UA ← (1 + x)/2 and t′ ← n/2

11. while t′ �= 0 do

12. if t′ > 0 then UB ← UA and A ← t′ else B ← x − UA and v′ ← −t′

13. UA ← UB − B and t′ ← A − v′

14. if UA < 0 then UA ← UA + x

15. while t′ ≡ 0 (mod 2) and t′ �= 0

16. t′ ← t′/2

17. if UA ≡ 0 (mod 2) then UA ← UA/2 else UA ← (UA + x)/2

18. u ← UB , v ← (A − xu)/N and d ← 2kA

19. if f = 1 then T ← u, u ← v and v ← T

20. u ← u − vq

21. return (u, v, d)

We shall not describe here asymptotically faster methods such as the generalized binary algorithms
[LER 1997], since they become more efficient for integers larger than 2600. This size is completely
out of the range for elliptic and hyperelliptic cryptosystems.

Remarks 10.50

(i) On average Euclidean quotients in Algorithm 10.42 are small. It is even possible to
show that q = 1 is the most probable case. The corresponding probability, defined in a
suitable sense, is 0.41504 . . . , see [COH 2000]. This justifies performing subtractions
instead of divisions even if the number of steps needed is greater.

(ii) Traditionally, to compute (k/x) mod N one performs the multiplication of k by the
inverse of x whereas a direct computation is possible. Indeed it suffices to set UB ← k
instead of UB ← 1, in Lines 1, 1 and 8 of Algorithms 10.42, 10.45, and 10.49.

Example 10.51 Let us compute the extended gcd of x = 67608 and N = 830616 with Algo-
rithm 10.49.
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In Line 1, one performs a classical reduction to obtain variables of comparable size. For these
particular values, this step saves many computations since we have q = �N/x� = 12. Then in the
while loop starting Line 4, we remove the highest power of 2 dividing the gcd, that is k = 3. After
Line 7, x and N are respectively equal to 2415 and 8451.

The next table contains the values of the relevant parameters A, B, UA, UB , t′ and v′ before the
execution of Line 12.

A B UA UB t′ v′

8451 2415 0 1 −2415 2415

8451 2415 604 1 1509 2415

1509 2415 302 604 −453 2415

1509 2113 783 604 33 453

33 2113 875 783 −105 453

33 1540 811 783 −9 105

33 1604 803 783 3 9

3 1604 807 803 −3 9

We set u = 803, v = (A − Nu)/x = −2810 and d = 2kA = 24. Finally, the value of u is
corrected to take into account the initial reduction, i.e., u = u − vq = 34523. We easily check that
ux + vN = 24.

10.6.4 Chinese remainder theorem

Suppose one wants to find a solution to the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ≡ x1 (mod n1)
x ≡ x2 (mod n2)

...

x ≡ xk (mod nk)

where the ni’s are pairwise coprime integers and the xi’s are fixed integers. Corollary 2.24 ensures
that there is a unique solution modulo N = n1n2 . . . nk and in fact, such a solution is easy to find.
Let Ni = N/ni. Since the ni’s are pairwise coprime one has gcd(Ni, ni) = 1 for all i, and an
extended gcd computation gives ai such that aiNi ≡ 1 (mod ni). Clearly, a solution is then given
by

x = a1N1x1 + a2N2x2 + · · · + akNkxk.

This is the idea behind the following algorithm, which performs more efficiently and computes x
inductively. At each step, given an integer x such that x ≡ xi (mod ni) for all i � j, it finds x
satisfying x ≡ xi (mod ni) for all i � j + 1.

Algorithm 10.52 Chinese remainder computation

INPUT: Pairwise coprime integers n1, . . . , nk and integers xi for 1 � i � k.

OUTPUT: An integer x such that x ≡ xi (mod ni), for all 1 � i � k.

1. N ← n1 and x ← x1

2. for i = 2 to k do

3. compute u and v such that uni + vN = 1 [use an extended gcd algorithm]



§ 10.7 Square root 197

4. x ← unix + vNxi

5. N ← Nni

6. x ← x mod N

7. return x

Remarks 10.53

(i) Algorithm 10.52 can be generalized in a straightforward way to the polynomial ring
K[X ] where K is a field.

(ii) Another variant due to Garner [GAR 1959] involves precomputations and is well suited
to solve different systems with fixed ni’s; see for instance [MEOO+ 1996]. This is
especially useful for residue number system arithmetic where computations modulo N
are in fact performed modulo several primes pi fitting in a word and such that

∏
i pi >

N2. See [BLSE+ 1999] for instance.

Example 10.54 Let us solve the system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ≡ 1 (mod 3)
x ≡ 2 (mod 5)
x ≡ 4 (mod 7)
x ≡ 5 (mod 11)
x ≡ 9 (mod 13).

The moduli 3, 5, 7, 11, and 13 prime and thus they are pairwise coprime. Here are the values of
relevant parameters before we enter the for loop and at the end of it, Line 6.

i ni xi N u v x x mod ni

1 3 1 3 — — 1 1

2 5 2 15 −1 2 7 2

3 7 4 105 −2 1 67 4

4 11 5 1155 −19 2 907 5

5 13 9 15015 −533 6 8992 9

10.7 Square root

First let us describe a simple method to compute the integer square root of a positive number u, that
is v = �

√
u�.

10.7.1 Integer square root

Newton iteration is a powerful tool to find solutions of the equation f(x) = 0. Under suitable
conditions, the process xi+1 ← xi − f(xi)/f ′(xi) starting from an appropriate approximation,
converges quadratically to a root of f . Using this method with f(x) = x2 − u leads to the iteration
xi+1 ← (xi + u/xi)/2 to compute

√
u. Its discrete version is the basis of Algorithm 10.55.
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Algorithm 10.55 Integer square root

INPUT: A positive n-word integer u.

OUTPUT: The positive integer v such that v = �√u�.

1. t ← 2�lg u/2� [initial approximation]

2. repeat

3. v ← t

4. t ← �(v + �u/v�)/2� [discrete Newton iteration]

5. until t = v

6. return v

Remarks 10.56

(i) If u fits in a word, it is more efficient to perform a binary search, that is guess the bits of
v one by one [BER 1998].

(ii) Algorithm 10.55 needs O(lg lg u) iterations to terminate.

(iii) Any integer t � √
u can be chosen as an initial approximation, but t should be as close

as possible to �
√

u� for efficiency reasons. To ensure a fast convergence, one possibility
is to compute an approximation

√
u, using for instance the most significant word of u.

(iv) The working precision should be increased dynamically as the computation progresses.

(v) If Lines 4 and 5 of Algorithm 10.55 are replaced by
4. t ← (v + u/v)/2
5. until t − v � ε

then an approximation up to the precision ε of the real
√

u is returned instead.

Example 10.57 Take (393419390 735536755)232 and let us find v = �√u� with Algorithm 10.55.
Since u is a 61-bit integer, one takes 231 as an initial approximation. Then the successive values
of t are 1467161214, 1309428509, 1299928331, 1299893617, 1299893616, and again 1299893616
which is the expected result. If the initial value is set to t ←

⌈√
393419390

⌉
× 216 instead, only

two iterations are required to get the result.

At present, let us examine a related problem.

10.7.2 Perfect square detection

To decide if an integer u is a perfect square or not, one possibility is to compute its integer square
root v = �

√
u�, with the algorithm above, and to compare v2 to u. However, if u is not a square

modulo some integer, it is clear that u cannot be a perfect square. Now, if u is a square modulo
several integers, for instance 64, 63, 65, and 11, then it is very likely (in fact with a probability
bigger than 99%) that u is a square [COH 2000]. Testing more moduli eliminates more integers
u that are not a square. For instance, one can choose small odd moduli and pack them into a
highly composite integer N fitting in a word. Then one has to reduce u modulo N or, as suggested
by Harley [HAR 2002a], use Montgomery reduction, see Section 10.4.2, to derive an appropriate
approximation of the residue. Indeed, if  is the word size, Montgomery reduction REDC of u
modulo N , whose cost is very cheap, returns an integer congruent to u/2� mod N . Now if u is an n-
word integer then n−1 successive applications of REDC will give the single r = u/2�(n−1) mod N .
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From the Chinese remainder theorem, see Section 2.1.2, and the fact that  is even, it is easy to see
that u is a square modulo N if and only if r is a square modulo every prime power pk dividing N .
As N has only small prime divisors, this can be tested very efficiently since it is sufficient to look at
the bit of order r mod pk of a precomputed mask m, reflecting the residues that are a square modulo
pk. If u passes all these tests, Algorithm 10.55 is used to ensure that u is really a square.

Example 10.58 Take b = 232, u = (2937606071 1090932004 1316444929)232 and set the value
of N to the single 32 × 52 × 7 × 11 × 17 × 19 × 23 × 29 = 3732515325. With the settings of
Section 10.4.2, put R = 232 and precompute (−1/N) mod R. After two successive Montgomery
reductions, one obtains r = 2783108164 = u/264 mod N . Now the squares modulo 9 being 0, 1, 4
and 7, the value of the mask m is set to 147 = (10010011)2. Since r mod 9 = 4, one looks at the
bit of weight 4 of m which is 1. This means that u is a square modulo 9.

This is also the case for all the other prime powers dividing N . For instance, the mask modulo 29
is m = (10011110100010010001011110011)2 and the bit of order r mod 29, that is 1, of m is 1
again. This shows that u has a very high probability (more than 99.54%) to be a square and indeed
if one computes v = �

√
u� with Algorithm 10.55 one can check that v2 = u.

Note that a similar idea applies for cubes as well, and more generally for every power k. Bernstein
[BER 1998] also developed a different method where a real approximation of v = u1/k is first
computed before the consistency of the assumption u = vk is checked on the first few digits of u
and v.
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In this chapter, we are mainly interested in performance; see Section 2.3 for a theoretical presenta-
tion of finite fields. In the following, we consider three kinds of fields that are of great cryptographic
importance, namely prime fields, extension fields of characteristic 2, and optimal extension fields.
We will describe efficient methods for performing elementary operations, such as addition, multi-
plication, inversion, exponentiation, and square roots. The material that we give is implicitly more
related to a software approach; see Chapter 26 for a presentation focused on hardware. Efficient
finite field arithmetic is crucial in efficient elliptic or hyperelliptic curve cryptosystems and is the
subject of abundant literature [JUN 1993, LINI 1997, SHP 1999]. See also the preliminary version
of a book written by Shoup and available online [SHO], introducing basic concepts from computa-
tional number theory and algebra, and including all the necessary mathematical background.

There are some software packages implementing the algorithms described below, such as ZEN
[ZEN], which is a set of optimized C libraries dedicated to finite fields. There are also more general
libraries like NTL [NTL] or Lidia [LIDIA]. In addition, several computer algebra systems contain
functions for handling finite fields, for example Magma [MAGMA].

11.1 Prime fields of odd characteristic

Most of the algorithms detailed here carry through as well to Z/NZ for arbitrary moduli N , usu-
ally with some obvious modifications. However, here we are mainly interested in prime moduli.
Methods to find either an industrial-grade prime or a certified prime number p of the desired size
are described in Chapter 25.

201
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11.1.1 Representations and reductions

For representing finite prime fields we usually use the isomorphism between Fp and Z/pZ. Ele-
ments of Z/pZ are equivalence classes and we have to choose a representative, that is a particular
element in the class, to perform computations. The most standard choice is to represent x ∈ Z/pZ
by the unique integer in [0, p − 1], which is in the class of x. We can also use other representatives
such as the ones belonging to [−�p/2�, �p/2�] or even an incompletely reduced number, which is
not uniquely determined, for it belongs to an interval of length greater than p; see Remark 26.45 (ii)
and [YAN 2001, YASA+ 2002].

Given an integer u of arbitrary size we must be able to reduce it, i.e., to find the integer in [0, p−1]
which is congruent to u modulo p. This modular reduction is achieved by computing the remainder
of a Euclidean division.

However, since all the reductions are performed modulo the same prime number p, there exist
several improvements which, for instance, involve some precomputations. The most popular ones
are certainly the Montgomery and the Barrett methods; see Section 10.4. In this case the cost of
a reduction of a 2n-word integer modulo an n-word integer is asymptotically equal to a size n
multiplication.

To compute the remainder faster, other ideas include the choice of a special modulus allowing
a fast reduction; see Algorithm 10.25 for the use of a different normalization than the one initially
suggested by Knuth in Algorithm 10.30. Quisquater first proposed this method, which speeds up the
determination of an approximation of the quotient; see Remark 10.33 and Example 10.34. However,
this reduction method will increase the length of the modulus p by at least one digit, resulting in
additional multiplications when performing arithmetic in Fp.

In the remainder, we address prime field arithmetic itself. Whatever representation is chosen,
prime field addition and subtraction algorithms are straightforward in terms of the corresponding
multiprecision algorithms for integers, cf. Algorithms 10.3 and 10.5. For example, with classical
representation, if u, v are integers in [0, p − 1], then u + v < 2p and the modular addition of u and
v is simply u + v or u + v − p. In the same way, modular subtraction of u and v is u − v if u � v
and u− v+ p when u < v. Montgomery representation is compatible with addition and subtraction
as well.

Now let us investigate multiplication algorithms in Fp.

11.1.2 Multiplication

Except special methods, like the one explained in [CHCH 1999] that involves precomputations,
there are mainly two ways two perform a modular multiplication. The first one consists of a simple
integer multiplication with the schoolbook or Karatsuba methods, i.e., one of the Algorithms 10.8
or 10.11, followed by a reduction. The choice of the algorithm depends on the nature and the size
of the integer operands as well as on the computer architecture used.

The second one is designed as a single operation. In this case elementary multiplications and
reductions are interleaved so that the size of the intermediate results remains bounded. These two
options apply to Montgomery representation as well.

11.1.2.a Classical representation

Algorithm 11.1 is a general scheme to compute a modular multiplication. We have

uv ≡
(

n−1∑
i=0

uivbi

)
(mod p)
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which can be written

uv ≡
((

. . .
(
(un−1v mod p)b + un−2v mod p

)
b + · · · + u1v mod p

)
b + u0v

)
(mod p).

If we set t−1 = 0 and ti = (ti−1b + un−i−1v) mod p then tn−1 ≡ uv (mod p). We deduce the
following algorithm:

Algorithm 11.1 Interleaved multiplication-reduction of multiprecision integers

INPUT: Two n-word integers u = (un−1 . . . u0)b and v.

OUTPUT: An integer t such that t ≡ uv (mod p).

1. t ← 0

2. for i = 0 to n − 1 do

3. t ← tb + un−i−1v

4. approximate q = �t/p� with q̂ [see methods below]

5. t ← t − q̂p

6. return t

The approximation of q can be achieved by Knuth, Barrett, or Quisquater methods. Knuth’s ap-
proach has already been explained, cf. Algorithm 10.30. The last two methods are described in
detail by Dhem in [DHE 1998]. See also Section 10.4.1 and Remark 10.33. Barrett writes

q =
⌊

t

p

⌋
=

⌊
t

2n−1
22n

p

2n+1

⌋

where n is the number of bits of p, then approximates q by⎢⎢⎢⎣
⌊

t
2n−1

⌋ ⌊
22n

p

⌋
2n+1

⎥⎥⎥⎦
where we assume that

⌊
22n

p

⌋
has been precomputed. Dhem introduced a more general variant,

namely

q̂ =

⎢⎢⎢⎣
⌊

t
2n+β

⌋
R

2α−β

⎥⎥⎥⎦ with R =
⌊

2n+α

p

⌋
·

These additional parameters allow us to perform corrections on the remainder only at the end of the
whole multiplication process, when they are suitably tuned. Algorithm 11.1 works at a word level
and if b = 2� then optimal results are obtained with α = 	 + 3 and β = −2. In this case we have
q−1 � q̂ � q and the intermediate results grow moderately. More precisely, given u, v < 2n+1 then
t ≡ uv (mod p) returned by Algorithm 11.1 is less than 2n+1. To get the final result, at most one
subtraction is needed. This implies also that an exponentiation or any other long computation can be
done with only one correction at the end of the whole process with the same choice of parameters.

Quisquater’s method [QUI 1990, QUI 1992] consists in multiplying p by a suitable coefficient δ
such that the reduction modulo δp is easy. Set

δ =
⌊

2n+�+2

p

⌋
and get q̂ =

⌊
t

2n+�+2

⌋
·
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The (	 + 2) highest bits of δp are now equal to 1 and the corresponding quotient is obviously
determined, since it is simply equal to the most significants bits of t. There is a fast way to compute
δ, namely put

δ̂ =

⌊
22�+6⌊

p
2n−�−3

⌋
⌋

,

which verifies δ � δ̂ � δ + 1, and a simple test gives the correct value. It is also possible to reduce
the size of δ; see [DHE 1998, p. 24]. This normalization avoids overflows in Algorithm 11.1 while
computing a multiplication or even a modular exponentiation.

Now suppose that one has the result x mod δp while we still want x mod p. For this, we could
perform (x mod δp) mod p but since an exact division is faster (see Section 10.5.3) it is better to
compute

x mod p =
δx mod δp

δ
· (11.1)

Note that this method has been used in several smart cards; see for example [QUWA+ 1991] or
[FEMA+ 1996].

11.1.2.b Montgomery multiplication

Montgomery representation, see Section 10.4.2, was in fact introduced to carry out quick modular
multiplications. This property comes from the equality(

(xR mod p)(yR mod p)R−1 mod p
)

= (xyR) mod p

which implies that REDC([x][y]) = [xy]. Recall that Montgomery reduction is also useful to convert
elements between normal and Montgomery representations. Indeed, [x] = REDC(xR′) where R′ =
R2 mod p has been precomputed and stored, and REDC([x]) = x.

Example 11.2 Take p = 2011, b = 23, R = 4096 so that R′ = 1454. Let x = 45, y = 97. Then

[x] = REDC(45 × 1454) = 1319 = (2447)8
[y] = REDC(97 × 1454) = 1145 = (2171)8

[x][y] = 1510255
[xy] = REDC(1510255) = 1250 = (2342)8
xy = REDC(1250) = 343.

One checks that 45 × 97 ≡ 343 (mod 2011).

Of course, Montgomery method is completely irrelevant when only one product is needed. Instead,
operands are converted to and kept in Montgomery representation as long as possible. For instance,
if one wants [x2y], simply perform REDC([x][xy]).

The following algorithm computes directly REDC(uv) given multiprecision integers u and v in
Montgomery representation. It combines Algorithms 10.8 and 10.22.

Algorithm 11.3 Multiplication in Montgomery representation

INPUT: An n-word integer p = (pn−1 . . . p0)b prime to b, R = bn, p′ = −p−1 mod b and two
n-word integers u = (un−1 . . . u0)b and v = (vn−1 . . . v0)b such that 0 � u, v < p.

OUTPUT: The n-word integer t = (tn−1 . . . t0)b equal to REDC(uv) = (uvR−1) mod p.

1. t ← 0

2. for i = 0 to n − 1 do

3. mi ←
`
(t0 + uiv0)p

′´ mod b
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4. t ← (t + uiv + mip)/b

5. if t � p then t ← t − p

6. return t

Remarks 11.4

(i) If R is chosen such that R > 4p and if u and v are positive and less than 2p then
REDC(uv) is bounded by 2p as well. This means that it is possible to avoid the sub-
traction in Line 5 of Algorithm 11.1 during long computations as exponentiations. At
the end of the whole process the result is normalized in Z/pZ at the cost of a single
subtraction [LEN 2002].

(ii) See [KOAC+ 1996] for a comparison of different variations of Montgomery method.

Example 11.5 Let us perform again the computation of Example 11.2 but at a word level with
Algorithm 11.3. Let u = [45] = 1319 = (2447)8 and v = [97] = 1145 = (2171)8. Then

i ui t0 mi uiv mip t + uiv + mip t

— — — — — — — 0
0 7 0 3 (17517)8 (13621)8 (33340)8 (3334)8
1 4 4 0 (10744)8 0 (14300)8 (1430)8
2 4 0 4 (10744)8 (17554)8 (32150)8 (3215)8
3 2 5 3 (4362)8 (13621)8 (23420)8 (2342)8

One obtains REDC(uv) = (2342)8 = [xy] = 1250 as previously.

Concerning modular squaring, the computation of the square of an integer can be achieved faster
(see Section 10.3.3); however the reduction takes the same time as in the case of a modular multi-
plication. Note that there are some dedicated methods like [HOOH+ 1996], which are worth being
implemented if modular exponentiation is to be computed, as squarings are a very frequent opera-
tion.

11.1.3 Inversion and division

To get the inverse of some integer x, we can use the multiplicative structure of F∗p which implies that
xp−2 ×x = xp−1 ≡ 1 (mod p). However, Collins [COL 1969] showed that the average number of
arithmetic operations required by this approach is nearly twice as large as for the Euclid extended
algorithm, which computes integers u, v such that xu + pv = 1. See Section 10.6 for an exhaustive
presentation of extended gcd algorithms.

In the following section more specific methods are described, including Montgomery inversion
and a useful trick to compute several inverses simultaneously.

11.1.3.a Modular inversion

We start with a simplified and improved version of Algorithm 10.6.3, to compute the inverse of x
modulo p, introduced by Brent and Kung [BRKU 1983] and known as the plus-minus method.
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Algorithm 11.6 Plus-minus inversion method

INPUT: An odd modulus p and an integer x < p prime to p.

OUTPUT: The integer x−1 mod p.

1. A ← x, B ← p, UA ← 1, UB ← 0 and δ ← 0

2. while |A| > 0 do

3. while A ≡ 0 (mod 2) do

4. A ← A/2, U ← (U/2) mod p and δ ← δ − 1

5. if δ < 0 then

6. T ← A, A ← B, B ← T

7. T ← UA, UA ← UB , UB ← T

8. δ ← −δ

9. if (A + B) ≡ 0 (mod 4) then

10. A ← (A + B)/2 and UA ← `
(UA + UB)/2

´
mod p

11. else A ← (A − B)/2 and UA ← `
(UA − UB)/2

´
mod p

12. if B = 1 then u ← UB else u ← p − Ub

13. return u

Remarks 11.7

(i) Algorithm 11.6 is based on the observation that if A and B are both odd then either A+B
or A−B is divisible by 4. If A+B ≡ 0 (mod 4) then gcd(A, B) = gcd

(
(A+B)/2, B

)
with (A+B)/2 even and |(A+B)/2| � max{|A|, |B|}. Similar results hold if A−B ≡
0 (mod 4).

(ii) The counter δ is used to compare A and B, as the direct comparison can be time-
consuming, especially in hardware. Further improvements are described in [TAK 1998,
MEBU+ 2004]. The corresponding algorithms are well suited for hardware realizations
and can be implemented in parallel.

Example 11.8 Take p = 27 − 1 = 127 and x = 45. In the following table are given the values of
δ, A, B, UA, and UB at the end of the main while loop.

δ A B UA UB

0 86 127 64 0
1 42 43 111 32
0 32 43 12 32
5 22 1 40 48
4 6 1 34 48
3 2 1 96 48
2 0 1 0 48

So, the inverse of 45 modulo 127 is 48.

In a case where the modulus p is prime, one can also use a completely different algorithm due to
Thomas et al. [THKE+ 1986] to compute the inverse of x modulo p.
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Algorithm 11.9 Prime field inversion

INPUT: A prime modulus p and an integer x prime to p.

OUTPUT: The integer x−1 mod p.

1. z ← x mod p and u ← 1

2. while z �= 1 do

3. q ← −�p/z�
4. z ← p + qz

5. u ← (qu) mod p

6. return u

Remarks 11.10

(i) Algorithm 11.9 is very simple to implement and is reported to be faster than the extended
Euclidean algorithm for some types of primes, for example Mersenne primes. Indeed,
in this case, the computation of q in Line 3 can be carried out very efficiently. Note that
there exists also a dedicated algorithm to compute an inverse modulo a Mersenne prime
[CRPO 2001, p. 428].

(ii) In general, the number of iterations needed by Algorithm 11.9 is less than for extended
gcd algorithms.

(iii) The modular division (k/x) mod p can be directly obtained with Algorithms 11.6 and
11.9. Namely, modify the first line of each algorithm and replace the statements UA ← 1
and u ← 1 respectively by UA ← k and u ← k.

Example 11.11 Again, take p = 27 − 1 = 127 and x = 45. Here are the values of q, z, and u at the
end of the while loop.

q z u

−2 37 125
−3 16 6
−7 15 85
−8 7 82

−18 1 48

Again, we find that the inverse of 45 modulo 127 is 48. In this case only 5 iterations are needed
instead of 7 for Algorithm 11.6, cf. Example 11.8.

11.1.3.b Montgomery inversion and division

Montgomery’s article also deals with inversions and divisions [MON 1985]. Kaliski [KAL 1995]
develops specific algorithms to compute them. Recall the settings of Section 10.4.2 and let u be
an integer. Then the Montgomery inverse of u is defined as INV(u) = (u−1R2) mod p. So if
u = [x] = xR, we see that INV([x]) = (x−1R) mod p = [x−1]. Thus we have

REDC([x] INV[x]) = R mod p = [1].
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Algorithm 11.12 Montgomery inverse in Montgomery representation

INPUT: Two n-word integers u and p such that u ∈ [1, p − 1]. The integer R = 2m = bn and
the precomputed value R′ = R2 mod p.

OUTPUT: The n-word integer v equal to INV(u) = (u−1R2) mod p.

1. r ← u, s ← 1, t ← p, v ← 0 and k ← 0

2. while r > 0 do

3. if t ≡ 0 (mod 2) then t ← t/2 and s ← 2s

4. else if r ≡ 0 (mod 2) then r ← r/2 and v ← 2v

5. else if t > r then t ← (t − r)/2, v ← v + s and s ← 2s

6. else r ← (r − t)/2, s ← v + s and v ← 2v

7. k ← k + 1

8. if v � p then v ← v − p

9. v ← p − v

10. if k < m then v ← REDC(vR′) and k ← k + m

11. v ← REDC(vR′)

12. v ← REDC(v22m−k)

13. return v

Remarks 11.13

(i) Lines 1 to 9 compute the so-called almost Montgomery inverse i.e., (u−12k) mod p for
some k such that c � k � m + c, where c is the binary length of p.

(ii) It is possible to change the end of Algorithm 11.12 in order to compute directly the
inverse of u, i.e., u−1 mod p with one or two extra Montgomery multiplications, namely
replace Lines 10, 11, and 12 by

10. if k > m then v ← REDC(v) and k ← k − m

11. v ← REDC(v2m−k)

(iii) To divide [x] by [y] it suffices to do REDC
(
[x] INV([y])

)
and get [xy−1].

Example 11.14 With the settings of Example 10.24, let us compute the Montgomery inverse of
[45] = 1319. Since p = 2011 is a 4-word integer in base 8, we have m = 12.

• After Line 9, Algorithm 11.12 has computed the almost Montgomery inverse of 1319,
which is 1252, and found k = 17. This means that 1319−1 × 217 mod 2011 = 1252.

• Lines 10 and 11 compute REDC(1252R′) = 142 and finally REDC(142 × 224−17) =
1387, which is the Montgomery inverse of 1319. We check that REDC(1319× 1387) =
74 ≡ R (mod p).

• If we want the inverse of 1319 modulo 2011, we perform REDC(1252) = 1267 and set
k ← 5. Then REDC(1267 × 212−5) = 1485 ≡ 1319−1 (mod 2011).

The next section allows us to compute the inverse of several numbers modulo the same number p.
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11.1.3.c Simultaneous inversion

One needs a priori j extended gcd computations to find the inverses of the j elements a1, . . . , aj

modulo p. Here we present a trick of Montgomery that allows us to do the same with only one
extended gcd and 3j − 3 multiplications modulo p. The basic idea is to get the inverse of

∏
i ai and

to multiply it by suitable terms to recover a−1
j , . . . , a−1

1 [COH 2000].

Algorithm 11.15 Simultaneous inversion modulo p

INPUT: A positive integer p and j integers a1, . . . , aj not zero modulo p.

OUTPUT: The inverses b1, . . . , bj of the a1, . . . , aj modulo p.

1. c1 ← a1

2. for i = 2 to j do ci ← aici−1

3. compute (u, v, d) with ucj + vp = d [d is equal to 1]

4. for i = j down to 2 do

5. bi ← (uci−1) mod p and u ← (uai) mod p

6. b1 ← u

7. return (b1, . . . , bj)

Remarks 11.16

(i) Let N be a nonprime modulus. If one tries to apply Algorithm 11.15 to the nonzero
residues a1, . . . , aj modulo N , there are two possibilities. If a1, . . . , aj are all coprime
to N then Algorithm 11.15 returns a−1

1 , . . . , a−1
j modulo N . If at least one integer is

not coprime to N then the gcd computed in Line 3 is different from 1. In this case, if
the Lines 4 to 7 of Algorithm 11.15 are replaced by the following statements

4. if d = N then
5. i ← 1

6. repeat
7. d ← gcd(ai, N) and i ← i + 1

8. until d > 1

9. return d

then a nontrivial factor of N is returned.

(ii) This modified algorithm is especially useful for Lenstra’s elliptic curve method, cf. Sec-
tion 25.3.3, where one tries to find factors of N by computing scalar multiples on a curve
modulo N .

11.1.4 Exponentiation

This part deals with specific exponentiation methods for finite fields Fp. The general introduction
to the subject can be found in Chapter 9.

11.1.4.a Ordinary exponentiation

To compute xn, for x ∈ Fp, one could perform the exponentiation in Z and then reduce the result.
Of course, this approach is completely inefficient even for rather small n. However, a systematic
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reduction after each intermediate step, i.e., a squaring or a multiplication, seems inadequate as
well since a modular reduction is quite slow. So, a compromise must be found. One can also
use Barrett or Quisquater multiplication algorithms without the remainder correction steps; see
Section 11.1.2.a. With appropriate settings, intermediate results are kept bounded such that they
still fit in the allocated space, and only at the end of the exponentiation one corrects the result so
that it belongs to [0, p − 1].

11.1.4.b Montgomery exponentiation

All algorithms presented in Chapter 9 can be adapted to Montgomery representation. The changes
are always the same and rather simple: as explained in Section 11.1.2.b, one converts to and from
Montgomery representation only for input/output, so any amount of operations can be done in be-
tween. These ideas are illustrated in the following adaptation of the classical square and multiply
algorithm, cf. Section 9.1.1.

Algorithm 11.17 Binary exponentiation using Montgomery representation

INPUT: An element x of Fp, a positive integer n = (nt−1 . . . n0)2 such that nt−1 = 1, the
integers R and R′ = R2 mod p.

OUTPUT: The element xn ∈ Fp.

1. y ← R mod p and t ← REDC (xR′)

2. for i = t − 1 down to 0

3. y ← REDC(y2)

4. if ni = 1 then y ← REDC(ty)

5. return REDC(y)

Remark 11.18 Conversion to Montgomery representation is done in Line 1. One has y = [1]
and t = [x]. In the for loop at each step a Montgomery squaring and possibly a Montgomery
multiplication is performed. Finally we come back to the standard representation by a Montgomery
reduction. At the end, y = [xn] so that REDC(y) = xn, as expected. Note that also here incomplete
reduction can be applied.

11.1.5 Squares and square roots

Given a nonzero integer a modulo p, the Legendre symbol
(

a
p

)
defined in Section 2.3.4 is equal to

1 if and only a is a quadratic residue modulo p. From the reciprocity law (2.6) and Theorem 2.103,
it is easy to derive an efficient way to compute it.

Algorithm 11.19 Legendre symbol

INPUT: An integer a and an odd prime number p.

OUTPUT: The Legendre symbol
`

a
p

´·
1. k ← 1

2. while p �= 1 do

3. if a = 0 then return 0

4. v ← 0

5. while a ≡ 0 (mod 2) do v ← v + 1 and a ← a/2
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6. if v ≡ 1 (mod 2) and p ≡ +− 3 (mod 8) then k ← −k

7. if a ≡ 3 (mod 4) and p ≡ 3 (mod 4) then k ← −k

8. r ← a, a ← p mod r and p ← r

9. return k

Remark 11.20 This algorithm is useful, for example, to determine the number of points lying on
an elliptic or hyperelliptic curve defined over a finite field of small prime order, cf. Chapter 17.

Example 11.21 Take the prime p = 163841, a = 109608 and let us compute
(

a
p

)
with Algo-

rithm 11.19. The next table displays the values of r, a, v and k after Line 8.

r a v k

13701 13130 3 1

6565 571 1 −1

571 284 0 −1

71 3 2 1

3 2 0 −1

1 0 1 1

These computations reflect the following sequence of equalities(
109608
163841

)
=

(
8

163841

)(
13701
163841

)

=
(

13130
13701

)
=

(
2

13701

)(
6565
13701

)

= −
(

571
6565

)

= −
(

284
571

)
= −

(
4

571

)(
71
571

)

=
(

3
71

)

= −
(

2
3

)
= 1.

So, 109608 is a quadratic residue modulo 163841.

When it is known that a is a square, it is often required to determine x such that x2 ≡ a (mod p).
For instance, this occurs to actually find a point lying on an elliptic or hyperelliptic curve.

Lemma 11.22 Given a quadratic residue a ∈ Fp, there are explicit formulas when p �≡ 1 (mod 8)
to determine x ∈ Fp such that x2 ≡ a (mod p). Namely,

• x ≡ +− a(p+1)/4 (mod p) if p ≡ 3 (mod 4)
• x ≡ +− a(p+3)/8 (mod p) if p ≡ 5 (mod 8) and a(p−1)/4 = 1
• x ≡ +− 2a(4a)(p−5)/8 (mod p) if p ≡ 5 (mod 8) and a(p−1)/4 = −1.

When p ≡ 1 (mod 8) an algorithm of Tonelli and Shanks solves the problem. In fact, this algorithm
is correct for all primes.



212 Ch. 11 Finite Field Arithmetic

Algorithm 11.23 Tonelli and Shanks square root computation

INPUT: A prime p and an integer a such that
`

a
p

´
= 1.

OUTPUT: An integer x such that x2 ≡ a (mod p).

1. write p − 1 = 2er with r odd [see the beginning of Section 10.5, p. 185]

2. choose n at random such that
`

n
p

´
= −1

3. z ← nr mod p, y ← z, s ← e and x ← a(r−1)/2 mod p

4. b ← (ax2) mod p and x ← (ax) mod p

5. while b �≡ 1 (mod p)

6. m ← 1

7. while b2m �≡ 1 (mod p) do m ← m + 1

8. t ← y2s−m−1
mod p, y ← t2 mod p and s ← m

9. x ← (tx) mod p and b ← (yb) mod p

10. return x

Remarks 11.24

(i) Algorithm 11.23 works in the maximal 2-group of order 2e of F∗p generated by some
element z. If m = s after Line 7, this implies that a is not a quadratic residue modulo
p. Otherwise ar is a square in this subgroup and there is an even k less than e such that
arzk ≡ 1 (mod p). The square root is then given by x ≡ a(r+1)/2zk/2 (mod p). A
variant of Algorithm 11.23 finds k/2 by a bit by bit approach [KOB 1994].

(ii) The number of loops performed within the while loop beginning in Line 5 is bounded
by e since s is strictly decreasing at each loop.

(iii) The expected running time of Algorithm 11.23 is O(e2 lg2 p).

Example 11.25 Let us compute the square root of 109608 modulo p = 163841 with Algorithm
11.23. First one sees that e = 15 and r = 5. The quadratic nonresidue n found at random in Line 2
is 6558. In the following, we state the values of the principal variables before the while loop in
Line 4 and at the end of it Line 9. One can see also that ab − x2, y2s−1

and b2s−1
are invariant

throughout the execution of the algorithm.

m z y x b t ab x2 y2s−1
b2s−1

— 12002 12002 13640 100808 — 90065 90065 −1 1

13 — 82347 78996 68270 31765 155849 155849 −1 1

12 — 140942 104389 56092 82347 162252 162252 −1 1

6 — 81165 18205 57313 52992 135523 135523 −1 1

5 — 38297 90687 101925 81165 132974 132974 −1 1

3 — 101925 97748 39338 119418 119748 119748 −1 1

2 — 39338 121372 163840 101925 54233 54233 −1 1

1 — 163840 41155 1 39338 109608 109608 −1 1

One checks that 411552 ≡ 109608 (mod p).
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When the 2-adic valuation e of p − 1 is large, as in the previous example, it is better to use another
algorithm that works in the quadratic extension Fp2 .

Algorithm 11.26 Square root computation

INPUT: A prime p and an integer a such that
`

a
p

´
= 1.

OUTPUT: An integer x such that x2 ≡ a (mod p).

1. choose b at random such that
`

b2−4a
p

´
= −1

2. f(X) ← X2 − bX + a [f(X) is irreducible over Fp]

3. x ← X(p+1)/2 (mod f(X))

4. return x

Remarks 11.27

(i) If θ is a root of f(X) then θp is the other one and therefore θp+1 = a. So x as defined
in Line 3 satisfies x2 ≡ a (mod f(X)). It remains to show that x is in fact an ele-
ment of Fp. As a(p−1)/2 = 1 we have X(p2−1)/2 ≡ 1 (mod f(X)) so that xp ≡ x
(mod f(X)).

(ii) The expected running time of Algorithm 11.26 is O(lg3 p).

Example 11.28 With the same initial values as in Example 11.25, Algorithm 11.26 first finds at
random an irreducible polynomial over Fp, in this case, for instance, f(X) = X2 + 27249X +
109608. Then it computes X(p+1)/2, which is equivalent to 41155 modulo f(X).

11.2 Finite fields of characteristic 22222222

See Section 2.3.2 for an introduction to algebraic extension of fields. Arithmetic in extension fields
of Fq where q is some power of 2 relies on elementary computer operations like exclusive dis-
junction and shifts. Note that in general q is simply equal to 2. This allows very efficient imple-
mentations, especially in hardware, and gives finite fields of characteristic 2 a great importance in
cryptography.

11.2.1 Representation

See Section 2.3.3 for a presentation of the different finite field representation systems. In the fol-
lowing we shall focus on efficient implementation techniques used in cryptography. As F2d is a
vector space of dimension d over F2, an element can be viewed as a sequence of d coefficients
equal to 0 or 1. Therefore it is internally stored as a sequence of bits and the techniques intro-
duced for multiprecision integers apply with some slight modifications. Two kinds of basis are
commonly used. In polynomial representation, it is (1, X, . . . , Xd−1), whereas with a normal basis
it is (α, α2, . . . , α2d−1

), cf. Section 2.3.3. Let us first describe polynomial representation.

11.2.1.a Irreducible polynomial representation

Let m(X) ∈ Fq[X ] be an irreducible polynomial of degree d and
(
m(X)

)
the principal ideal

generated by m(X). Then Fq[X ]/
(
m(X)

)
is the finite field with qd elements. Formula (2.4)
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proves that there exists an irreducible polynomial of degree d for each positive d but the proof is
not constructive. To find such a polynomial, we can consider a random polynomial and test its
irreducibility. Since (2.4) shows that the probability for a monic polynomial of degree d to be
irreducible is close to 1/d, we should find one after d attempts on average. There is a variety of
polynomial irreducibility tests. For example Rabin [RAB 1980] proved the following.

Lemma 11.29 Let m(X) ∈ Fq[X ] of degree d and let p1, . . . , pk be the prime divisors of d. Then
m(X) is irreducible over Fq if and only if

• gcd
(
m(X), Xqd/pi − X

)
= 1, for i = 1, . . . , k

• m(X) divides Xqd − X .

For a deterministic method to find an irreducible polynomial see [SHO 1994b].
Once m(X) has been found, computations are done modulo this irreducible polynomial and re-

duction is a key operation. For this we need to divide two polynomials with coefficients in a field.
Every irreducible polynomial of degree d can be used to build Fqd ; however, some special polyno-
mials offer better performance, e.g., monic sparse polynomials are proposed in [SCOR+ 1995].

Usually, one uses trinomials or pentanomials since binomials and quadrinomials are always di-
visible by X + 1 and so, except for X + 1 itself, are never irreducible in Fq[X ]. The existence for
every d of an irreducible degree d trinomial or pentanomial is still an open question, but this is the
case at least for all d � 10000 [SER 1998].

A trinomial Xd + Xk + 1 is reducible if both d and k are even as then Xd + Xk + 1 = (Xd/2 +
Xk/2 + 1)2. Eliminating this trivial case, Swan [SWA 1962] proves the following.

Lemma 11.30 The trinomial Xd+Xk+1, where at least one of d and k is odd, has an even number
of factors if and only if one of the following holds

• d is even, k is odd, d �= 2k and dk
2 ≡ 0 or 1 (mod 4)

• d is odd, d ≡ +− 3 (mod 8), k is even and k does not divide 2d

• d is odd, d ≡ +− 1 (mod 8), k is even and k divides 2d.

It follows that irreducible trinomials do not exist when d ≡ 0 (mod 8) and are rather scarce for
d ≡ 3 or 5 (mod 8). In Table 11.1, we give irreducible polynomials over F2 of degree less than or
equal to 500. More precisely, the coefficients d, k1 in the table stand for the trinomial Xd+Xk1 +1.
In case there is no trinomial of degree d, the sequence d, k1, k2, k3 is given for the pentanomial
Xd + Xk1 + Xk2 + Xk3 + 1. For each d the coefficient k1 is chosen to be minimal, then k2 and so
on.

For these sparse polynomials there is a specific reduction algorithm [GANÖ 2005]. The nonre-
cursive version is given hereafter.

Algorithm 11.31 Division by a sparse polynomial

INPUT: Two polynomials m(X) and f(X) with coefficients in a commutative ring, where m(X)
is the sparse polynomial Xd +

Pt
i=1 aiX

bi with bi < bi+1 and b1 = 0.

OUTPUT: The polynomials u and v such that f = um + v with deg v < d.

1. v ← f and u ← 0

2. while deg(v) � d do

3. k ← max{d, deg v − d + bt + 1}
4. write v(X) as u1(X)Xk + w(X) [deg w < k]

5. v(X) ← w(X) − u1(x)
`
m(X) − Xd

´
Xk−d
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6. u(X) ← u1(X)Xk−d + u(X)

7. return (u, v)

Remarks 11.32

(i) If deg f = d′ then Algorithm 11.31 needs at most 2t(d′ − d + 1) field additions to
compute u and v such that f = um + v. If d′ � 2d − 2, as is the case when perform-
ing arithmetic modulo m, then one needs 4(d − 1) additions for a reduction modulo a
trinomial and 8(d− 1) additions modulo a pentanomial. The number of loops is at most
�(d′ − d + 1)/(d − bt − 1)�. Again if d′ � 2d − 2, then the number of loops is at most
equal to 2 whatever the value of bt, as long as 1 � bt � d/2.

(ii) To avoid computing the quotient u when it is not required, simply discard Line 6 of
Algorithm 11.31.

(iii) When the modulus is fixed, there is in general an even faster algorithm that exploits the
form of the polynomial. This is the case for NIST irreducible polynomials [FIPS 186-2],
cf. for example [HAME+ 2003, pp. 55–56]

Example 11.33 Take m(X) = X11 +X2 +1 and f(X) = X20 +X16 +X15 +X12 +X5 +X3 +
X + 1, and let us find the quotient and remainder of the division of f by m with Algorithm 11.31.

• First k = 12, u1(X) = X8 + X4 + X3 + 1 and w(X) = X5 + X3 + X + 1.
• The new value of v(X) is X11 + X9 + X7 + X6 + X4 + 1 and u(X) = X9 + X5 +

X4 + X.

• For the next and last loop, k = 11, u1(X) = 1 and w(X) = X9 + X7 + X6 + X4 + 1.

Finally, v(X) = X9 +X7 +X6 +X4 +X2 and u(X) = X9 +X5 +X4 +X +1 and one checks
that f(X) = u(X)m(X) + v(X).

Instead of trying to minimize the number of nonzero coefficients of the modulus, another option is
to do arithmetic modulo a sedimentary polynomial [COP 1984, ODL 1985], that is, a polynomial of
the form Xd + h(X) irreducible over Fq such that the degree of h(X) is minimal. For q = 2, it has
been shown that for all d � 600 the degree of h is at most 11 [GOMC 1993]. Algorithm 11.31 can
be slightly modified to perform reduction modulo a sedimentary polynomial. Namely, replace the
statement k ← max{d, deg v − d + bt + 1} by k ← max{d, deg v − deg h}.

Tests performed in [GANÖ 2005] indicate that sedimentary polynomials are slightly less efficient
than trinomials or pentanomials.

11.2.1.b Redundant polynomial representation

For some extensions of even degree there is a better choice, namely all one polynomials. They are
of the form

m(X) = Xd + Xd−1 + · · · + X + 1.

For d > 1, such a polynomial is irreducible if and only if d+1 is prime and 2 is a primitive element
of Fd+1. Now it is clear from the definition of m(X) that m(X)(X + 1) = Xd+1 + 1. Thus
an element of F2d can be represented on the basis (α, α2, . . . , αd) where α is a root of m(X). In
other words, an element of F2d is represented by a polynomial of degree at most d without constant
coefficient, 1 being replaced by X + X2 + · · · + Xd. Alternatively, if the representation does not
need to be unique, elements can directly be written on (1, X, X2, . . . , Xd). In any case, reductions
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Table 11.1 Irreducible trinomials and pentanomials over F2.

2,1 3,1 4,1 5,2 6,1 7,1 8,4,3,1 9,1 10,3

11,2 12,3 13,4,3,1 14,5 15,1 16,5,3,1 17,3 18,3 19,5,2,1 20,3

21,2 22,1 23,5 24,4,3,1 25,3 26,4,3,1 27,5,2,1 28,1 29,2 30,1

31,3 32,7,3,2 33,10 34,7 35,2 36,9 37,6,4,1 38,6,5,1 39,4 40,5,4,3

41,3 42,7 43,6,4,3 44,5 45,4,3,1 46,1 47,5 48,5,3,2 49,9 50,4,3,2

51,6,3,1 52,3 53,6,2,1 54,9 55,7 56,7,4,2 57,4 58,19 59,7,4,2 60,1

61,5,2,1 62,29 63,1 64,4,3,1 65,18 66,3 67,5,2,1 68,9 69,6,5,2 70,5,3,1

71,6 72,10,9,3 73,25 74,35 75,6,3,1 76,21 77,6,5,2 78,6,5,3 79,9 80,9,4,2

81,4 82,8,3,1 83,7,4,2 84,5 85,8,2,1 86,21 87,13 88,7,6,2 89,38 90,27

91,8,5,1 92,21 93,2 94,21 95,11 96,10,9,6 97,6 98,11 99,6,3,1 100,15

101,7,6,1 102,29 103,9 104,4,3,1 105,4 106,15 107,9,7,4 108,17 109,5,4,2 110,33

111,10 112,5,4,3 113,9 114,5,3,2 115,8,7,5 116,4,2,1 117,5,2,1 118,33 119,8 120,4,3,1

121,18 122,6,2,1 123,2 124,19 125,7,6,5 126,21 127,1 128,7,2,1 129,5 130,3

131,8,3,2 132,17 133,9,8,2 134,57 135,11 136,5,3,2 137,21 138,8,7,1 139,8,5,3 140,15

141,10,4,1 142,21 143,5,3,2 144,7,4,2 145,52 146,71 147,14 148,27 149,10,9,7 150,53

151,3 152,6,3,2 153,1 154,15 155,62 156,9 157,6,5,2 158,8,6,5 159,31 160,5,3,2

161,18 162,27 163,7,6,3 164,10,8,7 165,9,8,3 166,37 167,6 168,15,3,2 169,34 170,11

171,6,5,2 172,1 173,8,5,2 174,13 175,6 176,11,3,2 177,8 178,31 179,4,2,1 180,3

181,7,6,1 182,81 183,56 184,9,8,7 185,24 186,11 187,7,6,5 188,6,5,2 189,6,5,2 190,8,7,6

191,9 192,7,2,1 193,15 194,87 195,8,3,2 196,3 197,9,4,2 198,9 199,34 200,5,3,2

201,14 202,55 203,8,7,1 204,27 205,9,5,2 206,10,9,5 207,43 208,9,3,1 209,6 210,7

211,11,10,8 212,105 213,6,5,2 214,73 215,23 216,7,3,1 217,45 218,11 219,8,4,1 220,7

221,8,6,2 222,5,4,2 223,33 224,9,8,3 225,32 226,10,7,3 227,10,9,4 228,113 229,10,4,1 230,8,7,6

231,26 232,9,4,2 233,74 234,31 235,9,6,1 236,5 237,7,4,1 238,73 239,36 240,8,5,3

241,70 242,95 243,8,5,1 244,111 245,6,4,1 246,11,2,1 247,82 248,15,14,10 249,35 250,103

251,7,4,2 252,15 253,46 254,7,2,1 255,52 256,10,5,2 257,12 258,71 259,10,6,2 260,15

261,7,6,4 262,9,8,4 263,93 264,9,6,2 265,42 266,47 267,8,6,3 268,25 269,7,6,1 270,53

271,58 272,9,3,2 273,23 274,67 275,11,10,9 276,63 277,12,6,3 278,5 279,5 280,9,5,2

281,93 282,35 283,12,7,5 284,53 285,10,7,5 286,69 287,71 288,11,10,1 289,21 290,5,3,2

291,12,11,5 292,37 293,11,6,1 294,33 295,48 296,7,3,2 297,5 298,11,8,4 299,11,6,4 300,5

301,9,5,2 302,41 303,1 304,11,2,1 305,102 306,7,3,1 307,8,4,2 308,15 309,10,6,4 310,93

311,7,5,3 312,9,7,4 313,79 314,15 315,10,9,1 316,63 317,7,4,2 318,45 319,36 320,4,3,1

321,31 322,67 323,10,3,1 324,51 325,10,5,2 326,10,3,1 327,34 328,8,3,1 329,50 330,99

331,10,6,2 332,89 333,2 334,5,2,1 335,10,7,2 336,7,4,1 337,55 338,4,3,1 339,16,10,7 340,45

341,10,8,6 342,125 343,75 344,7,2,1 345,22 346,63 347,11,10,3 348,103 349,6,5,2 350,53

351,34 352,13,11,6 353,69 354,99 355,6,5,1 356,10,9,7 357,11,10,2 358,57 359,68 360,5,3,2

361,7,4,1 362,63 363,8,5,3 364,9 365,9,6,5 366,29 367,21 368,7,3,2 369,91 370,139

371,8,3,2 372,111 373,8,7,2 374,8,6,5 375,16 376,8,7,5 377,41 378,43 379,10,8,5 380,47

381,5,2,1 382,81 383,90 384,12,3,2 385,6 386,83 387,8,7,1 388,159 389,10,9,5 390,9

391,28 392,13,10,6 393,7 394,135 395,11,6,5 396,25 397,12,7,6 398,7,6,2 399,26 400,5,3,2

401,152 402,171 403,9,8,5 404,65 405,13,8,2 406,141 407,71 408,5,3,2 409,87 410,10,4,3

411,12,10,3 412,147 413,10,7,6 414,13 415,102 416,9,5,2 417,107 418,199 419,15,5,4 420,7

421,5,4,2 422,149 423,25 424,9,7,2 425,12 426,63 427,11,6,5 428,105 429,10,8,7 430,14,6,1

431,120 432,13,4,3 433,33 434,12,11,5 435,12,9,5 436,165 437,6,2,1 438,65 439,49 440,4,3,1

441,7 442,7,5,2 443,10,6,1 444,81 445,7,6,4 446,105 447,73 448,11,6,4 449,134 450,47

451,16,10,1 452,6,5,4 453,15,6,4 454,8,6,1 455,38 456,18,9,6 457,16 458,203 459,12,5,2 460,19

461,7,6,1 462,73 463,93 464,19,18,13 465,31 466,14,11,6 467,11,6,1 468,27 469,9,5,2 470,9

471,1 472,11,3,2 473,200 474,191 475,9,8,4 476,9 477,16,15,7 478,121 479,104 480,15,9,6

481,138 482,9,6,5 483,9,6,4 484,105 485,17,16,6 486,81 487,94 488,4,3,1 489,83 490,219

491,11,6,3 492,7 493,10,5,3 494,17 495,76 496,16,5,2 497,78 498,155 499,11,6,5 500,27
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are made modulo Xd+1 + 1 and a squaring is simply a permutation of the coordinates. This idea,
first proposed in [ITTS 1989] and rediscovered in [SIL 1999], is known as the anomalous basis or
the ghost bit basis technique.

When d > 1 is odd, one can always embed F2d into some cyclotomic ring F2[X ]/(Xn + 1) but
only for some n � 2d + 1. So the benefits obtained from a cheap reduction are partially offset by
a more expensive multiplication [WUHA+ 2002]. For elliptic and hyperelliptic curve cryptography
only extensions of prime degree are relevant, cf. Chapter 22, so the best we can hope for with this
idea is n = 2d + 1.

Adopting the idea of using sparse reducible polynomials with an appropriate irreducible factor,
one can use reducible trinomials in case only an irreducible pentanomial exists for some degree d.
First, we have to find a trinomial T (X) = Xn + Xk + 1 with n slightly bigger than d and such
that T (X) admits an irreducible factor m(X) of degree d. Such a trinomial is called a redundant
trinomial and the idea is then to embed F2d ∼ F2[X ]/

(
m(X)

)
into F2d ∼ F2[X ]/

(
T (X)

)
. In the

range [2, 10000], there is no irreducible trinomial in about 50% of the cases (precisely 4853 out of
9999 [SER 1998]) but an exhaustive search has shown that there are redundant trinomials for all the
corresponding degrees, see [DOCHE] for a table. In general n − d is small and in more than 85%
of the cases the number of 32-bit words required to represent an element of F2d are the same with a
redundant trinomial of degree n and with an irreducible pentanomial of degree d. This implies also
that the multiplication has the same cost with both representations, since this operation is usually
performed at a word level, cf. Section 11.2.2.a.

From a practical point of view an element of F2d is represented by a polynomial of degree less
than n and the computations are done modulo T (X). At the end of the whole computation, one can
reduce modulo m(X) and this can be done with only T (X) and δ(X) = T (X)/m(X), since for
any polynomial f(X) one has

f(X) mod m(X) =
f(X)δ(X) mod T (X)

δ(X)
,

as in (11.1). Redundant trinomials can speed up an exponentiation by a factor up to 30%, when
compared to irreducible pentanomials, cf. [DOC 2005].

Note that this concept is in fact similar to almost irreducible trinomials introduced by Brent and
Zimmermann in the context of random number generators in [BRZI 2003]. Similar ideas were also
explored by Blake et al. [BLGA+ 1994a, BLGA+ 1996], and Tromp et al. [TRZH+ 1997].

11.2.1.c Normal and optimal normal bases

Another popular way to represent an element of Fqd over Fq is to use a normal basis. This is
especially true when q = 2, since in this case the squaring of an element is just a cyclic shift of its
coordinates. However, multiplications are more complicated. As a result only special normal bases,
called optimal normal bases, ONB for short, are used in practice; see Section 11.2.2.b.

Gauß periods of type (n, 1) and (n, 2), generate optimal normal bases (cf. Section 2.3.3.b and
[MUON+ 1989]), and it has been proved that all the optimal normal bases can be produced by this
construction [GALE 1992].

For q = 2, this occurs

1. when d+1 is prime and 2 is a primitive element of Fd+1. Then the nontrivial (d+1)-th
roots of unity form an optimal normal basis of F2d , called a Type I ONB.

2. when 2d + 1 is prime and either

• 2 is primitive in F2d+1 or

• 2 generates the quadratic residues in F2d+1, that is 2d + 1 ≡ 3 (mod 4) and the
order of 2 in F2d+1 is d.
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Then there is a primitive (2d+1)-th root of unity ζ in F2d and ζ+ζ−1 is a normal element
generating a Type II ONB. Such a basis can be written (ζ+ζ−1, ζ2 +ζ−2, . . . , ζd +ζ−d)
as shown in [BLRO+ 1998].

Note that Type I ONB and anomalous bases are equal up to suitable permutations. So it is possible
to enjoy a cheap multiplication and a cheap squaring at the same time. However, as said previously,
there is no Type I ONB for an extension of prime degree. The situation is slightly better for Type
II ONB. Indeed, in the range [50, 500] there are 80 extension degrees that are prime and among
them only 18 have a Type II ONB, namely 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281,
293, 359, 419, 431, 443, and 491. As a consequence, the use of optimal normal bases for crypto-
graphic purposes is quite constrained in practice.

In the remainder of this section one details the arithmetic itself. First it is clear that addition and
subtraction are the same operations in a field of characteristic two. Using polynomial representation
or a normal basis one sees that an addition in Fqd can be carried out with at most d additions in
Fq. Ultimately, an addition in Fqd reduces to a bitwise-XOR hardware operation, which can be
performed at a word level. Multiplications are also processed using a word-by-word approach.

11.2.2 Multiplication

Again this part mainly deals with software oriented solutions. For a discussion focused on hardware,
see Chapter 26.

Montgomery representation for prime fields (see Section 10.4.2) can be easily generalized to
extension fields of characteristic 2; see for instance [KOAC 1998]. We shall not investigate this
option further but limit ourselves to multiplications using a polynomial basis and a normal basis.

11.2.2.a Polynomial basis

The internal representation of a polynomial is similar to multiprecision integers. Indeed, let 	 be the
word size used by the processor. Then a polynomial u(X) of degree less than d will be represented
as the r-word vector (ur−1 . . . u0) and the j-th bit of the word ui, that is the coefficient of u(X)
of degree i	 + j, will be denoted by ui[j]. Many operations on polynomials are strongly related
to integer multiprecision arithmetic. For example, polynomials can be multiplied with a slightly
modified version of Algorithm 10.8. However in general, we do not have the equivalent of single
precision operations. For example, on computers there is usually no hardware multiplication of
polynomials in F2[X ] of bounded degree, even if this operation is simpler than integer multiplica-
tion, since there is no carry to handle. Nevertheless, it is possible to perform computations at a word
level doing XOR and shifts. Indeed, if v(X)Xj has been already computed then it is easy to deduce
v(X)X i�+j . This is the principle of Algorithm 11.34 introduced in [LÓDA 2000a].

Algorithm 11.34 Multiplication of polynomials in F2[X ]

INPUT: The polynomials u(X), v(X) ∈ F2[X] of degree at most d− 1 represented as words of
size � bits.

OUTPUT: The product w(X) = u(X)v(X) of degree at most 2d − 2.

1. w(X) ← 0 and r ← �deg u/��
2. for j = 0 to � − 1 do

3. for i = 0 to r − 1

4. if ui[j] = 1 then w(X) ← w(X) + v(X)Xi�
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5. if j �= � − 1 then v(X) ← v(X)X

6. return w

Remark 11.35 Algorithm 11.34 proceeds the bits of the word ui from the right to the left. A left-
to-right version exists as well, but it is reported to be a bit less efficient [HAME+ 2003].

Example 11.36 Let u(X) = X5+X4+X2+X , v(X) = X10+X9+X7+X6+X5+X4+X3+1
and 	 = 4. So u = (0011 0110), v = (0110 1111 1001) and r = 2. Here are the values of v(X)
and w(X) at the end of Line 5 when Algorithm 11.34 executes.

j 0 1 2 3

v (1101 1111 0010) (0001 1011 1110 0100) (0011 0111 1100 1000) (0110 1111 1001 0000)

w (0110 1111 1001 0000) (1011 1101 0100 0010) (1010 0110 1010 0110) (1010 0110 1010 0110)

Finally w(X) = X15 + X13 + X10 + X9 + X7 + X5 + X2 + X .

Just as for exponentiation algorithms, precomputations and windowing techniques can be very help-
ful. The next algorithm scans k bits at a time from left to right and accesses intermediate products by
table lookup. Usually a good compromise between the speedup and the number of precomputations
is to take k = 4.

Algorithm 11.37 Multiplication of polynomials in F2[X ] using window technique

INPUT: The polynomials u(X), v(X) ∈ F2[X] of degree at most d− 1 represented as words of
size � bits. The precomputed products t(X)v(X) for all t(X) of degree less than k.

OUTPUT: The product w(X) = u(X)v(X) of degree at most 2d − 2.

1. w(X) ← 0 and r ← �deg u/��
2. for j = �/k − 1 down to 0 do

3. for i = 0 to r − 1

4. t(X) ← tk−1X
k−1 + · · · + t0 where tm = ui[jk + m]

5. w(X) ← w(X) + t(X)v(X)Xi� [t(X)v(X) is precomputed]

6. if j �= 0 then w(X) ← w(X)Xk

7. return w

Remark 11.38 As for prime fields, cf. Algorithm 11.1, it is possible to modify Algorithm 11.37 and
interleave polynomial reductions with elementary multiplications in order to get the result in F2d

directly at the end.

Example 11.39 To illustrate the way Algorithm 11.37 works, let us take k = 2, u = (0011 0110),
v = (0110 1111 1001) and 	 = 4 as for Example 11.36. The successive values of t come from the
bits of u in the following way (0011 0110), (0011 0110), (0011 0110), and (0011 0110).



220 Ch. 11 Finite Field Arithmetic

j 1 1 0 0

i 0 1 0 1

t (01) (00) (10) (11)

w (0110 1111 1001) (0110 1111 1001) (0001 0110 0001 0110) (1010 0110 1010 0110)

The result is of course the same, i.e., w(X) = X15 + X13 + X10 + X9 + X7 + X5 + X2 + X .

Another idea is to emulate single precision multiplications by storing all the elementary products.
However, for 32-bit words the number of precomputed values is far too big. That is why an inter-
mediate approach involving Karatsuba method is often considered instead. In this case, the product
of two single precision polynomials of degree less than 32 is computed with 9 multiplications of
8-bit blocks, each elementary product being obtained by table lookup [GAGE 1996].

Karatsuba method can also be applied to perform the whole product directly. In [GANÖ 2005]
the crossover degree between à la schoolbook and Karatsuba multiplications is reported to be equal
to 576. Other more sophisticated techniques like the FFT or Cantor multiplication based on eval-
uation/interpolation are useful only for even larger degrees. For example, the crossover between
Karatsuba and Cantor multiplication is for degree 35840 [GANÖ 2005].

11.2.2.b Optimal normal bases

Unlike additions, multiplications are rather involved with normal bases. The standard way to mul-
tiply two elements in Fqd within a normal basis is to introduce the so-called multiplication matrix
TN whose entries ti,h satisfy

αqi × α =
d−1∑
h=0

ti,hαqh

so that αqi × αqj

=
d−1∑
h=0

ti−j,h−jα
qh

.

So if u = (u0, . . . , ud−1) and v = (v0, . . . , vd−1) then the general term wh of w = uv is

wh =
∑

0�i,j<d

uivjti−j,h−j .

Example 11.40 The following is taken directly from [OMMA 1986]. Let α be a zero of m(X) =
X7 + X6 + 1. The next equalities are computed mod m(X).

α = X α2 = X2

α22
= X4 α23

= X6 + X + 1

α24
= X6 + X5 + X4 + X3 + X α25

= X5 + X4 + X2 + X + 1

α26
= X4 + X3 + 1 α27

= α.

The products αqi × α are

α × α = X2 α2 × α = X3

α22 × α = X5 α23 × α = X6 + X2 + X + 1

α24 × α = X5 + X4 + X2 + 1 α25 × α = X6 + X5 + X3 + X2 + X

α26
× α = X5 + X4 + X.
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From this and in order to obtain TN , one introduces the matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 1 1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 0 0 0 1 0 1 1
0 1 0 0 0 1 0 1 0 0 1 1 1 0
0 0 0 0 1 0 1 0 1 0 0 0 1 0
0 0 1 0 1 1 1 0 0 0 0 1 0 1
0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 1 1 0 0 0 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where the first and last seven columns give respectively the expression of αqi

and of αqi × α on
the basis 1, X, . . . , X6. To get the identity matrix in the left part of M one performs a Gaussian
elimination, which gives at the same time the transposed matrix of TN in the right part of M. Hence

TN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
1 1 0 1 1 1 0
0 0 0 1 1 0 1
0 1 0 1 0 0 0
1 0 0 0 0 1 0
0 1 1 0 1 0 0
1 0 1 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

From this matrix, one deduces for instance that α2 × α = α + α2 + α23
+ α24

+ α25
.

The number of nonzero coefficients of the matrix TN is denoted by δN and called the density of
TN . It is a crucial parameter for the speed of the system since the multiplication of two elements in
Fqd can be computed with at most 2d δN multiplications and d(δN −1) additions in Fq . On average
the density is about (q − 1)d2/q [BEGE+ 1991] but in fact δN � 2d − 1 [MUON+ 1989] and this
bound is sharp. By definition, an optimal normal basis, cf. Section 11.2.1.c, has such a minimal
density.

Concerning F2d , recall that a multiplication in a Type I ONB can be in fact performed in the
corresponding anomalous basis. There is a simple way to transform an element into a polynomial
and computations are made modulo Xd+1 − 1. For Type II ONB, there is a similar idea called
palindromic representation [BLRO+ 1998]. The situation is not as favorable as for Type I ONB
since in this case computations must be made modulo X2d+1 − 1. Optimal normal bases of Type I
and II appear as special cases of Gauß periods, cf. Section 2.3.3.b.

11.2.3 Squaring

Squaring is a trivial operation for extensions of F2 in normal basis representation and it is very
simple in polynomial representation. The absolute Frobenius X 
→ X2 being a linear map, one sees
that if u(X) =

∑
uiX

i then u2(X) =
∑

uiX
2i. Thus, this operation is nothing but inserting 0

bits in the internal representation of u and reducing the result modulo m(X). Precomputing a table
of 256 values containing the squares of each byte allows us to speed up the 0-bit insertion process.
However, the reduction remains the most time-consuming part of the whole process.

To speed up this process a bit, it is possible to split the square
∑

uiX
2i into an even and an

odd part so that the number of required bitwise-XOR operations to actually perform the reduction is
halved. See [KIN 2001] for details.
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11.2.4 Inversion and division

There are mainly two ways to compute the inverse of an element α ∈ Fqd . The first method
is to perform an extended gcd computation of the polynomial representing α and the irreducible
polynomial defining Fqd . Alternatively, one can exploit the multiplicative structure of the group
F∗qd with Lagrange’s theorem. This is especially useful for normal bases.

11.2.4.a Euclid extended gcd

Given two nonzero polynomials f and m in Fq[X ], there are unique polynomials u, v, and g such
that fu + mv = g where g = gcd(f, m), deg u < deg m, and deg v < deg f . In case m is
irreducible and deg f < deg m we have g = 1 so that u is the inverse of f modulo m. The
following algorithm returns u, v and g.

Algorithm 11.41 Euclid extended polynomial gcd

INPUT: Two nonzero polynomials f, m ∈ Fq[X].

OUTPUT: The polynomials u, v, g in Fq[X] such that fu + mv = g with g = gcd(f, m).

1. u ← 1, v ← 0, s ← m and g ← f

2. while s �= 0 do

3. compute Euclid division of g by s [g = qs + r]

4. t ← u − vq, u ← v, g ← s, v ← t and s ← r

5. v ← (g − fu)/m

6. return (u, v, g)

Remark 11.42 Assuming deg f � d and deg m � d, Algorithm 11.41 requires O(d2) elementary
operations in Fq.

Example 11.43 Take m(X) = X11 + X2 + 1 and f(X) = X8 + X6 + X5 + X4 + X + 1.
Algorithm 11.41 proceeds as follows

q r u v g

(0000) (0001 0111 0011) (0000) (0001) (1000 0000 0101)
(1011) (1000) (1011) (0001 0111 0011) (0001 0111 0011)

(0010 1110) (0011) (1011) (0001 0000 0011) (1000)
(0111) (0001) (0001 0000 0011) (0111 0000 0010) (0011)
(0011) (0000) (0111 0000 0010) (1000 0000 0101) (0001)

— — (0111 0000 0010) (1100 1011) (0001)

One deduces that (X10 + X9 + X8 + X)f(X) + (X7 + X6 + X3 + X + 1)m(X) = 1 which
implies that X10 + X9 + X8 + X is the inverse of f(X) in F2[X ]/

(
m(X)

)
.
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11.2.4.b Binary inversion

For extensions of F2, there is also a dedicated algorithm inspired by the binary integer version
[BRCU+ 1993].

Algorithm 11.44 Inverse of an element of F∗2d in polynomial representation

INPUT: An irreducible polynomial m(X) ∈ F2[X] of degree d and a nonzero polynomial f(X) ∈
F2[X] such that deg f < d.

OUTPUT: The polynomial u(X) ∈ F2[X] such that fu ≡ 1 (mod m).

1. u ← 1, v ← 0, s ← m and δ ← 0

2. for i = 1 to 2d do

3. if fd = 0 then
ˆ
f(X) = fdXd + · · · + f0

˜

4. f(X) ← Xf(X), u(X) ← `
Xu(X)

´
mod m(X) and δ ← δ + 1

5. else

6. if sd = 1 then
ˆ
s(X) = sdXd + · · · + s0

˜

7. s(X) ← s(X) − f(X) and v(X) ← `
v(X) − u(X)

´
mod m(X)

8. s(X) ← Xs(X)

9. if δ = 0 then

10. t(X) ← f(X), f(X) ← s(X) and s(X) ← t(X)

11. t(X) ← u(X), u(X) ← v(X) and v(X) ← t(X)

12. u(X) ← `
Xu(X)

´
mod m(X)

13. δ ← 1

14. else

15. u(X) ← `
u(X)/X

´
mod m(X) and δ ← δ − 1

16. return u

Remarks 11.45

(i) The operations
(
Xu(X)

)
mod m(X) and

(
u(X)/X

)
mod m(X) can be very effi-

ciently performed if Xd mod m(X) and X−1 mod m(X) are precomputed.

(ii) Algorithm 11.44, unlike other binary gcd versions (see [HAME+ 2003] for instance)
does not require any degree comparison thanks to the use of the counter δ. This idea
was first suggested by Brent and Kung for modular inversion (see [BRKU 1983] and
Section 11.1.3.a) and gives good performances in both software and hardware.

(iii) A similar algorithm testing least significant bits instead of most significant bits has been
recently proposed [WUWU+ 2004].

(iv) It is possible to directly obtain
(
h(X)/f(X)

)
mod m(X) by setting u(X) ← h(X)

instead of u ← 1 in the first line of Algorithms 11.41 and 11.44. In this case, a reduction
is almost always needed at the end when the first algorithm is used, whereas the result
is already reduced with the second one.
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Example 11.46 With the values of Example 11.43, the successive steps of Algorithm 11.44 are

i u v s δ

1 (0010) (0000) (1000 0000 0101) 1

2 (0100) (0000) (1000 0000 0101) 2

3 (1000) (0000) (1000 0000 0101) 3

4 (0100) (1000) (1110 011 1010) 2

5 (0010) (1000) (1110 0111 0100) 1

6 (0001) (1010) (1011 1101 1000) 0

7 (0001 0110) (0001) (1011 1001 1000) 1

8 (0010 1100) (0001) (1011 1001 1000) 2

9 (0101 1000) (0001) (1011 1001 1000) 3

10 (1011 0000) (0001) (1011 1001 1000) 4

11 (0001 0110 0000) (0001) (1011 1001 1000) 5

12 (1011 0000) (0001 0110 0001) (0111 0011 0000) 4

13 (0101 1000) (0001 0110 0001) (1110 0110 0000) 3

14 (0010 1100) (0001 0011 1001) (1100 1100 0000) 2

15 (0001 0110) (0001 0001 0101) (1001 1000 0000) 1

16 (1011) (0001 0000 0011) (0011 0000 0000) 0

17 (0010 0000 0110) (1011) (1000 0000 0000) 1

18 (0100 0000 1100) (1011) (1000 0000 0000) 2

19 (0010 0000 0110) (0100 0000 0111) (1000 0000 0000) 1

20 (0001 0000 0011) (0110 0000 0001) (1000 0000 0000) 0

21 (0110 0000 0001) (0001 0000 0011) (1100 0000 0000) 1

22 (0111 0000 0010) (0111 0000 0010) (1000 0000 0000) 0

and the final result is the same, that is, the inverse of f(X) is X10 + X9 + X8 + X .

11.2.4.c Inversion based on Lagrange’s theorem

It is also possible to use the group structure of F∗qd to get the inverse of an element α. This method
has the same asymptotic complexity as the extended Euclidean one but is reported to be a little faster
[NÖC 1996] when a squaring is for free. We know that |F∗qd | = qd − 1 with q some power of 2, say
q = 2k. So αqd−2 = 1/α. Now

qd − 2 = (qd−1 − 1)q + q − 2,

and we can take advantage of the special expression of qd−1−1 in base q and of the Frobenius, which
makes the computation of q-th powers easier. For better performance, addition chains, presented in
Section 9.2.3, are used as well.

Algorithm 11.47 Inverse of an element of Fqd
∗ using Lagrange’s theorem

INPUT: An element α ∈ F∗
qd , two addition chains, namely (a0, a1, . . . , as1) for q − 2 and

(b0, b1, . . . , bs2) for d − 1.

OUTPUT: The inverse of α i.e., αqd−2 = 1/α.

1. y ← αq−2 [using (a0, a1, . . . , as1) and Algorithm 9.41]
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2. T [0] ← α × y and i ← 1

3. while i � s do

4. t ← T [k]q
j

where bi = bk + bj

5. T [i] ← t × T [j]
h
T [i] = αqbi−1 for all i

i

6. i ← i + 1

7. t ← T [s2] [bs2 = d − 1]

8. return ytq

Remarks 11.48

(i) Note that exchanging bk and bj , in Line 4, does not alter the correctness of the algorithm.
In fact it is better to force bk to be the maximum of bk and bj so that the exponentiation
T [bk]q

bj is simpler.

(ii) One can obtain the inverse of α ∈ Fqd with s1 + s2 + 2 multiplications in Fqd and
(1 +

∑
i bj) q-th power computations where bj is the integer in bi = bk + bj . This last

number is equal to d−1 when (b0, b1, . . . , bs2) is a star addition chain, cf. Section 9.2.1.

(iii) One of the three methods proposed by Itoh and Tsujii [ITTS 1988] is a special case of
Algorithm 11.47 when q = 2 and the addition chain computing d − 1 is derived from
the square and multiply method.

(iv) When q is bigger than 2, another option suggested by Itoh and Tsujii is to write α−1 as
α−r × αr−1 where r = (qd − 1)/(q − 1) = qd−1 + · · · + q + 1. As αr ∈ Fq , it can be
easily inverted. It is the standard way to compute an inverse in an OEF, cf. Section 11.3.

Example 11.49 Suppose that one wants the inverse of α ∈ F219 , that is α219−2. Obviously, one has
219 − 2 = 2(218 − 1) and an addition chain for 18 is (1, 2, 3, 6, 12, 18).

i bi = bk + bj T [k]q
bj× T [j] T [i]

0 1 — α

1 2 = 1 + 1 T [0]2
1× T [0] α2 × α = α3

2 3 = 2 + 1 T [1]2
1× T [0] α6 × α = α7

3 6 = 3 + 3 T [2]2
3× T [2] α7×8 × α7 = α63

4 12 = 6 + 6 T [3]2
6× T [3] α63×64 × α64 = α4095

5 18 = 12 + 6 T [4]2
6× T [3] α4095×64 × α63 = α218−1

Finally T [5]2 = α−1.

11.2.5 Exponentiation

In polynomial representation, a simple trick can greatly speed up exponentiation. Namely, let f(X),
m(X) be polynomials in Fq[X ] and g(X) = Xqr

. Because of the Frobenius action, it is obvious
that f qr ≡ f(g) (mod m). At this point one uses a fast algorithm for modular composition de-
signed by Brent and Kung [BRKU 1978].
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The idea, à la baby-step giant-step, is to write

f(X) =
∑

0�i<k

XkiFi(X) with k = �deg f� and Fi(X) =
∑

0�j<k

fik+jX
j

and to precompute and store 1, g, g2, . . . , gk−1 and 1, gk, g2k, . . . , gk(k−1) modulo m. Here is the
complete algorithm:

Algorithm 11.50 Modular composition of Brent and Kung

INPUT: The polynomials m, f, g ∈ Fq[X] with deg m = d and deg f, g < d.

OUTPUT: The polynomial f(g) mod m.

1. k ← ˚√
d
ˇ

2. G[0] ← 1

3. for i = 1 to k do G[i] ← (gG[i − 1]) mod m
ˆ
G[i] = gi mod m

˜

4. P [0] ← 1

5. for i = 1 to k − 1 do P [i] ← (G[k]P [i − 1]) mod m
ˆ
P [i] = gki mod m

˜

6. for i = 0 to k − 1 do F [i] ←Pk−1
j=0 fik+jG[j] [F [i] = Fi(g)]

7. R ← `Pk−1
i=0 F [i]P [i]

´
mod m

8. return R

Remark 11.51 With classical arithmetic the complexity of Algorithm 11.50 is O(d5/2), but it can
be reduced to O(d1/2+lg 3). Indeed, as shown in [NÖC 1996], the loop in Line 6 can be computed
with fast matrix multiplication à la Strassen [KNU 1997] and the other multiplications with the
Karatsuba method.

Example 11.52 Let m(X) = X15 +X +1 irreducible over F2, f(X) = X14 +X13 +X8 +X6 +
X4 + X3 + 1 and g(X) = X10 + X3 + 1. One has k = 4 and

f(X) = F0(X) + X4F1(X) + X8F2(X) + X12F3(X)

with
F0(X) = X3 + 1, F1(X) = X2 + 1, F2(X) = 1 and F3(X) = X2 + X.

The precomputed values gi and gki for 0 � i � k are respectively stored in the arrays G and P
whereas F [i] contains Fi(g).

i G[i] P [i] F [i]

0 (0001) (0001) (0101 0100 1011)

1 (0100 0000 1001) (0100 0000 0001) (0010 0000)

2 (0010 0001) (0110 0001) (0001)

3 (0101 0010 1010) (0100 0110 0100) (0100 0100 1000)

Finally R = X13 +X12 +X11 +X9 +X7 +X5 +X3 +X2 +X +1 which is equivalent to f(g)
modulo m.

Now we present Shoup’s algorithm [SHO 1994a, GAGA+ 2000] which is mainly based on the qr-
ary method for a well chosen r.
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Algorithm 11.53 Shoup exponentiation algorithm

INPUT: The polynomials f, m ∈ Fq[X] with deg m = d and deg f < d. A parameter r and an
exponent n = (n�−1 . . . n0)qr such that 0 < n < qd.

OUTPUT: The polynomial fn mod m.

1. for i = 0 to � − 1 precompute and store fni mod m

2. g(X) ← Xqr

mod m and y ← 1

3. for i = � − 1 down to 0 do

4. y ← y(g) [use Algorithm 11.50]

5. y ← `
y × fni

´
mod m

6. return y

Remarks 11.54

(i) The parameter r is usually set to �d/ logq d� and the precomputations can be done with
Yao’s method, cf. Algorithm 9.44, as proposed by Gao et al. [GAGA+ 2000].

(ii) Neglecting precomputations, the number of multiplications needed is O(d/ lg d). Its
complexity, including the cost of precomputations, is O(d3/ lg d + d2 lg d) with clas-
sical arithmetic and O(d1+lg 3/ lg d + d(1+lg 7)/2 lg d) with Karatsuba method and à la
Strassen matrix multiplication techniques for modular composition.

(iii) The number of stored values is O(d/ lg d).
(iv) The for loop starting Line 3 is a Horner-like scheme.

Example 11.55 Take q = 2, m(X) = X15+X+1, f(X) = X14+X13+X8+X6+X4+X3+1
and n = 23801. Let us compute fn mod m with Algorithm 11.53. One has r = �15/ lg 15� = 4,
23801 = (5 12 15 9)16, and g(X) ≡ X2+X (mod m(X)). Then for each i, y(g) ≡ y16 (mod m)
and

(
yfni

)
mod m are successively computed. In the following table, we give the corresponding

values of y after the execution of Lines 4 and 5 of Shoup’s algorithm, as well as the precomputed
values fni used at each step.

i y fni mod m

3 1 (0001 1001 0011 1000)

— (0001 1001 0011 1000) —

2 (0110 1001 0111 1000) (1001 1101 1100)

— (0010 1001 1001 0000) —

1 (0111 0011 1101 0010) (0111 0100 0000 0011)

— (0100 0101 0111 1110) —

0 (0011 1000 1101 1010) (0100 0001 0111 0011)

— (0001 0111 0001 0101) —
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11.2.6 Square roots and quadratic equations

Every element α ∈ F2d is a square. The square root of α can be easily obtained thanks to the
multiplicative structure of F∗2d , which implies that

√
α = α2d−1

. In a normal basis the computation
of a square root is therefore immediate. If α is represented by f(X) =

∑d−1
i=0 fiX

i on a polynomial
basis, it is better to write

√
f(X) =

∑
i even

fiX
i/2 +

√
X
∑
i odd

fiX
i−1
2

where
√

X has been precomputed modulo m(X). When m(X) is the irreducible trinomial Xd +
Xk + 1 with d odd, note that

√
X can be obtained directly. Indeed

√
X ≡ X

d+1
2 + X

k+1
2 (mod m(X))

if k is odd and
√

X ≡ X−d−1
2 (X

k
2 + 1) (mod m(X)) otherwise. This technique applies to redun-

dant trinomials as well; see Section 11.2.1.b.
Solving quadratic equations in F2d is not as straightforward as computing square roots. Indeed,

let us solve the equation T 2 + aT + b = 0 in F2d where, by the above, a is assumed to be nonzero.
The change of variable T ← T/a yields the simpler equation

T 2 + T = c with c = b/a2. (11.2)

Lemma 11.56 Equation (11.2) has a solution in F2d if and only if Tr(c) = 0. If x is a solution then
x + 1 is the other one.

When d is odd, such a solution is given by

x =
(d−3)/2∑

i=0

c22i+1
. (11.3)

When d is even, set

x =
d−1∑
i=0

(
i∑

j=0

c2j

)
y2i

(11.4)

where y ∈ F2d is any element of trace 1.

Proof. Let x be a solution of (11.2). Then Tr(c) = Tr(x2 +x) = Tr(x)+Tr(x) = 0. The opposite
direction is proved by showing that the proposed solutions actually work. Computing x2 + x, one
has in the first case

x2 + x = c + Tr(c) = c,

and in the second one

x2 + x = y Tr(c) + c Tr(y) = c.

Thus x is always a solution of (11.2) as claimed.

In practice, several improvements can be considered. First, to check for the existence of a solution
and then to actually compute such a solution.
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Remarks 11.57

(i) There is a unique vector w in F2d that is orthogonal to all the elements of trace 0. If w
is precomputed, it is enough to compute the scalar product w · c in order to deduce the
trace of c [KNU 1999].

(ii) When the field F2d is defined by an irreducible polynomial of the form

Xd + ad−1X
d−1 + · · · + a1X + a0 with aj = 0 for all j > d/2 (11.5)

the trace of an element can also be obtained very efficiently.
Let θ be a root of this polynomial. Then using the Newton–Girard formula giving the
sum of the conjugates of θk in terms of the ai’s and the linearity of the trace map it is
immediate that

if c =
d−1∑
k=0

ckθk then Tr(c) = c0 +
d−1∑
k=1

kckad−k.

As we have seen, moderately large extension fields of characteristic 2 can always be
defined by trinomials or pentanomials of the form (11.5), so that the computation of the
trace is always simple in practice.

Example 11.58 In F2233 defined by X233 + X74 + 1 we have

Tr
(
c232θ

232 + c231θ
231 + · · · + c1θ + c0

)
= c0 + c159.

Remark 11.59 Rather than computing a solution using (11.3) or (11.4), it can be faster to use the
linearity of the map λ 
→ λ2 + λ defined from F2d to F2d . Indeed, precomputing the inverse matrix
of this operator gives the result in a straightforward way. Additional tricks can be used to reduce the
storage and the amount of computations [KNU 1999].

11.3 Optimal extension fields

On the one hand, multiplications in extension fields of characteristic 2 are usually performed less
efficiently than in prime fields, due to the lack of a single precision polynomial multiplication on
most processors. On the other hand, inversion in prime fields can be a very expensive operation,
especially in hardware. To overcome these two difficulties, optimal extension fields have been
recently investigated [MIH 1997, BAPA 1998]. They seem to be particularly interesting for smart
cards [WOBA+ 2000].

First, we shall briefly introduce optimal extension fields, and give existence criterions and some
examples before addressing the arithmetic itself. We conclude with the special cases of extensions
of degree 3 and 5.

11.3.1 Introduction

Let us take an extension field Fpd such that

• the characteristic p fits in a machine word and allows a fast reduction in Fp

• the irreducible polynomial defining Fpd allows a fast polynomial reduction.

This choice leads to the following concept.
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Definition 11.60 An optimal extension field, OEF for short, is an extension field Fpd where

• p is a pseudo-Mersenne prime, that is p = 2n + c with |c| � 2�n/2�

• there is an irreducible binomial m(X) = Xd − ω over Fp.

If c = +− 1 then the field is said to be of Type I and it is of Type II when ω = 2.

Remark 11.61 Generalizing Definition 11.60, cf. [AVMI 2004], it is possible to consider a prime p
of another form provided a fast reduction algorithm exists; see Section 10.4.3 for examples.

The cardinality of Fpd is approximately equal to 2nd and in practice, an element α ∈ Fpd is repre-
sented by the polynomial ad−1X

d−1 + · · · + a1X + a0 where ai ∈ Fp. As suggested before, this
implies that computations in OEFs require two kinds of reduction. Intermediate results have to be
reduced modulo the binomial m(X), and for this task Algorithm 11.31 is not even required since a
reduction modulo m consists simply of replacing Xd by ω. Coefficients of the polynomial also have
to be reduced modulo p. For Type I OEF, this operation needs one addition in Fp, cf. Section 10.4.3.
Otherwise reduction is obtained by Algorithm 10.25 and is more expensive.

OEFs are rather easy to find and their search is simplified by the results below on the irreducibility
of Xd − ω over Fp.

Theorem 11.62 Let d � 2 be an integer and ω ∈ F∗p. The binomial m(X) = Xd −ω is irreducible
in Fp[X ] if and only if the two following conditions hold

• each prime factor of d divides the order e of ω but does not divide (p − 1)/e

• p ≡ 1 (mod 4) if d ≡ 0 (mod 4).

As shown in [JUN 1993] one has the sufficient condition

Corollary 11.63 If ω ∈ F∗p is a primitive element and d | (p − 1) then the polynomial Xd − ω is
irreducible over Fp.

If d is squarefree and Xd −ω irreducible over Fp then Theorem 11.62 implies that p ≡ 1 (mod d).
This remark is also useful to speed up the search of OEFs.

In Table 11.2 are given all OEFs of Type I, of cryptographic interest sorted with respect to nd.

Table 11.2 Type I OEFs.

n c d ω nd n c d ω nd n c d ω nd n c d ω nd

13 −1 6 7 78 17 −1 5 3 85 13 −1 7 3 91 31 −1 3 5 93

7 −1 14 3 98 17 −1 6 3 102 19 −1 6 3 114 13 −1 9 7 117

7 −1 18 3 126 8 1 16 3 128 16 1 8 3 128 13 −1 10 3 130

19 −1 7 3 133 7 −1 21 3 147 17 −1 9 3 153 13 −1 13 2 169

17 −1 10 3 170 19 −1 9 3 171 13 −1 14 3 182 61 −1 3 5 183

31 −1 6 5 186 7 −1 27 3 189 13 −1 15 11 195 31 −1 7 3 217

13 −1 18 7 234 17 −1 15 3 255 8 1 32 3 256 16 1 16 3 256

19 −1 14 3 266 13 −1 21 7 273 31 −1 9 5 279 17 −1 17 2 289

Table 11.3 contains examples of OEFs of Type II. More precisely, given a size s between 135 and
300, for each n � 7 dividing s, the unique parameters c ∈

[
−2�n/2�, 2�n/2�] and d, if any, are

given, such that
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• p = 2n + c is prime
• c is minimal in absolute value
• d = s/n and Xd − 2 is irreducible over Fp.

Note that when n = 8, 16, 32, or 64 only negative values of c are reported so that elements of Fp

can be represented with a single word on the corresponding commonly used architectures. Since
these parameters are of great importance in practice, they appear distinctly in the table.

Concerning arithmetic, additions and subtractions are straightforward and do not enjoy special
improvements, unlike other basic operations we shall describe now.

11.3.2 Multiplication

Let two elements α, β ∈ Fpd be represented by α =
∑d−1

i=0 aiX
i and β =

∑d−1
i=0 biX

i where ai

and bi are in Fp. Then using the relation Xd ≡ ω (mod m(X)), one has

αβ = cd−1 +
d−2∑
k=0

(ck + ωcd+k)Xk with ck =
k∑

i=0

aibk−i.

Instead of reducing aibk−i modulo p at each step, it can be faster, especially for OEFs that are not
of Type I, to compute ck + ωcd+k as a multiprecision integer and to reduce it only once. As shown
in [HAME+ 2003], if p = 2n + c is such that lg

(
1 + ω(d− 1)

)
+ 2 lg |c| � n, then ck + ωcd+k can

be reduced at once with only two multiplications by c.
As suggested in [MIH 2000], one can also use convolutions methods, like the FFT, to multiply α

and β. This is particularly effective when d is close to a power of 2, or close to the product of small
primes.

As usual, a squaring should be considered independently and computed with a specific procedure.

11.3.3 Exponentiation

The action of the absolute Frobenius φp can be computed very efficiently in OEFs [MIH 2000].
Indeed, since the coefficients of α =

∑d−1
j=0 ajX

j are in Fp, one has

αpi

=
d−1∑
j=0

ajω
�jpi/d�X((jpi) mod d).

Recall that when d is squarefree, p ≡ 1 (mod d) so that X((jp)i mod d) is simply Xj . Thus an
exponentiation to the power pi only requires us to multiply each coefficient aj by some power of ω,
which can be precomputed.

Another interesting choice is to take p = kd + 1 for a given d. In this case, X((jpi) mod d) = Xj

as well, and ω�jp/d� = ζj where ζ = ω
p−1

d ∈ Fp is a d-th root of unity.

Example 11.64 Let p = 216 − 165, Fp6  Fp[X ]/(X6 − 2) and take the random element

α = 44048X5 + 24430X4 + 54937X3 + 18304X2 + 46713X + 63559.

One checks that p− 1 ≡ 0 (mod 6) so that ζ = 2�p/d� is a 6-th primitive root of unity. Precomput-
ing ζ, ζ2, ζ3, ζ4 and ζ5 modulo p, and multiplying aj by ζj , one obtains

αp = 23814X5 + 34492X4 + 10602X3 + 7340X2 + 40911X + 63559.

Using the same set of precomputations, the product of α by the ζ4j ’s, componentwise gives

αp4
= 41725X5 + 34492X4 + 54937X3 + 7340X2 + 24628X + 63559.
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Table 11.3 Examples of Type II OEFs.

n c d nd n c d nd n c d nd n c d nd n c d nd n c d nd n c d nd

15 −19 9 135 27 203 5 135 45 −55 3 135 17 29 8 136 34 85 4 136 23 11 6 138 46 −21 3 138

10 27 14 140 14 −3 10 140 20 −3 7 140 28 −95 5 140 35 53 4 140 47 5 3 141 11 −19 13 143

9 −3 16 144 12 −3 12 144 16 −15 9 144 18 −11 8 144 24 75 6 144 36 117 4 144 48 75 3 144

29 39 5 145 21 −21 7 147 49 −139 3 147 37 29 4 148 15 3 10 150 25 35 6 150 30 7 5 150

50 −51 3 150 19 −19 8 152 38 13 4 152 17 −13 9 153 51 65 3 153 14 −15 11 154 22 −57 7 154

31 413 5 155 12 −39 13 156 13 29 12 156 26 −45 6 156 39 −19 4 156 52 21 3 156 53 41 3 159

10 −3 16 160 16 −165 10 160 20 −3 8 160 32 −5 5 160 40 141 4 160 23 11 7 161 9 11 18 162

18 3 9 162 27 53 6 162 54 −33 3 162 41 −75 4 164 15 35 11 165 33 29 5 165 55 11 3 165

14 −3 12 168 21 −19 8 168 24 −63 7 168 28 3 6 168 42 −11 4 168 56 −57 3 168 13 −1 13 169

10 −3 17 170 17 −61 10 170 34 −113 5 170 19 −19 9 171 57 −13 3 171 43 29 4 172 29 −43 6 174

58 −63 3 174 7 3 25 175 25 41 7 175 35 53 5 175 11 5 16 176 22 −3 8 176 44 21 4 176

59 −55 3 177 12 15 15 180 15 −19 12 180 18 −93 10 180 20 −3 9 180 30 3 6 180 36 −5 5 180

45 −139 4 180 60 33 3 180 7 3 26 182 13 27 14 182 14 −3 13 182 26 −45 7 182 61 −31 3 183

23 −27 8 184 46 165 4 184 37 9 5 185 31 11 6 186 62 −57 3 186 17 −61 11 187 47 5 4 188

21 −19 9 189 27 203 7 189 63 −25 3 189 19 −27 10 190 38 7 5 190 12 −3 16 192 16 −243 12 192

24 −3 8 192 32 −387 6 192 48 21 4 192 64 −189 3 192 13 29 15 195 15 71 13 195 39 23 5 195

14 −3 14 196 28 −57 7 196 49 69 4 196 11 5 18 198 18 9 11 198 22 −3 9 198 33 29 6 198

10 −3 20 200 20 −5 10 200 25 69 8 200 40 15 5 200 50 −27 4 200 29 −3 7 203 17 29 12 204

34 −165 6 204 51 21 4 204 41 −21 5 205 23 11 9 207 13 29 16 208 16 −15 13 208 26 −27 8 208

52 21 4 208 11 5 19 209 19 −27 11 209 10 −15 21 210 14 −3 15 210 15 21 14 210 21 −21 10 210

30 7 7 210 35 53 6 210 42 −33 5 210 53 5 4 212 43 −67 5 215 8 −15 27 216 12 3 18 216

18 117 12 216 24 −33 9 216 27 29 8 216 36 117 6 216 54 −131 4 216 31 −85 7 217 20 33 11 220

22 67 10 220 44 55 5 220 55 −67 4 220 13 −31 17 221 17 −31 13 221 37 269 6 222 14 −3 16 224

16 −155 14 224 28 37 8 224 32 −17 7 224 56 −27 4 224 9 9 25 225 25 35 9 225 45 59 5 225

19 −19 12 228 38 −45 6 228 57 141 4 228 10 −11 23 230 23 −27 10 230 46 127 5 230 21 −111 11 231

33 35 7 231 29 −3 8 232 58 −27 4 232 13 −13 18 234 18 −11 13 234 26 15 9 234 39 −91 6 234

47 −127 5 235 59 −99 4 236 17 −115 14 238 34 −113 7 238 15 −19 16 240 16 −15 15 240 20 −3 12 240

24 75 10 240 30 −35 8 240 40 141 6 240 48 −165 5 240 60 −107 4 240 11 21 22 242 22 85 11 242

9 11 27 243 27 53 9 243 61 21 4 244 35 −31 7 245 49 69 5 245 41 −133 6 246 13 17 19 247

19 81 13 247 31 −19 8 248 62 −171 4 248 10 −3 25 250 25 −61 10 250 50 −113 5 250 12 63 21 252

14 −3 18 252 18 −35 14 252 21 −19 12 252 28 3 9 252 36 175 7 252 42 75 6 252 63 29 4 252

23 15 11 253 17 −61 15 255 51 −237 5 255 16 −99 16 256 32 −99 8 256 64 −59 4 256 43 −691 6 258

37 41 7 259 13 29 20 260 20 57 13 260 26 117 10 260 52 55 5 260 9 11 29 261 29 −43 9 261

11 5 24 264 12 −3 22 264 22 −3 12 264 24 73 11 264 33 29 8 264 44 21 6 264 53 −111 5 265

14 33 19 266 19 −85 14 266 38 −45 7 266 10 9 27 270 15 −19 18 270 18 87 15 270 27 203 10 270

30 3 9 270 45 −139 6 270 54 −33 5 270 16 −17 17 272 17 29 16 272 34 85 8 272 13 41 21 273

21 −69 13 273 39 −7 7 273 25 35 11 275 55 3 5 275 12 −47 23 276 23 29 12 276 46 −21 6 276

31 11 9 279 14 −3 20 280 20 −3 14 280 28 −125 10 280 35 53 8 280 40 27 7 280 56 175 5 280

47 5 6 282 15 −49 19 285 19 −67 15 285 57 −111 5 285 11 −19 26 286 22 −87 13 286 26 69 11 286

41 −31 7 287 9 −3 32 288 12 −3 24 288 16 −165 18 288 18 −11 16 288 24 117 12 288 32 −153 9 288

36 117 8 288 48 75 6 288 17 −1 17 289 29 149 10 290 58 −63 5 290 14 −3 21 294 21 −21 14 294

42 −161 7 294 49 −139 6 294 59 273 5 295 37 29 8 296 11 5 27 297 27 −39 11 297 33 17 9 297

23 293 13 299 12 −5 25 300 20 435 15 300 25 77 12 300 30 −83 10 300 50 −51 6 300 60 105 5 300
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Accordingly, the use of the Frobenius speeds up an exponentiation to a generic power n. Indeed,
a traditional approach would require d lg p squarings to get αn, but writing n in basis p, i.e., n =
(n�−1 . . . n0)p, it is clear that

αn =
�−1∏
i=0

φi
p

(
αni
)
.

Combined with a right-to-left strategy to compute the αni ’s, cf. Section 9.1.1, this idea shows that
only (lg p − 1) squarings are needed, namely α2, α4, . . . , α2lg p−1

. In addition, each term αni can
be computed in parallel.

Example 11.65 Let n = 27071851865689547117393862889 and let us compute αn. First remark
that n = (22388 12209 20770 63238 8078 10838)p. Using the precomputed values α2, α4, . . . , α215

Algorithm 9.2 gives

αn0 = 13812X5 + 61164X4 + 49159X3 + 1927X2 + 1781X + 31944

αn1 = 4807X5 + 57203X4 + 62178X3 + 3283X2 + 4690X + 33266

αn2 = 49155X5 + 5527X4 + 47396X3 + 13274X2 + 13828X + 60304

αn3 = 21607X5 + 11848X4 + 23310X3 + 30303X2 + 31752X + 44845

αn4 = 29730X5 + 12285X4 + 27469X3 + 798X2 + 9947X + 47295

αn5 = 54710X5 + 18029X4 + 18950X3 + 23518X2 + 10120X + 34955

and with the technique explained above one obtains

αn0 = 13812X5 + 61164X4 + 49159X3 + 1927X2 + 1781X + 31944

αpn1 = 60618X5 + 51323X4 + 3361X3 + 4138X2 + 57415X + 33266

αp2n2 = 8288X5 + 43479X4 + 47396X3 + 53960X2 + 58194X + 60304

αp3n3 = 43932X5 + 11848X4 + 42229X3 + 30303X2 + 33787X + 44845

αp4n4 = 46496X5 + 26171X4 + 27469X3 + 28535X2 + 55771X + 47295

αp5n5 = 37148X5 + 9908X4 + 46589X3 + 49290X2 + 55179X + 34955

so that the product of all these values is

αn = 42336X5 + 42804X4 + 21557X3 + 49577X2 + 22038X + 4278.

11.3.4 Inversion

Although an inverse could be computed with an extended gcd computation in Fpd , it is much faster
to use the Frobenius action and an inversion in Fp to compute it.

Namely, take

r =
pd − 1
p − 1

= pd−1 + pd−2 + · · · + p + 1.

Then αr−1 and αr are easily obtained using the Frobenius and in addition αr ∈ Fp since it is the
norm of α. So αr can be easily inverted to obtain

α−1 = αr−1 × α−r.

Further improvements, reminiscent of an addition chain approach, can be applied to compute the
term αr−1. As an example, let us consider the extension degree d = 6, often used in practice with
32-bit architectures. In this case, the successive steps to compute αr−1 are

αp, αp+1, αp3+p2
, αp5+p4

, αp5+p4+p3+p2
and αp5+p4+p3+p2+p.

The entire algorithm is as follows.
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Algorithm 11.66 OEF inversion

INPUT: A nonzero element α ∈ Fpd .

OUTPUT: The inverse of α in Fpd .

1. r ← (pd − 1)/(p − 1)

2. s ← αr−1 [use an addition-chain-like approach]

3. t ← sα [t = αr ∈ Fp]

4. u ← t−1 [compute the inverse of t in Fp]

5. return su

Remarks 11.67

(i) Algorithm 11.66 is in fact a generalization of a method proposed by Itoh and Tsujii
[ITTS 1988] for characteristic 2 fields. See also Remark 11.48 (iv).

(ii) Since t belongs to Fp it is equal to the constant coefficient of the product sα. Thus this
multiplication needs only d multiplications in Fp as does the product su.

(iii) Let ν(k) be the Hamming weight of k, then αr−1 can be computed [HAME+ 2003]
with NM = �lg d − 1� + ν(d − 1) − 1 products in Fpd and at most Nφp Frobenius
computations where

Nφp =

{
NM + 1 if d is odd,

�lg(d − 1)� + ν(d) otherwise.

Example 11.68 Take p, Fp6 and α as defined in Example 11.64 and let us compute the inverse of
α by Algorithm 11.66. First r = p5 + p4 + p3 + p2 + p + 1 and αr−1 is obtained by computing
successively

αp = 23814X5 + 34492X4 + 10602X3 + 7340X2 + 40911X + 63559

αp+1 = 27871X5 + 42246X4 + 20450X3 + 8624X2 + 26549X + 28414

αp3+p2
= 47216X5 + 11126X4 + 20450X3 + 50936X2 + 29251X + 28414

αp5+p4
= 55991X5 + 12167X4 + 20450X3 + 5979X2 + 9739X + 28414

αp5+p4+p3+p2
= 26086X5 + 2404X4 + 35019X3 + 45382X2 + 45825X + 22132

αr−1 = 28310X5 + 14778X4 + 7889X3 + 29498X2 + 2991X + 44851

with 3 multiplications in Fp6 and 3 applications of φp or φ2
p. Finally, t = αr−1α ≡ 42318 (mod p),

u = t−1 ≡ 27541 (mod p) and

α−1 = αr−1u = 33766X5 + 3708X4 + 9164X3 + 48513X2 + 58147X + 27858.

11.3.5 Squares and square roots

For any extension field Fpd of odd characteristic, and not only for OEFs, there is a simple method
relying on Theorem 2.104 and very similar to Algorithm 11.19 to decide if an element of Fpd is a
square or not.
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Algorithm 11.69 Legendre–Kronecker–Jacobi symbol

INPUT: A polynomial f(X) ∈ Fp[X] and an irreducible polynomial m(X) ∈ Fp[X].

OUTPUT: The Legendre–Kronecker–Jacobi symbol
` f(X)

m(X)

´·
1. k ← 1

2. repeat

3. if f(X) = 0 then return 0

4. a ← the leading coefficient of f(X)

5. f(X) ← f(X)/a

6. if deg m ≡ 1 (mod 2) then k ← k
`

a
p

´

7. if pdeg m ≡ 3 (mod 4) and deg mdeg f ≡ 1 (mod 2) then k ← −k

8. r(X) ← f(X), f(X) ← m(X) mod r(X) and m(X) ← r(X)

9. until deg m = 0

10. return k

Remark 11.70 Algorithm 11.69 relies on the law (2.7). Since f(X) is not necessarily monic it is
first divided by its leading coefficient a. Now we remark that a ∈ Fp is always a square in an
extension of even degree. When the degree is odd a is a quadratic residue if and only if a = 0 or(

a
p

)
= 1.

Example 11.71 Take p = 7, let m(X) be the irreducible polynomial X9 + 2X8 + X7 + 2X6 +
2X5 +4X2 +6X +6 and f(X) = X6 +X5 +6X4 +2X3 +2X2 +4X +1, both being elements
of F7[X ].

After Line 8 the values of r, f , a and k are as follows

r f a k

X6 + 4X5 + 3X4 + X3 + X2 + 2X + 4 4X5 + 3X4 + 4X3 + 3X2 + 2X + 4 1 1

X5 + 6X4 + X3 + 6X2 + 4X + 1 4X3 + 2X2 + 2X + 6 4 1

X3 + 4X2 + 4X + 5 2X2 + 3X 4 −1

X2 + 5X 2X + 5 2 −1

X + 6 6 2 −1

1 0 6 1

So f(X) is a square modulo m(X). Using a trivial generalization of Algorithm 11.26, one finds
that (3X3 + 6X2 + 2X + 1)2 ≡ f(X) (mod m(X)).

To conclude this part, let us remark that the computation of the trace of an element in an OEF
enjoys the same kind of improvements as in characteristic 2, cf. Remark 11.57 (ii).

11.3.6 Specific improvements for degrees 333333 and 555555

For some applications, like the implementation of trace zero varieties, cf. Section 15.3, one needs
to work in an extension field Fpd of small degree d. In particular, d = 3 and d = 5 are interesting
there. Some specific tricks can be used to make multiplication and inversion more efficient.



236 Ch. 11 Finite Field Arithmetic

We use an explicit description of the field extension as Fpd = Fp[θ], where θ is a root of an ir-
reducible binomial Xd − ω. Since d = 3 or 5 is prime, Xd − ω is irreducible whenever p ≡ 1
(mod d) and ω is not a d-th power in Fp. As Fp contains a d-th root of unity ζ, the roots of Xd −ω
are θ, ζθ, . . . , ζd−1θ.

Remark 11.72 It is very likely that there exists ω of small integer value, which is not a d-th power.
In fact, by Čebotarev’s density theorem, we have with probability 1/d that p ≡ 1 (mod d) and
Xd − 2 is irreducible over Fp. With even larger probability, one can find some small ω such that
Xd −ω is irreducible over Fp and the multiplication by ω, i.e., the reduction modulo the irreducible
binomial, can be computed by additions only.

We shall write all elements of Fp3 , respectively Fp5 , as polynomials in θ of degrees at most 2,
respectively 4, over Fp. Addition, subtraction, and negation of elements of Fpd are performed
component-wise. If ω is small we can ignore the costs of reducing modulo Xd − ω.

11.3.6.a Multiplication and squaring

Multiplication of elements of Fpd is split into multiplication of the corresponding polynomials in θ
and then reduction of the result using the fact that θd = ω.

Multiplication for d = 3d = 3d = 3d = 3d = 3d = 3
Multiplication in degree 3 extensions is done using Karatsuba’s method, which we detail here to
have the exact operation count. Let us multiply α =

∑2
i=0 aiθ

i with β =
∑2

i=0 biθ
i. We have

αβ = a0b0 +
(
(a0 + a1)(b0 + b1) − a0b0 − a1b1

)
θ

+
(
(a0 + a2)(b0 + b2) − a0b0 − a2b2 + a1b1

)
θ2 (11.6)

+
(
(a1 + a2)(b1 + b2) − a1b1 − a2b2

)
θ3 + (a2b2)θ4.

It enables us to multiply two degree 2 polynomials by 6 multiplications. By delaying all modu-
lar reductions and using incomplete reduction (see [AVMI 2004]), we need to perform 3 modular
reductions modulo p.

Multiplication for d = 5d = 5d = 5d = 5d = 5d = 5
In the degree 5 extension case, to multiply α =

∑4
i=0 aiθ

i with β =
∑4

i=0 biθ
i we put ξ = θ3 and

let A0 =
∑2

i=0 aiθ
i, A1 = a3 + a4θ, B0 =

∑2
i=0 biθ

i, and B1 = b3 + b4θ. Karatsuba’s method is
then used to obtain

αβ = (A0 + A1ξ)(B0 + B1ξ)

= A0B0 +
(
(A0 + A1)(B0 + B1) − A0B0 − A1B1

)
ξ + A1B1ξ

2.

The product A1B1 is computed using Karatsuba’s method, and A0B0 and (A0 + A1)(B0 + B1)
are both computed using (11.6). Note, however, that having A0, B0 of degree 2 and A1, B1 of
degree 1, the coefficients of θ4 in A0B0 and (A0 + A1)(B0 + B1) are the same, so we can save one
Fp-multiplication. The amount of Fp-multiplications needed to multiply two degree 4 polynomials
is thus 3 + 2× 6− 1 = 14. By delaying all modular reductions and using incomplete reduction, we
need to compute just 5 modular reductions modulo p.

Squaring

The squarings are more efficiently carried out using the schoolbook method, since this reduces
the number of additions significantly and in several libraries, squarings in Fp are no cheaper than
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ordinary multiplications. If this is not the case one should implement both versions (the schoolbook
version and the Karatsuba one) and compare their running time.

For d = 3, we need 3 squarings and 3 multiplications in Fp by

(a0 + a1θ + a2θ
2)2 = a2

0 + ωa1a2 + (ωa2
2 + a0a1)θ + (a2

1 + a0a2)θ2.

Likewise, for d = 5 we have 5 squarings and 10 multiplications. The number of modular reductions
are again 3 and 5 as in the case of multiplications.

11.3.6.b Inversion

For the inversion, the difference from the general OEF approach becomes obvious. To compute the
inverse of α ∈ Fpd , we can consider the multiplication as a linear map and determine a preimage.
This method is faster for d = 3 and also for d = 2 but we do not investigate that case any further.
Note that for d = 5, the general method made explicit is faster.

Inversion for d = 3d = 3d = 3d = 3d = 3d = 3
Let β = b0 + b1θ + b2θ

2, with b0, b1, b2 ∈ Fp, be the inverse of α = a0 + a1θ + a2θ
2 ∈ Fp3 and

using θ3 = ω, the relation αβ = 1 can be written as:⎡
⎢⎣a0 a2ω a1ω

a1 a0 a2ω

a2 a1 a0

⎤
⎥⎦
⎡
⎢⎣b0

b1

b2

⎤
⎥⎦ =

⎡
⎢⎣1
0
0

⎤
⎥⎦ .

Hence⎡
⎢⎣b0

b1

b2

⎤
⎥⎦ =

⎡
⎢⎣a0 a2ω a1ω

a1 a0 a2ω

a2 a1 a0

⎤
⎥⎦
−1 ⎡
⎢⎣1
0
0

⎤
⎥⎦ = (a3

0 + ω a3
1 + ω2a3

2 − 3 ω a0a1a2)−1

⎡
⎢⎣a2

0 − ω a1a2

ω a2
2 − a0a1

a2
1 − a0a2

⎤
⎥⎦ .

From this formula we obtain a method for inverting elements in Fp3 , which requires (ignoring
multiplications by 3 and by ω) just one inversion, 3 squarings, and 9 multiplications in Fp.

This method can be generalized to very small extensions. It is described e.g., in [KOMO+ 1999].

Inversion for d = 5d = 5d = 5d = 5d = 5d = 5
In this case we use the inversion technique described in Algorithm 11.66 but can save a bit by
combining the powers of the Frobenius automorphism, i.e., making the addition chain explicit.

Thus we compute the inversion in Fp5 as:

α−1 =
(αpαp2

(αpαp2
)p2

α
(
αpαp2(αpαp2)p2

) ·
Note that if the result of a Fp5-multiplication is known in advance to be in Fp (such as the norm), its
computation requires just 5 Fp-multiplications. This way we compute inverses in Fp5 by one inver-
sion and 50 multiplications in Fp. This strategy is optimal for d = 5 and needs less multiplications
than the generalization of the linear algebra approach used for d = 3.





Chapter��
Arithmetic of p-adic Numbers

Frederik Vercauteren

Contents in Brief

12.1 Representation 239
Introduction • Computing the Teichmuller modulus

12.2 Modular arithmetic 244
Modular multiplication • Fast division with remainder

12.3 Newton lifting 246
Inverse • Inverse square root • Square root

12.4 Hensel lifting 249
12.5 Frobenius substitution 250

Sparse modulus • Teichmuller modulus • Gaussian normal basis

12.6 Artin–Schreier equations 252
Lercier–Lubicz algorithm • Harley’s algorithm

12.7 Generalized Newton lifting 256
12.8 Applications 257

Teichmuller lift • Logarithm • Exponential • Trace • Norm

This chapter presents efficient algorithms to compute in the ring Zp of p-adic integers and the
valuation ring Zq of an unramified extension of Qp. Many of these algorithms were developed
specifically for the p-adic point counting algorithms described in Chapter 17, but are by no means
limited to this application. Although most of the lifting algorithms remain valid for more general
p-adic fields, we restrict ourselves to Zp and Zq due to their importance for practical applications.

12.1 Representation

12.1.1 Introduction

Let Qq be the unramified extension of Qp of degree d, then Proposition 3.21 implies that Qq can
be represented as Qp[X ]/

(
M(X)

)
with M ∈ Zp[X ] of degree d such that m := P1(M) ∈ Fp[X ]

is irreducible of degree d. Since deg m = deg M , the leading coefficient of M is a unit in Zp, so
without loss of generality we can assume that M is monic.

Let a ∈ Qq be represented by
∑d−1

i=0 aiX
i with ai ∈ Qp, then the p-adic valuation vp is given by

vp(a) = min0�i<d vp(ai) and the p-adic norm by |a|p = p−vp(a). This implies that the valuation

239
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ring Zq of Qq can be represented as Zp[X ]/
(
M(X)

)
. Given a representation of the residue field

Fq � Fp[X ]/
(
m(X)

)
, there exist infinitely many polynomials M ∈ Zp[X ] with P1(M) = m. To

make reduction modulo m very efficient, m is usually chosen to be sparse.
In practice, one computes with p-adic integers up to some precision N , i.e., an element a ∈ Zp

is approximated by pN(a) ∈ Z/pNZ and arithmetic reduces to integer arithmetic modulo pN . For
a given precision N , each element therefore takes O(N lg p) space.

This extends in a natural way to Zq: an element a ∈ Zq represented as
∑d−1

i=0 aiX
i with ai ∈ Zp

will be approximated by the polynomial
∑d−1

i=0 pN (ai)X i. Computing in Zq up to precision N thus
corresponds computing in (Z/pNZ)[X ]/

(
MN(X)

)
, with MN the polynomial obtained by reducing

the coefficients of M modulo pN , i.e., MN = PN (M). The space required to represent such an
element clearly is given by O(dN lg p).

Given a modulus m defining Fq, there are two common choices for the polynomial M that speed
up the arithmetic in Zq : the first choice preserves the sparse structure of m, whereas the second
choice is especially suited in case an efficient Frobenius substitution is needed.

• Sparse modulus representation: Let m(X) =
∑d

i=0 miX
i with mi ∈ Fp and md = 1.

To preserve the sparseness of m, a first natural choice is to define M(X) =
∑d

i=0 MiX
i

with Mi the unique integer between 0 and p − 1 such that Mi ≡ mi (mod p). The
reduction modulo M of a polynomial of degree � 2(d − 1) then only takes d(w − 1)
multiplications of a Zp-element by a small integer and dw subtractions in Zp where w
is the number of nonzero coefficients of m.

• Teichmüller modulus representation: Since Fq is the splitting field of the polynomial
Xq − X , the polynomial m divides Xq − X . To preserve the simple Galois action on
Fq , i.e., p-th powering, a second natural choice is to define M as the unique polynomial
over Zp with M(X) | Xq − X and M(X) ≡ m(X) (mod p). Every root θ ∈ Zq of
M(X) clearly is a (q − 1)-th root of unity, therefore also Σ(θ) is a (q − 1)-th root of
unity, with Σ the Frobenius substitution of Zq . Since Σ(θ) ≡ θp (mod p), we conclude
that Σ(θ) = θp or by abuse of notation Σ(X) = Xp.

If the finite field Fq admits a Gaussian normal basis, then Kim et al. [KIPA+ 2002] showed that this
basis can be lifted to Zq .

Proposition 12.1 Let p be a prime and d, t positive integers such that dt + 1 is a prime not equal
to p. Let γ be a primitive (dt+1)-th root of unity in some extension field ofQp. If gcd(dt/e, d) = 1,
with e the order of p modulo dt + 1, then for any primitive t-th root of unity τ in Z/(dt + 1)Z

θ =
t−1∑
i=0

γτ i

(12.1)

is a normal element and [Qp(θ) : Qp] = d. Such a basis is called a Gaussian normal basis of type t.

Elements of Zq are then represented in a redundant way by computing in the ring

Zp[X ]/(Xdt+1 − 1).

For a given precision N , each element therefore requires O(dNt lg p) space.

12.1.2 Computing the Teichmüller modulus

In this section we provide all the details of an algorithm first sketched by Harley in [HAR 2002b],
to compute the Teichmüller modulus of the defining polynomial of a finite field. Let θ ∈ Fq be such
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that Fq = Fp[θ] and let θ ∈ Zq be the Teichmüller lift of θ, i.e., the unique (q − 1)-th root of unity
that reduces to θ. In the previous section we assumed that Zq was represented as Zp[X ]/

(
M(X)

)
with M the minimal polynomial of θ. Since θ is a (q − 1)-th root of unity, we have that Σ(θ) = θp

and M(X) =
∏d−1

i=0 (X − θpi

). Let ζp be a formal p-th root of unity, then

M(Xp) =
p−1∏
i=0

M(ζi
pX). (12.2)

Indeed, for i = 1, . . . , d − 1 each factor
(
Xp − θpi)

of M(Xp) splits as

(
X − θpi−1)(

ζpX − θpi−1) · · · (ζp−1
p X − θpi−1)

.

Write M as M(X) =
∑p−1

i=0 Mi(Xp)X i with Mi ∈ Zq[X ], then (12.2) can be rewritten as

M(Xp) =
p−1∏
j=0

(
p−1∑
i=0

ζij
p Mi(Xp)X i

)
=

p−1∑
k=0

hk

(
M0(Xp), . . . , Mp−1(Xp)

)
Xpk,

with hk ∈ Zq[Y0, . . . , Yp−1] homogeneous polynomials of degree p. This implies that M satisfies

M(X) =
p−1∑
k=0

hk

(
M0(X), . . . , Mp−1(X)

)
Xk.

The following table lists the first few examples of the polynomials hk(Y0, . . . , Yp−1).

p hk

2 h0 = Y 2
0

h1 = −Y 2
1

3 h0 = Y 3
0

h1 = Y 3
1 − 3Y0Y1Y2

h2 = Y 3
2

5 h0 = Y 5
0

h1 = Y 5
1 + 5(Y 2

0 Y 2
1 Y3 − Y 3

0 Y1Y4 − Y 3
0 Y2Y3 + Y 2

0 Y1Y
2
2 − Y0Y

3
1 Y2)

h2 = Y 5
2 + 5(Y 2

0 Y2Y
2
4 + Y 2

0 Y 2
3 Y4 + Y0Y

2
1 Y 2

4 − Y0Y1Y2Y3Y4 − Y0Y1Y
3
3

−Y0Y
3
2 Y4 + Y0Y

2
2 Y 2

3 − Y 3
1 Y3Y4 + Y 2

1 Y 2
2 Y4 + Y 2

1 Y2Y
2
3 − Y1Y

3
2 Y3)

h3 = Y 5
3 + 5(Y1Y

2
3 Y 2

4 − Y0Y3Y
3
4 − Y1Y2Y

3
4 + +Y 2

2 Y3Y
2
4 − Y2Y

3
3 Y4)

h4 = Y 5
4

Assume we know Mt(X) ≡ M(X) (mod pt) and let δt(X) =
(
M(X) − Mt(X)

)
/pt. Substitut-

ing Mt(X) + ptδt(X) in the equation

M(X) −
p−1∑
k=0

hk

(
M0(X), . . . , Mp−1(X)

)
Xk = 0

gives a relation that determines δt modulo pt. For example, consider the case p = 2, which leads to

δt(X) − 2
(
Mt,0(X)δt,0(X) − XMt,1(X)δt,1(X)

)
+ Vt(X) ≡ 0 (mod 2t), (12.3)
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with Vt(X) ≡
(
Mt(X) − Mt,0(X)2 + XMt,1(X)2

)
/2t (mod 2t). Assume we have an algorithm

to compute δt mod pt′ with t′ = �t/2�, then we can use the same algorithm to compute δt mod pt.
Indeed, substituting δt = δt′ + pt′∆t′ in (12.3) leads to a similar equation modulo 2t−t′ with δt

replaced by ∆t′ and Vt replaced by

Vt(X) + δt′(X) − 2
(
Mt,0(X)δt′,0(X) − XMt,1(X)δt′,1(X)

)
2t′ mod 2t−t′ .

Since t − t′ � t′ we can use the same algorithm to find ∆t′ and thus δt. This immediately leads to
Algorithms 12.2 and 12.3. Note that for odd extension degree d, Algorithm 12.2 returns −M , so in
this case a final negation is necessary.

Algorithm 12.2 Teichmüller modulus

INPUT: A monic irreducible polynomial m ∈ F2[X] of degree d and precision N .

OUTPUT: The Teichmüller lift M ∈ Z2[X] up to precision N , i.e., M(X) | X2d − X mod 2N

and M(X) ≡ m(X) (mod 2).

1. if N = 1 then

2. M(X) ← m(X) mod 2

3. else

4. N ′ ← ˚
N
2

ˇ

5. M ′(X) ← Teichmüller modulus (m, N ′)

6. M0(X
2) ← `

M ′(X) + M ′(−X)
´
/2 mod 2N

7. M1(X
2) ← `

M ′(X) − M ′(−X)
´
/(2X) mod 2N

8. V (X) ← `
M ′(X) − M0(X)2 + XM1(X)2

´
/2N′

mod 2N−N′

9. δ(X) ← Teichmüller modulus increment (M0, M1, V, N − N ′)

10. M(X) ← M ′(X) + 2N′
δ(X) mod 2N

11. return M(X)

Algorithm 12.2 relies on a procedure called the Teichmüller modulus increment, which returns δ in
Z2[X ] such that

δ(X) − 2
(
M0(X)δ0(X) − XM1(X)δ1(X)

)
+ V (X) ≡ 0 (mod 2N). (12.4)

The algorithm is as follows.

Algorithm 12.3 Teichmüller modulus increment

INPUT: Polynomials M0, M1, V ∈ Z2[X] and a precision N .

OUTPUT: The polynomial δ ∈ Z2[X] as in (12.4)

1. if N = 1 then

2. δ(X) ← −V (X) mod 2

3. else

4. N ′ ← ˚
N
2

ˇ

5. δ′(X) ← Teichmüller modulus increment (M0, M1, V, N ′)

6. δ0(X
2) ← `

δ′(X) + δ′(−X)
´
/2 mod 2N
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7. δ1(X
2) ← `

δ′(X) − δ′(−X)
´
/(2X) mod 2N

8. V ′(X) ← V (X) + δ′(X) − 2
`
M0(X)δ0(X) − XM1(X)δ1(X)

´

2N′ mod 2N−N′

9. ∆(X) ← Teichmüller modulus increment (M0, M1, V
′, N − N ′)

10. δ(X) ← δ′(X) + 2N′
∆(X) mod 2N

11. return δ(X)

The complexity of Algorithm 12.2 is determined by the O(1) multiplications in Line 8 and the call
to Algorithm 12.3 in Line 9. The complexity of the latter algorithm is determined by the recursive
calls in Lines 5 and 9 and the O(1) multiplications in Line 8. If T (N) is the running time of
Algorithm 12.3 for precision N , then we have

T (N) � 2T (�N/2�) + cTd,N ,

for some constant c and Td,N the time to multiply two polynomials in (Z/pNZ)[X ] of degree
less than d assuming p is fixed. The above relation implies by induction that the complexity of
Algorithm 12.3 and thus also of Algorithm 12.2 is O(Td,N lg N).

Example 12.4 Let F28 � F2[X ]/(m(X)) with m(X) = X8 + X4 + X3 + X2 + 1, then on input
(m, 10) Algorithm 12.2 computes the following intermediate results:

1 M X8 + X4 + X3 + X2 + 1
2 M0 X4 + X2 + X + 1

M1 X

V X6 + X5 + X4 + X2 + X

δ X6 + X5 + X4 + X2 + X

M X8 + 2X6 + 2X5 + 3X4 + X3 + 3X2 + 2X + 1
3 M0 X4 + 2X3 + 3X2 + 3X + 1

M1 2X2 + X + 2
V 3X7 + X5 + X3

δ X7 + X5 + X3

M X8 + 4X7 + 2X6 + 6X5 + 3X4 + 5X3 + 3X2 + 2X + 1
5 M0 X4 + 2X3 + 3X2 + 3X + 1

M1 4X3 + 6X2 + 5X + 2
V 2X7 + X6 + 3X4 + X2

δ X6 + X4 + 2X3 + 3X2 + 2X

M X8 + 4X7 + 10X6 + 6X5 + 11X4 + 21X3 + 27X2 + 18X + 1
10 M0 X4 + 10X3 + 11X2 + 27X + 1

M1 4X3 + 6X2 + 21X + 18
V 30X6 + 30X5 + 24X4 + 2X3 + X2 + 9X

δ 20X7 + 26X6 + 4X5 + 16X4 + 31X2 + 17X

M X8 + 644X7 + 842X6 + 134X5 + 523X4 + 21X3 + 1019X2 + 562X + 1
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12.2 Modular arithmetic

12.2.1 Modular multiplication

Let a ∈ Zp and let N be the precision we compute with, then a is approximated by pN (a) ∈
Z/pNZ. Arithmetic in Z/pNZ is simply integer arithmetic modulo pN so all methods of Chap-
ter 10 apply. Let µ be a constant such that multiplication of two B-bit integers requires O(Bµ)
bit-operations, for example µ = 2 for schoolbook multiplication, µ = lg 3 for Karatsuba multi-
plication [KAOF 1963], and µ = 1 + ε, with ε real positive, for Schönhage–Strassen multiplica-
tion [SCST 1971]. Since a modular reduction takes the same time as a multiplication, we conclude
that modular multiplication up to precision N requires O(Nµ) bit-operations for fixed p.

Let Zq be represented as Zp[X ]/
(
M(X)

)
with M ∈ Zp[X ] a monic, irreducible polynomial of

degree d, then working up to precision N corresponds to computing in

(
Z/pNZ

)
[X ]/

(
PN

(
M(X)

))
.

The modular multiplication proceeds in two steps: multiplication of two polynomials of degree less
than d in (Z/pNZ)[X ] and a modular reduction modulo PN (M). The former is well known and re-
quires Td,N bit-operations for p fixed, e.g., a combination of schoolbook multiplication in the p-adic
dimension and Karatsuba multiplication in the polynomial dimension gives Td,N ∈ O(dlg 3N2).

The reduction modulo PN (M) depends on the choice of representation of Zq . In the sparse
modulus representation, the reduction modulo PN (M) requires at most d(w− 1) multiplications in
Z/pNZ with w the number of nonzero coefficients of PN (M). In the Teichmüller representation,
the polynomial PN

(
M(X)

)
is no longer sparse and fast reduction methods should be used. The next

section shows that this requires O(1) multiplications of polynomials of degree less than d. There-
fore, we conclude that a modular multiplication in Zq to precision N requires Td,N bit-operations.

12.2.2 Fast division with remainder

Let R be a commutative ring and a, b ∈ R[X ] polynomials of degree k and d respectively and
b monic. Since b is monic, there exist unique polynomials q, r ∈ R[X ] with a = qb + r and
deg r < deg b. Evaluating both sides at 1/X and multiplying with Xk gives

Xka

(
1
X

)
= Xk−dq

(
1
X

)
Xdb

(
1
X

)
+ Xk−(d−1)Xd−1r

(
1
X

)
. (12.5)

Note that for a polynomial P ∈ R[X ] of degree n, XnP (1/X) is the polynomial with the coeffi-
cients of P reversed. Reducing the above equation modulo Xk−(d−1) gives

Xka

(
1
X

)
≡ Xk−dq

(
1
X

)
Xdb

(
1
X

)
(mod Xk−(d−1)). (12.6)

Since b is monic, Xdb(1/X) has constant coefficient 1 and therefore is coprime to Xk−(d−1). Let
c ∈ R[X ] be the inverse of Xdb(1/X) modulo Xk−(d−1), i.e.,

c(X)
(
Xdb(1/X)

)
≡ 1 (mod Xk−(d−1))
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then we can recover q from

Xk−dq

(
1
X

)
≡ Xka

(
1
X

)
c(X) (mod Xk−(d−1)). (12.7)

The polynomial c can be computed using a polynomial version of Algorithm 12.10, i.e., using a
Newton iteration to find a “root” of the polynomial fY − 1 = 0.

Algorithm 12.5 Polynomial inversion

INPUT: A polynomial f ∈ R[X] with f(0) = 1 and a power n ∈ N.

OUTPUT: The inverse of f modulo Xn.

1. if n = 1 then

2. c ← 1

3. else

4. n′ ← ˚
n
2

ˇ

5. c ← Polynomial inversion (f, n′)

6. c ← `
c + c(1 − fc)

´
mod Xn

7. return c

Since the degree of the polynomials doubles in each iteration, the complexity of Algorithm 12.5 is
determined by the last iteration, which requires O(1) multiplications of polynomials of degree � n
over R. Therefore, the complexity amounts to O(nµ) operations in R.

Once c has been computed, the quotient q follows easily from (12.7) and the remainder is given
by r = a − bq (mod Xd). This is summarized in Algorithm 12.6.

Algorithm 12.6 Fast division with remainder

INPUT: Polynomials a, b ∈ R[X] with b monic.

OUTPUT: Polynomials q, r ∈ R[X] such that a = qb + r and deg r < deg b.

1. if deg a < deg b then

2. q ← 0 and r ← a

3. else

4. n ← deg a − deg b + 1

5. c ← Polynomial inversion (Xdeg bb(1/X), n)

6. q̃ ← ``
Xdeg aa(1/X)

´
c(X)

´
mod Xn

7. q ← Xn−1q̃(1/X)

8. r ← (a − bq) mod Xdeg b

9. return q and r

The complexity of Algorithm 12.6 is determined by the call to Algorithm 12.5 in Line 5 and the
multiplications in Lines 6 and 8. Since n = deg a − deg b + 1, we conclude that a fast reduction
requires O

(
(deg a − deg b)µ + (deg b)µ

)
operations in R.

Example 12.7 Let R = Z/210Z, then Algorithm 12.6 computes the following intermediate results
on input (a, b) (note that b is the modulus computed in Example 12.4):
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a 559X14 + 781X13 + 763X12 + 684X11 + 133X10 + 375X9 + 922X8 + 776X7

+452X6 + 214X5 + 313X4 + 148X3 + 646X2 + 428X + 168
b X8 + 644X7 + 842X6 + 134X5 + 523X4 + 21X3 + 1019X2 + 562X + 1
c 789X6 + 747X5 + 169X4 + 906X3 + 198X2 + 380X + 1
q̃ 337X6 + 755X5 + 768X4 + 420X3 + 673X2 + 209X + 559
q 559X6 + 209X5 + 673X4 + 420X3 + 768X2 + 755X + 337
r 428X7 + 728X6 + 240X5 + 294X4 + 10X3 + 165X2 + 743X + 855

12.3 Newton lifting

Let f ∈ Zq[X ] and assume that a ∈ Zq satisfies vp

(
f ′(a)

)
= k and vp

(
f(a)

)
= n + k for some

n > k. Proposition 3.16 then implies that there exists a unique root b ∈ Zq of f with b ≡ a
(mod pn). The element a is called an approximate root of f known to precision n. Reformulating
Proposition 3.16 leads to the following lemma that shows how to compute an approximate root to
precision 2n − k starting from an approximate root to precision n.

Lemma 12.8 Let f ∈ Zq[X ] and assume that a ∈ Zq satisfies vp

(
f ′(a)

)
= k and vp

(
f(a)

)
= n+k

for some n > k. Let b be the unique root of f with b ≡ a (mod pn). Then

z = a − f(a)
f ′(a)

(12.8)

satisfies z ≡ b (mod p2n−k), f(z) ≡ 0 (mod p2n) and vp

(
f ′(z)

)
= k.

Given an approximate root a ∈ Zq to precision n, Algorithm 12.9 computes the unique approximate
root z to precision N with z ≡ a (mod n). Note that for such z, we have f(z) ≡ 0 (mod pN+k).

Algorithm 12.9 Newton iteration

INPUT: The polynomial f ∈ Zq[X], an approximate root a ∈ Zq , the integer k with vp

`
f ′(a)

´
=

k, precision n > k such that f(a) ≡ 0 (mod pn+k) and precision N .

OUTPUT: An approximate root z ∈ Zq of f with z ≡ a (mod pn) and f(z) ≡ 0 (mod pN+k).

1. if N � n then

2. z ← a

3. else

4. N ′ ← ˚
N+k

2

ˇ

5. z ← Newton iteration (f, a, k, N ′)

6. z ← z − f(z)
f ′(z)

(mod pN)

7. return z

An efficient implementation of the above algorithm requires we always compute with the lowest
possible precision. The result in Line 6 has to be correct up to precision N . By induction, the
numerator f(z) in Line 6 satisfies f(z) ≡ 0 (mod pN ′+k) and the denominator f ′(z) satisfies
vp

(
f ′(z)

)
= k, which implies that f ′(z)/pk is a unit in Zq . Dividing the numerator by pN ′+k,

we conclude that it suffices to compute f(z)/pN ′+k and f ′(z)/pk with precision N − N ′, which
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implies that it suffices to compute f(z) (mod pN+k) and f ′(z) (mod pN ′+k). Note that also
the inverse of f ′(z)/pk and the product with f(z)/pN ′+k only has to be computed with precision
N − N ′.

Since in each iteration, the precision we compute with almost doubles, the complexity of Algo-
rithm 12.9 is determined by the last iteration. Let Tf (N) denote the time to evaluate f at precision
N , then the complexity of Algorithm 12.9 is given by O(max{Tf(N), Td,N}), which in most cases
reduces to O

(
Tf (N)

)
.

12.3.1 Inverse

Let a ∈ Zq be a unit and assume we have computed the inverse of p1(a) ∈ Fq using one of the
algorithms given in Chapter 11. Let z0 be any lift of 1/p1(a) to Zq , then z0 is an approximate root
of the polynomial f(X) = 1 − aX to precision 1, since f ′(z0) = a is a unit in Zq . Applying
Lemma 12.8 to f leads to the iteration z ← z + (1 − az)/a. Since the division by a only has to be
computed at half precision, we can use z instead of 1/a giving the iteration z ← z + z(1 − az).

Algorithm 12.10 Inverse

INPUT: A unit a ∈ Zq and precision N .

OUTPUT: The inverse of a to precision N .

1. if N = 1 then

2. z ← 1/a mod p

3. else

4. z ← Inverse (a,
˚

N
2

ˇ
)

5. z ← z + z(1 − az) mod pN

6. return z

Let ei = 1−azi be the error in the i-th iteration. Then, an easy calculation shows that ei+1 = e2
i , so

convergence is quadratic, which explains the statement in Line 4. Since evaluating f requires only
one multiplication at precision N , we conclude that the complexity of Algorithm 12.10 is O(Td,N ).

Example 12.11 Assume that Z28 up to precision N = 10 is represented as (Z/210Z)[X ]/
(
M(X)

)
with M(X) = X8 + 644X7 + 842X6 + 134X5 + 523X4 + 21X3 + 1019X2 + 562X + 1, then
Algorithm 12.10 computes the following intermediate results on input (a, 10) with

a = 982X7 + 303X6 + 724X5 + 458X4 + 918X3 + 423X2 + 650X + 591

N z

1 X6 + X3 + X2 + X

2 2X7 + X6 + 3X3 + X2 + X

3 6X7 + 5X6 + 4X4 + 7X3 + X2 + X + 4
5 22X7 + 21X6 + 24X5 + 4X4 + 31X3 + 25X2 + X + 28
10 854X7 + 373X6 + 760X5 + 132X4 + 863X3 + 697X2 + 321X + 60
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12.3.2 Inverse square root

Let a ∈ Zq and consider the polynomial f(X) = 1 − aX2, then if a is an invertible square, 1/
√

a
is a root of f . Applying Lemma 12.8 to f leads to the iteration z ← z + (1 − az2)/(2az), which
needs a division by az. Note however that this division can be replaced by a multiplication by
z, giving the final iteration z ← z + z(1 − az2)/2. Let ei = 1 − az2

i be the error in the i-th
iteration, then an easy calculation shows that ei+1 = (3e2

i + e3
i )/4. Let ni = vp(ei) > 0, then

ni+1 = 2ni for p � 5, ni+1 = 2ni + 1 for p = 3 and ni+1 = 2ni − 2 for p = 2. Thus for p = 2
we need an approximate root to precision 2 to initialize the Newton iteration. Since every element
in a finite field of characteristic 2 is a square, we can always compute z ≡ 1/

√
p1(a) (mod 2)

using finite field arithmetic. Let y = z + 2∆, then 1 − ay2 ≡ 0 (mod 8) iff ∆ is a solution
of ∆2 + z∆ ≡ (1/a − z2)/4 (mod 2). If this equation has no solution then a is not a square;
otherwise, z + 2∆ is an approximate root to precision 2.

Algorithm 12.12 Inverse square root (p = 2)

INPUT: An invertible square a ∈ Zq , an initial approximation z0 to precision 2 and precision N .

OUTPUT: The inverse square root of a to precision N .

1. if N � 2 then

2. z ← z0

3. else

4. N ′ ← ˚
N+1

2

ˇ

5. z ← Inverse square root (a, x, N ′)

6. z ← z +
z(1 − az2)

2
mod 2N

ˆ
(1 − az2) computed modulo 2N+1

˜

7. return z

Since evaluating f requires only O(1) multiplications at precision N , we conclude that the com-
plexity of Algorithm 12.12 is O(Td,N ).

Example 12.13 Let Z28 up to precision N = 10 be represented as in Example 12.11. Suppose we
want to compute the inverse square root of

a = 823X7 + 707X6 + 860X5 + 387X4 + 663X3 + 183X2 + 12X + 354.

The initial approximation to precision 2 is given by z0 = 2X7 + X6 + 3X3 + X2 + X . Since the
precision we compute with is N = 10, the unique inverse square root z ≡ z0 (mod 4) can only
be determined up to precision N − 1. On input (a, 9), Algorithm 12.12 computes the following
intermediate results:

N z

2 2X7 + X6 + 3X3 + X2 + X

3 6X7 + 5X6 + 4X4 + 7X3 + X2 + X + 4
5 22X7 + 21X6 + 24X5 + 4X4 + 31X3 + 25X2 + X + 28
9 342X7 + 373X6 + 248X5 + 132X4 + 351X3 + 185X2 + 321X + 60
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12.3.3 Square root

Let a ∈ Zq be a square in Zq , then v = vp(a) must be even and
√

a can be computed as pv/2
√

a/pv

with a/pv a unit in Zq . Therefore, assume that a is an invertible square in Zq .
A trivial method to obtain

√
a is simply to compute c = 1/

√
a using Algorithm 12.12 and to

return
√

a = ac, which requires one multiplication at full precision. A trick due to Karp and
Markstein [KAMA 1997] can be used to merge this multiplication with the last step of the iteration
as follows: compute b ← az mod pN ′

and replace Line 6 of Algorithm 12.12 in the last iteration
by z ← b+z(a− b2)/2 mod pN . Note that b is only computed at half precision, whereas the trivial
method needs a multiplication at full precision.

12.4 Hensel lifting

Let f ∈ Zq[X ] be a polynomial with integral coefficients and assume that the leading coefficient
of f is a unit in Zq . The reduction of f modulo p is thus a polynomial P1(f) over Fq of the same
degree as f . Given a factorization f ≡ gh (mod p) with g, h ∈ Zq such that g and h are coprime
modulo p, Hensel’s lemma 3.17 states that this factorization can be lifted modulo arbitrary powers
of p. The following lemma is a reformulation of Hensel’s lemma, but with quadratic convergence.

Lemma 12.14 Let f, gk, hk, sk, tk ∈ Zq[X ] be polynomials with integral coefficients such that

f ≡ gkhk (mod pk) and skgk + tkhk ≡ 1 (mod pk) ,

with deg f = deg P1(f), the leading coefficient of hk a unit in Zq , deg sk < deg hk and deg tk <
deg gk. Then there exists polynomials h2k, g2k, s2k, t2k ∈ Zq[X ] such that

f ≡ g2kh2k (mod p2k) and s2kg2k + t2kh2k ≡ 1 (mod p2k).

Furthermore, g2k ≡ gk (mod pk), h2k ≡ hk (mod pk), s2k ≡ sk (mod pk), t2k ≡ tk (mod pk),
deg g2k = deg gk, deg h2k = deg hk and deg s2k < deg h2k and deg t2k < deg g2k.

The construction of these polynomials is given as Algorithm 12.15. To illustrate how these formulas
are devised, we show that g2k and h2k constructed in Line 3 satisfy the above lemma. Define ∆g

and ∆h by g2k = gk + pk∆g and h2k = hk + pk∆h, then f ≡ g2kh2k (mod p2k) implies

f − gkhk

pk
≡ e ≡ ∆hgk + ∆ghk (mod pk). (12.9)

Multiplying both sides of the equation skgk + tkhk ≡ 1 (mod pk) by e, we indeed conclude that
esk ≡ qhhk + ∆h (mod pk) and etk ≡ qggk + ∆g (mod pk).

Algorithm 12.15 Hensel lift iteration

INPUT: Polynomials f, gk, hk, sk, tk ∈ Zq[X] as in Lemma 12.14 and precision k.

OUTPUT: Polynomials g2k, h2k, s2k, t2k ∈ Zq[X] as in Lemma 12.14.

1. e ← (f − gkhk)/pk mod pk

2. compute q, r ∈ Zq[X] with deg r < deg hk and esk ≡ qhk + r (mod pk)

3. g2k ← gk + pk(etk + qgk) mod p2k and h2k ← hk + pkr mod p2k

4. e ← (1 − skg2k − tkh2k)/pk mod pk

5. compute q, r ∈ Zq[X] with deg r < deg h2k and esk ≡ qh2k + r (mod pk)
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6. s2k ← sk + pkr mod p2k and t2k ← tk + pk(etk + qg2k) mod p2k

7. return g2k, h2k, s2k, t2k

Using Algorithm 12.15 as a subroutine, we easily deduce an algorithm to lift the factorization of a
polynomial modulo p to arbitrarily high powers of p.

Algorithm 12.16 Hensel lift

INPUT: Polynomials f, g, h, s, t ∈ Zq[X] with f ≡ gh (mod p) and sg + th ≡ 1 (mod p),
precision N .

OUTPUT: Polynomials G, H,S, T ∈ Zq[X] with f ≡ GH (mod pN) and SG + TH ≡ 1
(mod pN).

1. if N = 1 then

2. G ← g, H ← h, S ← s and T ← t

3. else

4. k ← ˚
N
2

ˇ

5. gk, hk, sk, tk ← Hensel lift (f, g, h, s, t, k)

6. G, H,S, T ← Hensel lift iteration (f, gk, hk, sk, tk, k)

7. return G, H,S, T

Since the precision we work with doubles in each iteration, the complexity of Algorithm 12.16 is
determined by the last iteration. Let n = deg f , then Algorithm 12.15 requires O(1) multiplications
of polynomials of degree less than n and O(1) divisions with remainder, both of which require
O(nµTd,N) bit-operations.

Example 12.17 In this example, we illustrate Algorithm 12.16 for polynomials over Z2. Define

f(X) = X10+321X9+293X8+93X7+843X6+699X5+972X4+781X3+772X2+129X+376,

then clearly f ≡ gh (mod 2) with g = X6 + X4 + X3 + 1 and h = X4 + X3 + X . Using Euclid
extended gcd algorithm in the ring F2[X ], we compute s = X2 + X + 1 and t = X4 + X + 1 and
on input (f, g, h, s, t, 10), Algorithm 12.16 computes the following results:

G X6 + 44X5 + 19X4 + 165X3 + 92X2 + 206X + 529
H X4 + 277X3 + 374X2 + 737X + 504
S 660X3 + 893X2 + 493X + 345
T 364X5 + 311X4 + 848X3 + 618X2 + 979X + 221

12.5 Frobenius substitution

In this section, we present various algorithms to compute the Frobenius substitution Σ on Zq . De-
pending on the representation of Zq , different algorithms should be used.
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12.5.1 Sparse modulus

Let Zq � Zp[X ]/
(
M(X)

)
and assume that M is sparse, monic of degree d and with coefficients

between 0 and p − 1. Given any element

a =
d−1∑
i=0

aiX
i ∈ Zq

with ai ∈ Zp for 0 � i < d, then clearly

Σ(a) =
d−1∑
i=0

aiΣ(X)i.

Therefore, if we precompute Σ(X), we obtain Σ(a) by evaluating the polynomial

a(Y ) =
d−1∑
i=0

aiY
i

at Σ(X).
Computing Σ(X) can be done efficiently using a Newton iteration on M starting from the initial

approximation Xp. Let w be the number of nonzero coefficients of M(X), then we can clearly eval-
uate M and M ′ using O(w lg d) multiplications in Zq . Applying Algorithm 12.9 to the polynomial
M thus leads to an O(wTd,N lg d) algorithm to compute Σ(X) mod pN .

Evaluating the polynomial a(Y ) can be done using Horner’s rule, which needs O(d) multiplica-
tions at precision N . This would lead to an O(dTd,N ) algorithm to compute Σ(a). At the expense
of storing O(

√
d) elements of Zq , we can use the Paterson–Stockmeyer algorithm [PAST 1973]: let

B =
⌈√

d
⌉

and precompute Σ(X)i for 0 � i � B using O(
√

d) multiplications in Zq . Rewriting
a(Y ) as

a(Y ) =
�n/B�∑
j=0

(
B−1∑
i=0

ai+BjY
i

)
Y Bj , (12.10)

with ak = 0 for k � d, we can compute Σ(a) using O(d) scalar multiplications and O(
√

d)
multiplications in Zq or O(d2Nµ +

√
dTd,N) bit-operations for a given precision N .

An asymptotically faster method can be obtained by replacing the O(d) scalar multiplications
with a matrix product as follows: let Γ be the B × B matrix with Γ[i][j] = ai+Bj , i.e., the rows of
Γ contain the scalars of the inner sum in (12.10) and let Λ be the B × d matrix such that

Σ(X)i =
d−1∑
j=0

Λ[i][j]Xj, for i = 0, . . . , B − 1.

Consider the B × d matrix ∆ = ΓΛ, then the j-th row of ∆ simply contains the coefficients of

B−1∑
i=0

ai+BjΣ(X)i.

A method by Huang and Pan [HUPA 1998] can be used to compute the rectangular matrix product
in O(B3.334) ring operations. Therefore, a Frobenius substitution requires O(d1.667Nµ +

√
dTd,N)

bit-operations.
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12.5.2 Teichmüller modulus

Let Zq � Zp[X ]/
(
M(X)

)
and assume that M is a Teichmüller modulus of degree d. As shown

in Section 12.1, this implies that Σ(X) = Xp. Given an element a =
∑d−1

i=0 aiX
i ∈ Zq , we can

simply compute Σ(a) as

Σ(a) =
d−1∑
i=0

aiX
ip (mod M(X)).

The reduction modulo M(X) takes at most p − 1 multiplications over Zq , thus computing Σ(a)
(mod pN ) for a ∈ Zq requires O(p Td,N) time.

The inverse Frobenius substitution can also be computed very efficiently as follows:

Σ−1

(
d−1∑
i=0

aiX
i

)
=

p−1∑
j=0

( ∑
0�pk+j<d

apk+jX
k

)
Cj(X),

where Cj(X) = Σ−1(Xj) = Xjpd−1
(mod M(X)). Assuming Cj for j = 0, . . . , p − 1 are pre-

computed, computing Σ−1(a) (mod pN ) only takes p − 1 multiplications over Zq or O(p Td,N)
time.

12.5.3 Gaussian normal basis

Assume that Zq admits a Gaussian normal basis of type t, then elements of Zq are embedded in the
ring Zp[X ]/(Xdt+1 − 1). Since Σk(X) = Xpk

, we have

Σk(a) =
dt∑

i=0

aiX
ipk

= a0 +
dt∑

j=1

aj/pk mod (dt+1)X
j . (12.11)

So, we can compute an arbitrary repeated Frobenius substitution Σk(a) by a simple permutation of
the coefficients of a, which only requires O(dt) bit-operations.

12.6 Artin–Schreier equations

Recall that if Fq is a field of characteristic p, an Artin–Schreier equation is an equation of the form
Xp − X − a = 0 with a ∈ Fq . The additive version of Hilbert Satz 90 states that such an equation
has a solution in Fq if and only if TrFq/Fp

(a) = 0. Since σ(x) = xp for x ∈ Fq, we can generalize
this type of equation to Zq by considering

αΣ(X) + βX + γ = 0 , (12.12)

with α, β, γ ∈ Zq and α a unit in Zq .
It is easy to see that such an equation always has a unique solution in Qq (not necessarily in Zq),

as long as N(−β/α) �= 1. Indeed, let a1 = −β/α and b1 = −γ/α, then clearly Σ1(x) = a1x + b1

for any solution x. Applying Σ to both sides, we see that we can recursively define ak, bk ∈ Zq

such that Σk(x) = akx + bk for k = 2, . . . , d. Since Σd(x) = x for all x ∈ Qq , we conclude that
the unique solution in Qq to the above equation is given by bd/(1 − ad).
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By imposing the condition vp(β) > 0, the unique solution to (12.12) is always integral. Indeed,
writing out the recursive process explicitly shows that the unique solution is given by

x =

∑d−1
i=0 Σi(b1) ×

∏d−1
j=i+1 Σj(a1)

1 − NQq/Qp
(a1)

·

Since vp(a1) = vp(β) > 0, we conclude that 1 − NQq/Qp
(a1) is a unit and therefore x ∈ Zq .

12.6.1 Lercier–Lubicz algorithm

Lercier and Lubicz [LELU 2003] use a simple square and multiply algorithm to compute the ak,
bk ∈ Zq based on the formula

Σk+n(x) = Σn(akx + bk) = Σn(ak)(anx + bn) + Σn(bk).

To find a solution to Σ(x) ≡ ax+b (mod pN) we simply call Algorithm 12.18 on input (a, b, d, N),
which returns ad and bd. The complexity of Algorithm 12.18 is determined by Lines 6 and 7 which
need O(1) multiplications and O(1) repeated Frobenius substitutions in Zq/pNZq .

For fields with a Gaussian normal basis of type t, the Frobenius substitution takes O(dt) bit-
operations as shown in Section 12.5.3. Since the algorithm needs O(lg d) recursive calls, the time
and space complexity for fields with Gaussian normal basis are O(Td,N lg d) and O(dN) respec-
tively.

If the field does not admit a Gaussian normal basis, Algorithm 12.18 should be modified to keep
track of Σk′

(X). This can be achieved by introducing an extra variable c which equals Σk(X) and is
returned in Line 11 together with ak and bk. The variable c can then be updated by evaluating it at it-
self, such that c becomes Σ2k′

(X) and conjugating once if k is odd. Using the Paterson–Stockmeyer
trick [PAST 1973], the complexity of Algorithm 12.18 then becomes O

(
(d2Nµ +

√
dTd,N) lg d

)
and the space complexity is O(d1.5N).

Algorithm 12.18 Artin–Schreier root square multiply

INPUT: Elements a, b ∈ Zq , a power k and precision N .

OUTPUT: Elements ak, bk ∈ Zq such that Σk(x) ≡ akx + bk (mod pN).

1. if k = 1 then

2. ak ← a mod pN and bk ← b mod pN

3. else

4. k′ ← ¨
k
2

˝

5. ak′ , bk′ ← Artin–Schreier root square multiply (a, b, k′, N )

6. ak ← ak′Σk′
(ak′) mod pN

7. bk ← bk′Σk′
(ak′) + Σk′

(bk′) mod pN

8. if k ≡ 1 (mod 2) then

9. bk ← b Σ(ak) + Σ(bk) mod pN

10. ak ← a Σ(ak) mod pN

11. return ak, bk

Algorithm 12.19 solves the general Artin–Schreier equation (12.12) and clearly has the same time
and space complexity as Algorithm 12.18.
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Algorithm 12.19 Artin–Schreier root I

INPUT: Elements α, β, γ ∈ Zq with α a unit in Zq , vp(β) > 0 and precision N .

OUTPUT: An element x ∈ Zq such that αΣ(x) + βx + γ ≡ 0 (mod pN ).

1. ad, bd ← Artin–Schreier root square multiply (−β/α,−γ/α, n, N )

2. return bd/(1 − ad) mod pN

Example 12.20 The ring Z210 admits a Gaussian normal basis of type 1 and can be represented as
Z2[X ]/

(
M(X)

)
with M(X) = (X11 − 1)/(X − 1). An element a =

∑9
i=0 aiX

i is embedded in
the ring Z2[Y ]/(Y 11 − 1) as ã =

∑9
i=0 aiY

i. Assume we want to find the integral solution s to the
equation Σ(X) + βX + γ = 0 where

β = 18X9 + 804X8 + 354X7 + 56X6 + 656X5 + 892X4 + 824X3 + 578X2 + 942X + 128,

γ = 248X9 + 101X8 + 64X7 + 955X6 + 399X5 + 664X4 + 313X3 + 819X2 + 1012X + 32,

then Algorithm 12.18 computes the following intermediate results:

a1 1006Y 9 + 220Y 8 + 670Y 7 + 968Y 6 + 368Y 5 + 132Y 4 + 200Y 3 + 446Y 2 + 82Y + 896

b1 776Y 9 + 923Y 8 + 960Y 7 + 69Y 6 + 625Y 5 + 360Y 4 + 711Y 3 + 205Y 2 + 12Y + 992

a2 420Y 10 + 680Y 9 + 324Y 8 + 416Y 7 + 652Y 6 + 388Y 5 + 424Y 4 + 992Y 3 + 100Y 2 + 644Y + 96

b2 287Y 10 + 938Y 9 + 68Y 8 + 928Y 7 + 583Y 6 + 659Y 5 + 353Y 4 + 268Y 3 + 842Y 2 + 901Y + 698

a5 768Y 10 + 640Y 9 + 64Y 8 + 672Y 7 + 256Y 6 + 928Y 5 + 96Y 4 + 704Y 3 + 736Y 2 + 96Y + 160

b5 969Y 10 + 92Y 9 + 29Y 8 + 751Y 7 + 782Y 6 + 826Y 5 + 219Y 4 + 919Y 3 + 936Y 2 + 256Y + 954

a10 0

b10 992Y 10 + 232Y 9 + 759Y 8 + 571Y 7 + 986Y 6 + 270Y 5 + 431Y 4 + 701Y 3 + 124Y 2 + 585Y + 58

Since a10 ≡ 0 (mod 210), the unique solution s is simply the reduction modulo M of b10, i.e.,

s = 264X9 + 791X8 + 603X7 + 1018X6 + 302X5 + 463X4 + 733X3 + 156X2 + 617X + 90.

12.6.2 Harley’s algorithm

In an e-mail to the NMBRTHRY list [HAR 2002b], Harley sketched a doubly recursive algorithm to
solve an Artin–Schreier equation of the form (12.12) assuming that vp(β) > 0. Note that this
implies that the solution is integral.

The main idea is as follows: assume we have an algorithm that returns a solution xN ′ to an
equation of the form (12.12) to precision N ′ = �N/2�. Write xN = x′

N + pN ′
∆N and substitute

xN into (12.12), which leads to

αΣ(∆N ) + β∆N +
αΣ(xN ′ ) + βxN ′ + γ

pN ′ ≡ 0 (mod pN−N ′
).

Since N−N ′ � N ′ we can use the same algorithm to determine ∆N mod pN−N ′
and therefore xN .

This immediately leads to a recursive algorithm if we can solve the base case, i.e., find a solution
to (12.12) modulo p. If we assume that vp(β) > 0, then the base case reduces to solving

αΣ(x) + γ ≡ 0 (mod p).

Since α is a unit, this uniquely determines x ≡ (−γ/α)1/p (mod p).
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Algorithm 12.21 Artin–Schreier root II

INPUT: Elements α, β, γ ∈ Zq , α a unit in Zq , vp(β) > 0 and precision N .

OUTPUT: An element x ∈ Zq such that αΣ(x) + βx + γ ≡ (mod pN).

1. if N = 1 then

2. x ← (−γ/α)1/p (mod p)

3. else

4. N ′ ← ˚
N
2

ˇ

5. x′ ← Artin–Schreier root II (α, β, γ, N ′)

6. γ′ ← αΣ(x′) + βx′ + γ

pN′ mod pN−N′

7. ∆′ ← Artin–Schreier root II (α, β, γ′, N − N ′)

8. x ← `
x′ + pN′

∆′´ mod pN

9. return x

The p-th root in Line 2 of Algorithm 12.21 should not be computed by naively taking the pd−1-th
power. Instead, let Fq = Fp[θ], then

(
d−1∑
i=0

aiθ
i

)1/p

=
p−1∑
j=0

( ∑
0�pk+j<d

apk+jθ
k

)
Cj(θ), with Cj(θ) = (θ

j
)1/p = θ

jpd−1

This shows that for z ∈ Fq, we can compute z1/p with p − 1 multiplications over Fq .

The complexity of Algorithm 12.21 is determined by the recursive calls in Lines 5 and 7, the
O(1) multiplications in Line 6, and the Frobenius substitution in Line 6. If we assume that Zq is
represented using the Teichmüller modulus, the Frobenius substitution in Zq/pNZq can be com-
puted using O(Td,N ) bit-operations for p fixed. If T (N) is the running time of Algorithm 12.21 for
precision N , then we have

T (N) � 2T (�N/2�) + cTd,N ,

for some constant c. The above relation implies by induction that the complexity of Algorithm 12.21
is O(Td,N lg N).

Example 12.22 Let Z28 be represented as Z2[X ]/
(
M(X)

)
with M(X) = X8+X4+X3+X2+1

and let

β = 186X7 + 858X6 + 810X5 + 50X4 + 208X3 + 36X2 + 2X + 652,

γ = 139X7 + 911X6 + 938X5 + 970X4 + 412X3 + 1021X2 + 99X + 667.

Then on input (1, β, γ, 10) Algorithm 12.21 computes the following intermediate results given as a
binary tree: the root of the tree is denoted T, a left child with L and a right child with R.
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Node N x

TLLLL 1 X7 + X6 + X4 + X

TLLLR 1 X7 + X5 + X3 + X2

TLLL 2 3X7 + X6 + 2X5 + X4 + 2X3 + 2X2 + X

TLLR 1 X6 + X5 + X2 + X + 1
TLL 3 3X7 + 5X6 + 6X5 + X4 + 2X3 + 6X2 + 5X + 4
TLRL 1 X6 + X5 + X4 + X3 + X + 1
TLRR 1 X7 + X4 + X3 + X + 1
TLR 2 2X7 + X6 + X5 + 3X4 + 3X3 + 3X + 3
TL 5 19X7 + 13X6 + 14X5 + 25X4 + 26X3 + 6X2 + 29X + 28
TRLLL 1 X6 + X5 + X2 + X + 1
TRLLR 1 X7 + X5 + X3 + X2 + X

TRLL 2 2X7 + X6 + 3X5 + 2X3 + 3X2 + 3X + 1
TRLR 1 X3 + X2 + X

TRL 3 2X7 + X6 + 3X5 + 6X3 + 7X2 + 7X + 1
TRRL 1 X5 + X4 + X + 1
TRRR 1 X6 + X5 + X4 + X3 + 1
TRR 2 2X6 + 3X5 + 3X4 + 2X3 + X + 3
TR 5 2X7 + 17X6 + 27X5 + 24X4 + 22X3 + 7X2 + 15X + 25
T 10 83X7 + 557X6 + 878X5 + 793X4 + 730X3 + 230X2 + 509X + 828

12.7 Generalized Newton lifting

In this section we consider equations of the form φ
(
Y, Σ(Y )

)
= 0 with φ(Y, Z) ∈ Zq[Y, Z]. These

equations arise naturally in the point counting algorithms described in Section 17.3. However, solv-
ing such an equation is also useful for more general applications, e.g., computing the Teichmüller
lift of an element in Fq. Indeed, let a ∈ Fq, then the Teichmüller lift ω(a) is the unique solution of
the equation Y p − Σ(Y ) = 0 with p1

(
ω(a)

)
= a.

Let x ∈ Zq be a root of φ
(
Y, Σ(Y )

)
= 0 and assume we know xN ≡ x (mod pN ). Define

δN = (x − xN )/pN , then the Taylor expansion around xN gives

0 = φ
(
x, Σ(x)

)
= φ

(
xN + pNδN , Σ(xN + pNδN )

)
(12.13)

≡ φ
(
xN , Σ(xN )

)
+ pN

(
δN∆y + Σ(δN )∆z

)
(mod p2N ), (12.14)

with

∆y ≡ ∂φ

∂Y

(
xN , Σ(xN )

)
(mod pN) and ∆z ≡ ∂φ

∂Z

(
xN , Σ(xN )

)
(mod pN ).

This implies that δN has to be a solution of

∆zΣ(X) + ∆yX +
φ
(
xN , Σ(xN )

)
pN

≡ 0 (mod pN ).

Let k = vp(∆z), then if vp(∆y) > k and vp

(
φ
(
xN , Σ(xN )

))
� k + N and N > k, we recover the

Artin–Schreier equation (12.12) with α = ∆z/pk, β = ∆y/pk and γ = φ
(
xN , Σ(xN )

)
/pN+k up
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to precision N − k. Note that any solution δ′ ∈ Zq to the above equation satisfies

δ′ ≡ δN (mod pN−k).

Let x2N−k = xN + pNδ′, then x2N−k ≡ x (mod p2N−k) and (12.13) implies that

φ
(
x2N−k, Σ(x2N−k)

)
≡ 0 (mod p2N ).

Furthermore, since we assumed that N > k, we have

vp

(
∂φ

∂Z

(
x2N−k, Σ(x2N−k)

))
= k and vp

(
∂φ

∂Y

(
x2N−k, Σ(x2N−k)

))
� k, (12.15)

so we can repeat the same procedure to find a solution up to arbitrary precision.

Algorithm 12.23 Generalized Newton lift

INPUT: A polynomial φ(Y, Z) ∈ Zq , an element x0 ∈ Zq satisfying the relation φ
`
x0, Σ(x0)

´ ≡
0 (mod p2k+1) with k = vp

`
∂φ
∂Z

`
x0, Σ(x0)

´´
and precision N .

OUTPUT: An element xN of Zq such that φ
`
xN , Σ(xN )

´ ≡ 0 (mod pN+k) and xN ≡ x0

(mod pk+1).

1. if N � k + 1 then

2. x ← x0

3. else

4. N ′ ← ˚
N+k

2

ˇ

5. x′ ← Generalized Newton lift (φ, x0, N
′)

6. y′ ← Σ(x′) mod pN+k

7. V ← φ(x′, y′) mod pN+k

8. ∆y ← ∂φ
∂Y

`
x′, y′´ mod pN′

9. ∆z ← ∂φ
∂Z

`
x′, y′´ mod pN′

10. δ ← Artin–Schreier root (∆z/pk, ∆y/pk, V/pN′+k, N ′ − k)

11. x ← `
x′ + pN′

δ
´

mod pN

12. return x

Since the precision of the computations almost doubles in every step, the complexity of Algo-
rithm 12.23 is the same as the complexity of the Artin–Schreier root subroutine in Line 10.

12.8 Applications

12.8.1 Teichmüller lift

Recall that the Teichmüller lift ω(a) of an element a ∈ Fq is defined as follows: ω(0) = 0 and for
nonzero a ∈ Fq , ω(a) is the unique (q − 1)-th root of unity with p1(ω(a)) = a.

A trivial, but slow algorithm to compute ω(a) mod pN uses a simple Newton lifting on the poly-
nomial f(X) = Xq−1 − 1. Since evaluating f requires O(d) multiplications for p fixed, the overall
complexity of this approach is O(dTd,N ).
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For N � d there exists a faster algorithm based on repeated p-th powering: assume that a satisfies
p1(a) = a and aq−1 − 1 ≡ 0 (mod pk), then we can write aq−1 = 1 + pk∆ with ∆ ∈ Zq . Taking
the p-th power of both sides then gives (ap)q−1 = 1+pk+1∆′, with ∆′ =

(
(1+pk∆)p −1

)
/pk+1.

Reducing modulo pk+1 shows that ap ≡ ω(ap) (mod pk+1) and thus is ap, a better approximation
of ω(ap). This immediately leads to Algorithm 12.24, which has complexity O(NTd,N ), and thus
is faster than the trivial algorithm for N � d.

Algorithm 12.24 Teichmüller lift

INPUT: An element a ∈ Fq and precision N .

OUTPUT: The Teichmüller lift z ≡ ω(a) (mod pN ) of a to precision N .

1. k ← N − 1

2. r ← a
1

pk [arbitrary lift]

3. z ← `
apk´

mod pN

4. return z

Example 12.25 Let F28 be represented as F2[X ]/
(
M(X)

)
with M(X) = X8+X4+X3+X2+1

and let a = X6+X2+X+1. In Line 2 of Algorithm 12.24, we compute the 29-th root r of a which
is given by r = X7 + X3 + X2 + X . Let r be an arbitrary lift of r to Z210 � Z2[X ]/

(
M(X)

)
,

then

ω(a) ≡ r29

≡ 64X7 + 871X6 + 992X5 + 784X4 + 480X3 + 615X2 + 675X + 443 (mod 210).

The fastest algorithm, however, is based on the following observation: since the Teichmüller lift
ω(a) is the unique (q − 1)-th root of unity with p1

(
ω(a)

)
= a, it also satisfies Σ

(
ω(a)

)
= ω(a)p.

Indeed, Σ
(
ω(a)

)
is a (q − 1)-th root of unity and since ω(·) is multiplicative and Σ

(
ω(a)

)
≡ ap

(mod p), the claim follows. The Teichmüller lift ω(a) can thus be computed as the solution of

Σ(X) − Xp = 0 and X ≡ a (mod p).

Assuming that Zq is represented using the Teichmüller modulus, Algorithm 12.23 then computes
ω(a) (mod pN ) using O(Td,N lg N) bit-operations.

12.8.2 Logarithm

Definition 12.26 Let x ∈ Zq then the p-adic logarithmic function of x is defined by

log(x) =
∞∑

i=1

(−1)i−1 (x − 1)i

i
· (12.16)

The function log(x) converges for vp(x − 1) > 0.

Assume that a ∈ Zq satisfies vp(a − 1) > 0, then using Horner’s rule, evaluating log(a) up to
precision N takes O(N) multiplications over Zq/pNZq or O(NTd,N ) bit-operations.

Satoh, Skjernaa, and Taguchi [SASK+ 2003] solve this problem by noting that apk

for k ∈ N is
very close to unity, i.e., vp(apk − 1) > k. If a ∈ Zq/pNZq , then apk

is well defined in Zq/pN+kZq

and can be computed with O(k) multiplications in Zq/pN+kZq . Furthermore, note that

log(a) ≡ p−k
(
log
(
apk)

(mod pN+k)
)

(mod pN )
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and that log
(
apk)

(mod pN+k) can be computed with O(N/k) multiplications over Zq/pN+kZq .
So, if we take k �

√
N , then log(a) (mod pN) can be computed in O(

√
NTd,N+

√
N ) time.

In characteristic 2, Satoh, Skjernaa, and Taguchi suggested a further improvement. Without loss
of generality, we can assume that v2(a − 1) > 1. Indeed, since vp(a − 1) � 1, we conclude that
vp(a2 − 1) > 1 and log(a2) = 2 log(a). Therefore, assume that v2(a− 1) > 1, then we have a ≡ 1
(mod 2ν) for ν � 2.

Let z = a−1 ∈ 2νZq/2NZq and define γ =
z

2 + z
∈ 2ν−1Zq/2N−1Zq , then a = 1 + z =

1 + γ

1 − γand thus

log(a) = log(1 + z) = log(1 + γ) − log(1 − γ) = 2
∞∑

j=1

γ2j−1

2j − 1
·

Note that all the denominators in the above formula are odd. Reducing this equation modulo 2N

therefore leads to

log(a) ≡ log(1 + z) ≡ 2
∑

1�(ν−1)(2j−1)<N−1

γ2j−1

2j − 1
(mod 2N).

Example 12.27 Let Z28 be represented as Z2[X ]/
(
M(X)

)
with M(X) = X8+X4+X3+X2+1

and let a = 872X7+376X6+460X5+476X4+138X3+462X2+794X+381. Since a satisfies
v2(a − 1) = 1, we can compute the logarithm of a which is given by

log(a) ≡ 540X7 + 298X6 + 944X5 + 614X4 + 390X3 + 884X2 + 586X + 244 (mod 210).

12.8.3 Exponential

Definition 12.28 Let x ∈ Zq then the p-adic exponential function of x is defined by

exp(x) =
∞∑

i=0

xi

i!
· (12.17)

The function exp(x) converges for vp(x) > 1/(p − 1).

An easy calculation shows that

vp(i!) =
B∑

k=1

⌊
i/pk

⌋
with B =

⌊
logp i

⌋
.

The valuation vp(i!) can thus be bounded by vp(i!) � (i− 1)/(p− 1), which explains the radius of
convergence. Let a ∈ Zq then we have the following identities

log
(
exp(a)

)
= a, for vp(a) > 1/(p − 1),

exp
(
log(a)

)
= a, for vp(a − 1) > 1/(p − 1).

First assume that a ∈ Zp, then since vp(a) > 1/(p−1), we have vp(a) � 1 for p � 3 and vp(a) � 2
for p = 2. So if we precompute exp(p) (mod pN ) for p � 3 or exp(4) (mod 2N ) for p = 2, then

exp(a) ≡ exp(p)a/p (mod pN), for p � 3,

exp(a) ≡ exp(4)a/4 (mod 2N ), for p = 2,

and we can use a simple square and multiply algorithm to perform the final exponentiation.
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For a ∈ Zq we simply evaluate the power series of the exponential function (12.17) modulo pN .
The bound vp(i!) � (i − 1)/(p − 1) implies that we have to compute

exp(a) ≡
∑

1�i<B

ai

i!
(mod pN ) with B =

(p − 1)N − 1
(p − 1)vp(a) − 1

.

Using the Paterson–Stockmeyer algorithm [PAST 1973], this requires O(dN1+µ +
√

NTd,N) bit-
operations and O(dN1.5) space.

Example 12.29 Let Z28 be represented as Z2[X ]/
(
M(X)

)
with M(X) = X8+X4+X3+X2+1

and let a = 720X7+752X6+920X5+952X4+276X3+924X2+564X+760. Since vp(a) = 2,
we can compute the exponential function of a, which is given by

exp(a) ≡ 496X7 + 600X6 + 552X5 + 272X4 + 388X3 + 132X2 + 308X + 57 (mod 210).

12.8.4 Trace

Definition 12.30 Let Σ denote the Frobenius substitution on Qq, then the trace of x ∈ Qq is

TrQq/Qp
(x) = x + Σ(x) + · · · + Σd−2(x) + Σd−1(x). (12.18)

Since Σ generates Gal(Qq/Qp), the trace TrQq/Qp
(x) is an element of Qp.

Let a ∈ Qq, then TrQq/Qp
(pka) = pk TrQq/Qp

(a), so we can assume that a is a unit in Zq . If Zq is
represented as Zp[X ]/

(
M(X)

)
and

a =
d−1∑
i=0

aiX
i with ai ∈ Zp,

then clearly

TrQq/Qp
(a) =

d−1∑
i=0

ai TrQq/Qp
(X i). (12.19)

Each TrQq/Qp
(X i) for i = 0, . . . , d − 1 can be precomputed using Newton’s formula:

TrQq/Qp
(X i) +

i−1∑
j=1

TrQq/Qp
(X i−j)Md−j + iMd−i ≡ 0 (mod pN),

with M(X) =
∑d

i=0 MiX
i. Assuming that the TrQq/Qp

(X i) for i = 0, . . . , d−1 are precomputed,
the trace of an element a ∈ Zq can be computed to precision N in O(dNµ) time.

Example 12.31 Let Z28 be represented as Z2[X ]/(M(X)) with M(X) = X8+644X7+842X6+
134X5 + 523X4 + 21X3 + 1019X2 + 562X + 1, then M is a Teichmüller modulus to precision
10. Newton’s formula gives

i 1 2 3 4 5 6 7

TrQq/Qp
(X i) 380 380 166 380 623 166 42

Note that the traces of X i and X2ki are equal since M is a Teichmüller modulus.
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12.8.5 Norm

Definition 12.32 Let Σ denote the Frobenius substitution on Qq, then the norm of x ∈ Qq is

NQq/Qp
(x) =

d−1∏
i=0

Σi(x). (12.20)

Since Σ generates Gal(Qq/Qp), the norm NQq/Qp
(x) is an element of Qp.

In this section we give an overview of the existing algorithms to compute NQq/Qp
(a) for an element

a ∈ Qq. Since NQq/Qp
(pka) = pdk NQq/Qp

(a), we can assume that a is a unit in Zq .

12.8.5.a Norm computation I

Kedlaya [KED 2001] suggested a basic square and multiply approach by computing

αi+1 = Σ2i

(αi)αi, for i = 0, . . . , 	lg d
 ,

with α0 = a and to combine these to recover NQq/Qp
(a) = Σd−1(a) · · ·Σ(a)a. Let d =

∑�−1
i=0 di2i,

with di ∈ {0, 1} and d�−1 = 1, then we can write

NQq/Qp
(a) =

�−1∏
i=0

Σ2i+1+···+2�−1
(αdi

i ),

where the sum 2i+1 + · · · + 2�−1 is defined to be zero for i � � − 1. This formula immediately
leads to Algorithm 12.33. Note that this algorithm remains valid for matrices over Zq .

Algorithm 12.33 Norm I

INPUT: An element a ∈ Zq with q = pd and a precision N .

OUTPUT: The norm NQq/Qp(a) mod pN .

1. i ← d, j ← 0, r ← 1 and s ← a

2. while i > 0 do

3. if i ≡ 1 (mod 2) then r ← Σ2j

(r) s mod pN

4. if i > 1 then s ← Σ2j

(s) s mod pN

5. j ← j + 1 and i ← �i/2�
6. return r

This algorithm is particularly attractive for p-adic fields with Gaussian normal basis of small type,
due to efficient repeated Frobenius substitutions. In this case the time complexity is determined by
the O(lg d) multiplications in Zq/pNZq or O

(
Td,N lg d

)
bit-operations and the space complexity is

O(dN).
If the field does not admit a Gaussian normal basis, then Algorithm 12.33 should be adapted as

follows: introduce a new variable c that keeps track of Σ2j

(X), i.e., c is initialized with X and in
Line 4, c is evaluated at itself, since Σ2j+1

(X) = Σ2j

(Σ2j

(X)). Computing Σ2j

(r) and Σ2j

(s)
in Lines 3 and 4 then simply reduces to an evaluation at c. Using the Paterson–Stockmeyer algo-
rithm [PAST 1973], the complexity of Algorithm 12.33 then becomes O

(
(d2Nµ +

√
dTd,N) lg d

)
.
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Example 12.34 The ring Z210 admits a Gaussian normal basis of type 1 and can be represented as
Z2[X ]/

(
M(X)

)
with M(X) = (X11 − 1)/(X − 1). An element a =

∑9
i=0 aiX

i is embedded in
the ring Z2[Y ]/(Y 11 − 1) as ã =

∑9
i=0 aiY

i. On input (a, 10) with

a = 93X9 + 733X8 + 164X7 + 887X6 + 106X5 + 493X4 + 348X3 + 40X2 + 609X + 603.

Algorithm 12.33 computes the following intermediate results at the end of the while loop:

r10 1

s10 93Y 9 + 733Y 8 + 164Y 7 + 887Y 6 + 106Y 5 + 493Y 4 + 348Y 3 + 40Y 2 + 609Y + 603

r5 1

s5 112Y 10 + 440Y 9 + 412Y 8 + 752Y 7 + 258Y 6 + 436Y 5 + 756Y 4 + 1007Y 3 + 384Y 2 + 439Y + 524

r2 112Y 10 + 440Y 9 + 412Y 8 + 752Y 7 + 258Y 6 + 436Y 5 + 756Y 4 + 1007Y 3 + 384Y 2 + 439Y + 524

s2 522Y 10 + 16Y 9 + 492Y 8 + 255Y 7 + 752Y 6 + 211Y 5 + 325Y 4 + 946Y 3 + 189Y 2 + 984Y + 684

r1 112Y 10 + 440Y 9 + 412Y 8 + 752Y 7 + 258Y 6 + 436Y 5 + 756Y 4 + 1007Y 3 + 384Y 2 + 439Y + 524

s1 15Y 10 + 173Y 9 + 743Y 8 + 648Y 7 + 90Y 6 + 712Y 5 + 646Y 4 + 996Y 3 + 87Y 2 + 349Y + 661

r0 759Y 10 + 759Y 9 + 759Y 8 + 759Y 7 + 759Y 6 + 759Y 5 + 759Y 4 + 759Y 3 + 759Y 2 + 759Y + 602

s0 15Y 10 + 173Y 9 + 743Y 8 + 648Y 7 + 90Y 6 + 712Y 5 + 646Y 4 + 996Y 3 + 87Y 2 + 349Y + 661

Note that the element r returned by the algorithm needs to be reduced modulo M , which finally
gives NQq/Qp

(a) ≡ 867 (mod 210).

12.8.5.b Norm computation II

Satoh, Skjernaa, and Taguchi [SASK+ 2003] also proposed a fast norm computation algorithm
based on an analytic method. First assume that a is close to unity, i.e., vp(a− 1) > 1/(p− 1), then

NQq/Qp
(a) = exp

(
TrQq/Qp

(
log(a)

))
, (12.21)

since Σ is continuous and both series converge. Combining the algorithms described in Sec-
tions 12.8.2, 12.8.3 and 12.8.4, we conclude that if a is close to unity then NQq/Qp

(a) (mod pN)
can be computed in O(

√
NTd,N+

√
N) bit-operations and O(dN) space.

Algorithm 12.35 computes the norm of an element in 1 + 2νZq , with q = 2d, assuming that
exp(4) and TrQq/Qp

(X i) for i = 0, . . . , d − 1 are precomputed.

Algorithm 12.35 Norm II

INPUT: An element a ∈ 1 + 2νZq with ν � 2 and a precision N .

OUTPUT: The norm NQq/Qp(a) mod 2N .

1. s ← �√N/2�
2. z ← `

a2s − 1
´

mod 2N+s

3. w ← `
log(1 + z)

´
mod 2N+s

4. w ← `
2−sw

´
mod 2N

5. u ← `
2−ν TrQq/Qp(w)

´
mod 2N−ν

6. return
`
exp(4)u

´
mod 2N

Example 12.36 Let Z28 be represented as Z2[X ]/
(
M(X)

)
with M(X) = X8+X4+X3+X2+1

and let a = 572X7 + 108X6 + 660X5 + 556X4 + 456X3 + 748X2 + 36X + 569. For N = 10,
Algorithm 12.35 computes the following values: s = 1,

z = 936X7 + 568X6 + 760X5 + 1880X4 + 1840X3 + 1176X2 + 1656X + 1408,

w = 1864X7 + 248X6 + 1880X5 + 728X4 + 1648X3 + 1304X2 + 24X + 1632,
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u = 163, exp(4) = 333 and finally NQq/Qp
(a) ≡ 725 (mod 210).

Now consider the more general situation where a ∈ Zq is not close to unity. Let ω
(
p1(a)

)
∈ Zq

denote the Teichmüller lift of p1(a), i.e., the unique (q−1)-th root of unity, which reduces to p1(a).
Consider the equality

NQq/Qp
(a) = NQq/Qp

(
ω
(
p1(a)

))
NQq/Qp

(
ω
(
p1(a)

)−1
a
)
,

then vp

(
ω(p1(a))−1a − 1

)
� 1. Furthermore, note that NQq/Qp

(
ω
(
p1(a)

))
is equal to the Teich-

müller lift of NFq/Fp

(
p1(a)

)
. For p � 3, (12.21) holds since

vp

(
ω
(
p1(a)

)−1
a − 1

)
� 1 > 1/(p− 1).

For p = 2 we need an extra trick: simply square ω
(
p1(a)

)−1
a modulo 2N+1, compute the norm

of the square using Algorithm 12.35 modulo 2N+1 and take the square root of the norm, which is
determined modulo 2N . This shows that NQq/Qp

(a) mod pN for any a ∈ Zq can be computed in
O(

√
NTd,N+

√
N ) bit-operations and O(dN) space.

12.8.5.c Norm computation III

In an e-mail to the NMBRTHRY list [HAR 2002b], Harley suggested an asymptotically fast norm
computation algorithm based on a formula from number theory that expresses the norm as a re-
sultant. The resultant itself can be computed using an adaptation of Moenck’s fast extended gcd
algorithm [MOE 1973].

Let Zq � Zp[X ]/
(
M(X)

)
with M ∈ Zp[X ] a monic irreducible polynomial of degree n. Let

θ ∈ Zq be a root of M , then M splits completely over Zq as

M(X) =
d−1∏
i=0

(
X − Σi(θ)

)
.

For a =
∑d−1

i=0 aiX
i ∈ Zq , define the polynomial A(X) =

∑d−1
i=0 aiX

i ∈ Zp[X ]. By definition of
the norm and the resultant we have

NQq/Qp
(a) =

d−1∏
i=0

Σi(a) =
d−1∏
i=0

A
(
Σi(θ)

)
= Res

(
M(X), A(X)

)
.

The resultant Res
(
M(X), A(X)

)
can be computed in softly linear time using a variant of Moenck’s

fast extended gcd algorithm [MOE 1973]. The result is an algorithm to compute NQq/Qp
(a) mod

pN in time O
(
(dN)µ lg d

)
.

Example 12.37 Let Z28 be represented as Z2[X ]/(M(X)) with M(X) = X8+X4+X3+X2+1
and let a = 572X7 + 108X6 + 660X5 + 556X4 + 456X3 + 748X2 + 36X + 569. Computing
the resultant of M(X) and A(X) as an integer gives

Res
(
M(X), A(X)

)
= 110891016699366462823125 ≡ 725 (mod 210) ,

which gives the same result as in Example 12.36. Of course, in practice we never compute the
resultant as an integer, but always reduce modulo 210.
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Elliptic curves constitute one of the main topics of this book. They have been proposed for appli-
cations in cryptography due to their fast group law and because so far no subexponential attack on
their discrete logarithm problem (cf. Section 1.5) is known. We deal with security issues in later
chapters and concentrate on the group arithmetic here. In an actual implementation this needs to be
built on an efficient implementation of finite field arithmetic (cf. Chapter 11).

In the sequel we first review the background on elliptic curves to the extent needed here. For a
more general presentation of elliptic curves, see Chapter 4. Then we address the question of efficient
implementation in large odd and in even characteristics. We refer mainly to [HAME+ 2003] for
these sections.

Note that there are several softwares packages or libraries able to work on elliptic curves, for
example PARI/GP [PARI] and apecs [APECS]. The former is a linkable library that also comes with
an interactive shell, whereas the latter is a Maple package. Both come with full sources. The
computer algebra systems Magma [MAGMA] and SIMATH [SIMATH] can deal with elliptic curves,
too.

Elliptic curves have received a lot of attention throughout the past almost 20 years and many
papers report experiments and timings for various field sizes and coordinates. We do not want
to repeat the results but refer to [AVA 2004a, COMI+ 1998] and Section 14.7 for odd charac-
teristic and [HALÓ+ 2000, LÓDA 1998, LÓDA 1999] for even characteristic. Another excellent
and comprehensive reference comparing point multiplication costs and implementation results is
[HAME+ 2003, Tables 3.12, 3.13 and 3.14 and Chap. 5].
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13.1 Summary of background on elliptic curves

13.1.1 First properties and group law

We start with a practical definition of the concept of an elliptic curve.

Definition 13.1 An elliptic curve E over a field K denoted by E/K is given by the Weierstraß
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (13.1)

where the coefficients a1, a2, a3, a4, a6 ∈ K are such that for each point (x1, y1) with coordinates
in K satisfying (13.1), the partial derivatives 2y1 + a1x1 + a3 and 3x2

1 + 2a2x1 + a4 − a1y1 do not
vanish simultaneously.

The last condition says that an elliptic curve is nonsingular or smooth. A point on a curve is called
singular if both partial derivatives vanish (cf. the Jacobi criterion 4.94). For shorter reference we
group the coefficients in (13.1) to the equation

E : y2 + h(x)y = f(x), h(x), f(x) ∈ K[x], deg(h) � 1, deg(f) = 3 with f monic.

The smoothness condition can also be expressed more intrinsically. Indeed, let

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6, b8 = a2

1a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a2

4.

In odd characteristic, the transformation y �→ y − (a1x + a3)/2 leads to an isomorphic curve given
by

y2 = x3 +
b2

4
x2 +

b4

2
x +

b6

4
· (13.2)

The cubic polynomial above has only simple roots over the algebraic closure K if and only if its
discriminant is nonzero. The equation of the discriminant is therefore useful to determine if (13.2)
is an elliptic curve or not. In addition, it is relevant for characteristic 2 fields as well.

Definition 13.2 Let E be a curve defined over K by (13.1) and let b2, b4, b6 and b8 as above. The
discriminant of the curve E denoted by ∆ satisfies

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

The curve E is nonsingular, and thus is an elliptic curve, if and only if ∆ is nonzero. In this case,
we introduce the j-invariant of E, that is j(E) = (b2

2 − 24b4)3/∆.

Example 13.3 In Fp with p = 2003, an elliptic curve is given by

E1 : y2 + 2xy + 8y = x3 + 5x2 + 1136x + 531. (13.3)

Indeed, we have b2 = 24, b4 = 285, b6 = 185, ∆ = 1707 �= 0 and j = 171.
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We now show how to turn the set of points of E into a group with group operation denoted by ⊕.
For this we visualize it over the reals as in Figure 13.1 and assume h(x) = 0.

Figure 13.1 Group law on elliptic curve y2 = f(x) over R.

P

Q

−(P ⊕ Q)

P ⊕ Q

P

[2]P

−[2]P

To add two points P = (x1, y1) and Q = (x2, y2) in general position one draws a line connecting
them. There is a third point of intersection. Mirroring this point at the x-axis gives the sum P ⊕ Q.
The same construction can be applied to double a point where the connecting line is replaced by the
tangent at P .

Furthermore, we need to define the sum of two points with the same x-coordinate since for them
the group operation cannot be performed as stated. As y2 = f(x) there are at most 2 such points
(x1, y1) and (x1,−y1). Furthermore, we have to find the neutral element of the group.

The way out is to include a further point P∞ called the point at infinity. It can be visualized as
lying far out on the y-axis such that any line x = c, for some constant c, parallel to the y-axis passes
through it. This point is the neutral element of the group. Hence, the line connecting (x1, y1) and
(x1,−y1) passes through P∞. As it serves as the neutral element, the inflection process leaves it
unchanged such that (x1, y1) ⊕ (x1,−y1) = P∞, i.e., (x1,−y1) = −P .

This explanation might sound a little like hand-waving and only applicable to R. We now derive
the addition formulas for an arbitrary field K , which hold universally. For a proof we refer to
Chapter 4.

Take P �= Q with x1 �= x2 as above and let us compute the coordinates of R = P⊕Q = (x3, y3).
The intersecting line has slope

λ =
y1 − y2

x1 − x2

and passes through P . Its equation is thus given by

y = λx +
x1y2 − x2y1

x1 − x2
·
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We denote the constant term by µ and remark µ = y1 −λx1. The intersection points with the curve
are obtained by equating the line and E

(λx + µ)2 + (a1x + a3)(λx + µ) = x3 + a2x
2 + a4x + a6.

This leads to the equation r(x) = 0 where

r(x) = x3 + (a2 − λ2 − a1λ)x2 + (a4 − 2λµ − a3λ − a1µ)x + a6 − µ2 − a3µ.

We already know two roots of r(x), namely the x-coordinates of the other two points. Since

r(x) = (x − x1)(x − x2)(x − x3)

one has λ2 + a1λ − a2 = x1 + x2 + x3. As x1, x2 are defined over K so is x3 and ỹ3 = λx3 + µ.
The inflection at the x-axis has to be translated to the condition that the second point has the same
x-coordinate and also satisfies the curve equation. We observe that if P = (x1, y1) is on the curve
then so is (x1,−y1 − a1x1 − a3), which corresponds to −P since the point at infinity is the neutral
element for this law. Accordingly, we find y3 = −λx3 − µ − a1x3 − a3.

Doubling P = (x1, y1) works just the same with the slope obtained by implicit derivating. Thus
we have P ⊕ Q = (x3, y3) and

−P = (x1,−y1 − a1x1 − a3),
P ⊕ Q = (λ2 + a1λ − a2 − x1 − x2, λ(x1 − x3) − y1 − a1x3 − a3), where

λ =

⎧⎪⎪⎨
⎪⎪⎩

y1 − y2

x1 − x2
if P �= +−Q,

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if P = Q.

It is immediate from the pictorial description that this law is commutative, has the point at infinity as
neutral element, and that the inverse of (x1, y1) is given by (x1,−y1−a1x1−a3). The associativity
can be shown to hold by simply applying the group law and comparing elements. We leave the
lengthy computation to the reader. Note that Chapter 4 gives extensive background showing in an
abstract way the group of points on E to form a group. For a more geometrical proof, relying on
Bezout’s theorem, see e.g., [CAS 1991].

Example 13.4 One can easily check that the points P1 = (1118, 269) and Q1 = (892, 529) lie on
the curve E1/Fp as defined by (13.3). Then

−P1 = (1118, 1493),
P1 ⊕ Q1 = (1681, 1706),

[2]P1 = (1465, 677)

are also on E1.

The point at infinity can be motivated by giving an alternative description of elliptic curves. Equa-
tion (13.1) expresses the curve in affine coordinates. The same elliptic curve E in projective coor-
dinates is then given by the equation

E : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3.

Let us denote by (X1 : Y1 : Z1) an element of the projective 2-space P2/K , i.e., a class of
K

3
� {(0, 0, 0)} modulo the relation

(X1 : Y1 : Z1) ∼ (X2 : Y2 : Z2) ⇐⇒ there is λ ∈ K
∗ | X2 = λX1, Y2 = λY1 and Z2 = λZ1.
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By abuse of notation, we identify a class with any of its representatives and call (X1 : Y1 : Z1)
a projective point. We remark that only a single point of E satisfies Z1 = 0, namely the point at
infinity, which is in this case P∞ = (0 : 1 : 0). When Z1 �= 0, there is a simple correspondence
between the projective point (X1 : Y1 : Z1) and the affine point (x1, y1) using the formula

(x1, y1) = (X1/Z1, Y1/Z1) (13.4)

As the representation (X1 : Y1 : Z1) is not normalized, one can perform arithmetic in projec-
tive coordinates without any inversion. Note also that generalized projective coordinates involving
suitable powers of Z1 in (13.4) are commonly used, cf. Sections 13.2.1 and 13.3.1.

Example 13.5 The point P ′
1 = (917 : 527 : 687) lies on the curve E1 of equation (13.3) expressed

in projective coordinates, i.e.,

E1 : Y 2Z + 2XY Z + 8Y Z2 = X3 + 5X2Z + 1136XZ2 + 531Z3.

In fact, P ′
1 is in the same class as (1118 : 269 : 1) and thus corresponds to the affine point P1 =

(1118, 269).

13.1.2 Scalar multiplication

Take n ∈ N� {0} and let us denote the scalar multiplication by n on E by [n], or [n]E to avoid
confusion. Namely,

[n] : E → E

P �→ [n]P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n times

.

This definition extends trivially to all n ∈ Z, setting [0]P = P∞ and [n]P = [−n](−P ) for n < 0.
Chapter 9 deals with exponentiation, i.e., the computation of x to some power n. In the context of
elliptic curves, this corresponds to [n]P . Thus multiplications, squarings, and divisions are replaced
by additions, doublings, and subtractions on E.

As an example, we give the analogue of Algorithm 9.10 with additive notation.

Algorithm 13.6 Sliding window scalar multiplication on elliptic curves

INPUT: A point P on an elliptic curve E, a nonnegative integer n = (nl−1 . . . n0)2, a parameter
k � 1 and the precomputed points [3]P, [5]P, . . . , [(2k − 1)]P .

OUTPUT: The point [n]P .

1. Q ← P∞ and i ← l − 1

2. while i � 0 do

3. if ni = 0 then Q ← [2]Q and i ← i − 1

4. else

5. s ← max(i − k + 1, 0)

6. while ns = 0 do s ← s + 1

7. for h = 1 to i − s + 1 do Q ← [2]Q

8. u ← (ni . . . ns)2 [ni = ns = 1 and i − s + 1 � k]

9. Q ← Q ⊕ [u]P [u is odd so that [u]P is precomputed]
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10. i ← s − 1

11. return Q

Remark 13.7 Since subtractions can be obtained in a straightforward way, signed-digit representa-
tions of n are well suited to compute [n]P , cf. Section 9.1.4.

Example 13.8 With the settings of Example 13.4, let us compute [763]P1 with Algorithm 13.6 and
a window of size 3. We precompute [3]P1 = (1081, 1674), [5]P1 = (851, 77), [7]P1 = (663, 1787)
and since 763 = (101

5
111

7
101

5
1
1
)2, the intermediate values of Q are

[5]P1 = (851, 77), [10]P1 = (4, 640), [20]P1 = (836, 807),
[40]P1 = (1378, 1696), [47]P1 = (1534, 747), [94]P1 = (1998, 1094),

[188]P1 = (1602, 1812), [376]P1 = (478, 1356), [381]P1 = (1454, 981),
[762]P1 = (1970, 823), [763]P1 = (1453, 1428).

Using the NAF expansion of 763 = (101̄
3

00000 1̄01̄
−5

)s instead, one obtains

[3]P1 = (1081, 1674), [6]P1 = (255, 1499), [12]P1 = (459, 1270),
[24]P1 = (41, 1867), [48]P1 = (1461, 904), [96]P1 = (1966, 1808),

[192]P1 = (892, 529), [384]P1 = (1928, 1803), [768]P1 = (799, 1182),
[763]P1 = (1453, 1428).

The last step, namely [763]P1 = [768]P1 ⊕ [−5]P1, needs [−5]P1 = (851, 216) which is obtained
directly from [5]P1.

13.1.3 Rational points

When we consider a point P on an elliptic curve E/K , it is implicit that P has its coordinates in
K. To stress that P has its coordinates in K , we introduce a new concept.

Definition 13.9 Let E be an elliptic curve defined over K . The points lying on E with coordinates
in K form the set of K-rational points of E denoted by E(K). We have

E(K) = {(x1, y1) ∈ K2 | y2
1 + a1x1y1 + a3y1 = x3

1 + a2x
2
1 + a4x1 + a6} ∪ {P∞}.

The structure of the group of Fq-rational points is easy to describe. Indeed, by Corollary 5.77, E(Fq)
is either cyclic or isomorphic to a product of two cyclic groups, namely E(Fq) 
 Z/d1Z× Z/d2Z

where d1 | d2 and d1 | q − 1.
For cryptographic applications one usually works in a subgroup of prime order 	. Hence, one

is interested in curves and finite fields such that |E(Fq)| = c	 for some small cofactor c. See
[GAMC 2000] for conjectural probabilities that the number of points is a prime or has a small
cofactor.

Finding a random Fq-rational point P on an elliptic curve E/Fq is quite easy. See Sections 13.2
and 13.3 for examples. If the curve has a cofactor c > 1 then this random point needs not lie inside
the group of order 	. However, the point Q = [c]P either equals P∞, in which case one has to try
with a different random point P , or is a point in the prime order subgroup.

Example 13.10 Let us consider the curve E1 as defined by (13.3). One can check that |E1(Fp)| =
1956 = 12 × 163. So, there are 1955 affine points with coordinates in Fp and the point at infinity
P∞ lying on E1. The point P1 = (1118, 269) is of order 1956 which implies that the group E1(Fp)
is cyclic generated by P1. The point Q1 = (892, 529) is of prime order 163.
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13.1.4 Torsion points

Definition 13.11 Let E/K be an elliptic curve and n ∈ Z. The kernel of [n], denoted by E[n],
satisfies

E[n] = {P ∈ E(K) | [n]P = P∞}.
An element P ∈ E[n] is called a n-torsion point.

Example 13.12 As E1(Fp) is cyclic of order 1956 = 22 × 3 × 163, there are n-torsion points in
E1(Fp) for every n dividing 1956. For instance, R1 = (1700, 299) on E1 satisfies R1 = −R1. Thus
R1 is a 2-torsion rational point. If n is not a divisor of 1956, the corresponding n-torsion points
have coordinates in some extension of Fp. For example, there is a 9-torsion point with coordinates
in the field Fp3 
 Fp[θ] with θ such that θ3 + θ2 + 2 = 0. Indeed, we can check that

S1 = (1239θ2 + 1872θ + 112, 1263θ2 + 334θ + 1752) ∈ E1(Fp3),
[3]S1 = (520, 1568) ∈ E1(Fp),
[8]S1 = (1239θ2 + 1872θ + 112, 265θ2 + 1931θ + 19) = −S1

so that S1 is a 9-torsion point.
See also the related notion of division polynomial in Section 4.4.2.a.

Theorem 13.13 Let E be an elliptic curve defined over K . If the characteristic of K is either zero
or prime to n then

E[n] 
 Z/nZ× Z/nZ.

Otherwise, when char(K) = p and n = pr, then either

E[pr] = {P∞}, for all r � 1 or E[pr] 
 Z/prZ, for all r � 1.

Definition 13.14 Let char(K) = p and let E be defined over K . If E[pr] = {P∞} for one and in
fact for all positive integers r, then the curve is called supersingular. Otherwise the curve is called
ordinary.

A curve defined over a prime field Fp, p > 3 is supersingular if and only if |E(Fp)| = p + 1,
cf. Proposition 13.31. Note also that if char(Fq) = 2 or 3, E is supersingular if and only if its
j-invariant is zero.

Example 13.15 The curve E1/Fp is ordinary. This implies that E1[p] is a subgroup of
(
E1(Fp),⊕

)
isomorphic to (Fp, +).

13.1.5 Isomorphisms

Some changes of variables do not fundamentally alter an elliptic curve. Let us first describe the
transformations that keep the curve in Weierstraß form.

13.1.5.a Admissible change of variables and twists

Let E/K be an elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

The maps
x �→ u2x′ + r and y �→ u3y′ + u2sx′ + t
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with (u, r, s, t) ∈ K∗ × K3 are invertible and transform the curve E into

E′ : y′2 + a′
1x

′y′ + a′
3y

′ = x′3 + a′
2x

′2 + a′
4x

′ + a′
6,

where the a′
i’s belong to K and can be expressed in terms of the ai’s and u, r, s, t. Via the inverse

map, we associate to each point of E a point of E′ showing that both curves are isomorphic over
K . These changes of variables are the only ones leaving invariant the shape of the defining equation
and, hence, they are the only admissible change of variables.

In case (u, r, s, t) belongs to K
∗× K

3
whereas the curves E and E′, as above, are still defined

over K , then E and E′ are isomorphic over K or twists of each other.

Corollary 13.16 Assume that the characteristic of K is prime to 6 and let E be given by a short
Weierstraß equation

E : y2 = x3 + a4x + a6.

• If a4 = 0 then for every a′
6 ∈ K∗ the curve E is isomorphic to E′ : y2 = x3 + a′

6 over
K
(
(a6/a′

6)
1/6
)
.

• If a6 = 0 then for every a′
4 ∈ K∗ the curve E is isomorphic to E′ : y2 = x3 + a′

4x over
K
(
(a4/a′

4)
1/4
)
.

• If a4a6 �= 0 then for every v ∈ K∗ the curve E is isomorphic to Ẽv : y2 = x3+a′
4x+a′

6

with a′
4 = v2a4 and a′

6 = v3a6 over the field K(
√

v).

The curves Ẽv are called quadratic twists of E. Note that E is isomorphic to Ẽv over K if and only
if v is a square in K∗. Therefore up to isomorphisms there is only one quadratic twist of a curve
with a4a6 �= 0.

Remark 13.17 Likewise one can define the quadratic twist of E by a quadratic nonresidue v as
Ẽv : vy2 = x3 + a4x + a6, which is isomorphic to the above definition, as can be seen by dividing
by v3 and transforming y �→ y/v, x �→ x/v.

From this form one sees that E and Ẽv together contain exactly two points (x, yi) for each field
element x ∈ Fq .

Proposition 13.18 Let E/K and E′/K be two elliptic curves. If E and E′ are isomorphic over K
then they have the same j-invariant. Conversely, if j(E) = j(E′) then E and E′ are isomorphic
over K.

Using an adequate isomorphism over K , it is always possible to find a short Weierstraß equation
that actually depends on the characteristic of the field and on the value of the j-invariant. All the
cases and equations are summarized in Table 13.2.

Table 13.2 Short Weierstraß equations.

charK Equation ∆ j

�= 2, 3 y2 = x3 + a4x + a6 −16(4a3
4 + 27a2

6) 1728a3
4/4∆

3 y2 = x3 + a4x + a6 −a3
4 0

3 y2 = x3 + a2x
2 + a6 −a3

2a6 −a3
2/a6

2 y2 + a3y = x3 + a4x + a6 a4
3 0

2 y2 + xy = x3 + a2x
2 + a6 a6 1/a6
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Example 13.19 The change of variables (x, y) �→ (x−2, y−x−2) transforms the curve E1 given
by (13.3) into

E2 : y2 = x3 + 1132x + 278.

The point P1 = (1118, 269) is mapped to P2 = (1120, 1391) ∈ E2(Fp).
Let v be a quadratic nonresidue modulo p = 2003 and let u ∈ Fp2 be a square root of v. Then

the change of variables (x, y) �→ (x/u2, y/u3) is an Fp2 -isomorphism between

E2 : y2 = x3 + 1132x + 278.

and its quadratic twist by v, namely

Ẽ2,v : y2 = x3 + 1132v2x + 278v3.

We have ∆(Ẽ2,v) = v6∆(E2) and j(Ẽ2,v) = j(E2) = 171.
The curves E2 and Ẽ2,v are defined over Fp whereas the isomorphism has coefficients in Fp2 .

Remark 13.20 There are many other ways to represent an elliptic curve. For instance, we can cite
the Legendre form

y2 = x(x − 1)(x − λ)

or the Jacobi model
y2 = x4 + ax2 + b.

Over a field of characteristic greater than 3, it is also possible to represent an elliptic curve as the
intersection of two quadrics with a rational point [CAS 1991]. The resulting Jacobi form is used in
[LISM 2001] to prevent SPA/DPA attacks, cf. Section 29.1.2.c. Quite recently, some attention has
been given to another representation, namely the Hessian form, which presents some advantages
from an algorithmic and cryptographic point of view [SMA 2001, FRI 2001, JOQU 2001].

13.1.5.b Hessian form

Let Fq be a finite field where q is a prime power such that q ≡ 2 (mod 3) and consider an elliptic
curve E over Fq with a Fq-rational point of order 3. These assumptions are not fundamentally
necessary but they make the construction of the Hessian form easier and let the equation be defined
over Fq. In particular, one can assume that E is given by the equation

E : y2 + a1xy + a3y = x3,

moving a point of order 3 to the origin, if necessary.
Let δ = (a3

1 − 27a3) so that ∆ = a3
3δ. Now if q ≡ 2 (mod 3) every element α ∈ Fq is a cube.

Thus every α has a unique cube root, denoted by α1/3, which is equal to plus or minus the square
root of α(q+1)/3. This implies that

µ =
1
3
(
(−27a3δ

2 − δ3)1/3 + δ
)
∈ Fq.

With these settings, to every point (x1, y1) on E corresponds (X1 : Y1 : Z1) with

X1 =
a1(2µ − δ)

3µ − δ
x1 + y1 + a3, Y1 =

−a1µ

3µ − δ
x1 − y1, Z1 =

−a1µ

3µ − δ
x1 − a3

on the cubic

H : X3 + Y 3 + Z3 = cXY Z where c = 3
µ − δ

µ
·
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Definition 13.21 The equation H is called the Hessian form of E.

One of the main features of elliptic curves expressed in Hessian form is the simplicity of the group
law, which is independent of the parameter c.

Namely, take P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) on H such that P �= Q, then the point
with coordinates (X3 : Y3 : Z3) such that

X3 = Y 2
1 X2Z2 − Y 2

2 X1Z1, Y3 = X2
1Y2Z2 − X2

2Y1Z1, Z3 = Z2
1X2Y2 − Z2

2X1Y1

is on H and corresponds to P ⊕ Q.
One can check that the neutral element for that law is (1 : −1 : 0) and that the opposite of P1 is

−P1 = (Y1 : X1 : Z1).
The coordinates of [2]P are

X3 = Y1(Z3
1 − X3

1 ), Y3 = X1(Y 3
1 − Z3

1 ), Z3 = Z1(X3
1 − Y 3

1 ).

An addition requires 12 field multiplication and 6 squarings, whereas a doubling needs 6 multiplica-
tions and 3 squarings and both operations can be implemented in a highly parallel way [SMA 2001].
It is also interesting to note that [2]P is equal to (Z1 : X1 : Y1)⊕ (Y1 : Z1 : X1). As a consequence
the same formulas can be used to double, add, and subtract points, which makes Hessian curves
interesting against side-channel attacks [JOQU 2001] (cf. Section 29.1.2.b).

To find the Hessian form of an elliptic curve E/Fq in the general case [FRI 2001], we remark
that the j-invariant of H is equal to

j =
c3(c3 + 216)3

c9 − 81c6 + 2187c3 − 19683
·

So the Hessian form of E is defined over Fq if and only if there exists c ∈ Fq such that

c3(c3 + 216)3 − j(c9 − 81c6 + 2187c3 − 19683) = 0

where j is the j-invariant of E.

Example 13.22 Take
E2 : y2 = x3 + 1132x + 278

defined over Fp with p = 2003. Moving the point (522, 1914) ∈ E2(Fp) of order 3 to the origin by
the transformation

(x, y) �→ (x + 522, y + 555x + 1914)

gives the curve
E3 : y2 + 1110xy + 1825y = x3.

So, from above, δ = 1427 and µ = 1322 so that E3, consequently E2 and E1, are all isomorphic to

H : X3 + Y 3 + Z3 = 274XY Z.

The point (1118, 269) on E1 is sent to (1120, 1391) on E2, from where it is in turn mapped to
(598, 85) on E3, which is finally sent to (1451 : 672 : 935) on H .

Note that all these transformations respect the group laws of the different curves. Indeed, a K-
isomorphism between the curves E and E′ always gives rise to a group homorphism between E(K)
and E′(K). However, these notions are different. That is why we introduce a new concept in the
following.
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13.1.6 Isogenies

Definition 13.23 Two curves E/K and E′/K are isogenous over K if there exists a morphism
ψ : E → E′ with coefficients in K mapping the neutral element of E to the neutral element of E′.
From this simple property, it is possible to show that ψ is a group homomorphism from E(K) to
E′(K).

One important property is that for every isogeny ψ, there exists a unique isogeny ψ̂ : E′ → E called
the dual isogeny such that

ψ̂ ◦ ψ = [m]E and ψ ◦ ψ̂ = [m]E′ .

The degree of the isogeny ψ is equal to this m. For more background on isogenies, we refer to
Section 4.3.4

Proposition 13.24 Two elliptic curves E and E′ defined over Fq are isogenous over Fq if and only
|E(Fq)| = |E′(Fq)|.

Example 13.25 Take
E2 : y2 = x3 + 1132x + 278

and
E4 : y2 = x3 + 500x + 1005.

These two curves have the same cardinality, |E2(Fp)| = |E4(Fp)| = 1956. Then E2 and E4 must
be isogenous over F2003. The isogeny of degree 2 is given by the formula [LER 1997]

ψ : (x, y) �−→
(

x2 + 301x + 527
x + 301

, yx2 + 602yx + 1942y

x2 + 602x + 466

)
·

For instance, the points, P2 = (1120, 1391) and Q2 = (894, 1425) in E2(Fp) are respectively
mapped by ψ on P4 = (565, 302) and Q4 = (1818, 1002) which lie on E4. Now

P2 ⊕ Q2 = (1683, 1388),
P4 ⊕ Q4 = (1339, 821),

ψ(P2 ⊕ Q2) = (1339, 821),
= ψ(P2) ⊕ ψ(Q2).

Note that E2 and E4 are isogenous but not isomorphic since j(E2) = 171 whereas j(E4) = 515.
Furthermore, the group structure is different as E2(Fp) is cyclic while E4(Fp) is the direct product
of a group of order 2 generated by (1829, 0) and a group of order 978 generated by (915, 1071).

13.1.7 Endomorphisms

The multiplication by n is an endomorphism of the curve E for every n ∈ Z. The set of all
endomorphisms of E defined over K will be denoted by EndK(E) or more simply by End(E),
and thus contains at least Z.

Definition 13.26 If End(E) is strictly bigger than Z we say that E has complex multiplication.

Let E be a nonsupersingular elliptic curve over Fq. Such an E always has complex multiplication.
Indeed, the Frobenius automorphism of Fq extends to the points of the curve by sending P∞ to itself
and P = (x1, y1) to φq(P ) = (xq

1, y
q
1). One can easily check that the point φq(P ) is again a point

on the curve irrespective of the field of definition of P . Hence, φq is an endomorphism of E, called
the Frobenius endomorphism of E/Fq. It is different from [n] for all n ∈ Z.
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Example 13.27 Take P1 = (1120, 391) on E1/Fp. Since P1 has coordinates in Fp, φp(P1) is
simply equal to P1. At present, let us consider a point on E1 with coordinates in an extension of Fp.
For instance, in Example 13.10, we give the point S1 of order 9 in E1(Fp3). We have

S1 = (1239θ2 + 1872θ + 112, 1263θ2 + 334θ + 1752),
φp(S1) = (217θ2 + 399θ + 1297, 681θ2 + 811θ + 102),
φ2

p(S1) = (547θ2 + 1735θ + 297, 59θ2 + 858θ + 325),

φ3
p(S1) = (1239θ2 + 1872θ + 112, 1263θ2 + 334θ + 1752) = S1.

All of them are also 9-torsion points.

13.1.8 Cardinality

The cardinality of an elliptic curve E over Fq , i.e., the number of Fq-rational points, is an important
aspect for the security of cryptosystems built on E(Fq), cf. Section 19.3.

The theorem of Hasse–Weil relates the number of points to the field size.

Theorem 13.28 (Hasse–Weil) Let E be an elliptic curve defined over Fq. Then

|E(Fq)| = q + 1 − t and |t| � 2
√

q.

Remarks 13.29

(i) The integer t is called the trace of the Frobenius endomorphism.

(ii) For any integer t ∈ [−2
√

p, 2
√

p] there is at least one elliptic curve E defined over Fp

whose cardinality is p + 1 − t.

Concerning admissible cardinalities, the more general result is proved in [WAT 1969].

Theorem 13.30 Let q = pd. There exists an elliptic curve E defined over Fq with |E(Fq)| =
q + 1 − t if and only if one of the following conditions holds:

1. t �≡ 0 (mod p) and t2 � 4q.

2. d is odd and either (i) t = 0 or (ii) p = 2 and t2 = 2q or (iii) p = 3 and t2 = 3q.

3. d is even and either (i) t2 = 4q or (ii) p �≡ 1 (mod 3) and t2 = q or (iii) p �≡ 1
(mod 4) and t = 0.

One associates to φq the polynomial

χE(T ) = T 2 − tT + q.

It is called the characteristic polynomial of the Frobenius endomorphism, since

χE(φq) = φ2
q − [t]φq + [q] = [0].

So, for each P ∈ E(Fq), we have

φ2
q(P ) ⊕ [−t]φq(P ) ⊕ [q]P = P∞.

As points in E(Fq) are fixed under φq they form the kernel of (Id−φq) and |E(Fq)| = χE(1).
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From the complex roots τ and τ of χE(φq) one can compute the group order of E(Fqk), that is

|E(Fqk)| = qk + 1 − τk − τk, for all k � 1. (13.5)

More explicitly, one has

|E(Fqk)| = qk + 1 − tk

where the sequence (tk)k∈N satisfies t0 = 2, t1 = t and tk+1 = ttk − qtk−1, for k � 1.

We also have the following properties.

Proposition 13.31 Let E be a curve defined over a field Fq of characteristic p. The curve E is
supersingular if and only if the trace t of the Frobenius satisfies

t ≡ 0 (mod p).

Proposition 13.32 Let E be a curve defined over Fq and let Ẽ be the quadratic twist of E. Then

|E(Fq)| + |Ẽ(Fq)| = 2q + 2.

This can be easily seen to hold from Remark 13.17. One immediately gets χ
eE(T ) = T 2 + tT + q.

When one tries to find a curve with a suitable cryptographic order, that is, an order with a large prime
factor, Proposition 13.32 is especially useful since it gives two candidates for each computation, cf.
Chapter 17.

Example 13.33 The cardinality of E2(Fp) is 1956. Therefore, φp satisfies

χE2(T ) = T 2 − 48T + 2003.

Let R2 = (443θ2 + 1727θ + 1809, 929θ2 + 280θ + 946). Then

φp(R2) = (857θ2 + 1015θ + 766, 126θ2 + 1902θ + 419),
φ2

p(R2) = (703θ2 + 1264θ + 1568, 948θ2 + 1824θ + 119)

and one can check that

φ2
p(R2) − [48]φ2003(R2) + [2003]R2 = P∞.

Also, we deduce that |E2(Fp2)| = 4013712 and |E2(Fp3)| = 8036231868.
Finally the cardinality of the curve

Ẽ2 : y2 = x3 + 774x + 1867

which is the twist of E2 by the quadratic nonresidue 78, satisfies |Ẽ2| = 2052, and the characteristic
equation of the Frobenius of Ẽ2/Fp is

χ
eE2

(T ) = T 2 + 48T + 2003.
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13.2 Arithmetic of elliptic curves defined over FpFpFpFpFpFpFpFp

In this section we consider curves defined over finite prime fields. As they should be used in cryp-
tographic applications, we can assume p to be large, hence, at least p > 3. We remark that all
considerations in this section hold true for an elliptic curve defined over an arbitrary finite field Fq

if char(Fq) > 3 and for supersingular curves over field of characteristic 3.
We already know that an elliptic curve E can be represented with respect to several coordinate

systems, e.g., affine or projective coordinates. In the following we deal with efficient addition and
doubling in the group of points E. To this aim we introduce five different coordinate systems in
which the speeds of addition and doubling differ. We measure the time by the number of field
operations needed to perform the respective operation.

In characteristic p > 3, one can always take for E, cf. Table 13.2, an equation of the form

E : y2 = x3 + a4x + a6,

where a4 and a6 are in Fp. The points lying on the curve can have coordinates in Fp or in some
extension Fq/Fp, for instance in an optimal extension field, cf. Section 11.3. This has two advan-
tages. First, it is straightforward to obtain the cardinality of E(Fq) using (13.5) and one can use the
Frobenius φp to speed up computations, cf. Section 15.1.

In the remainder of this section we deal with addition and doubling in different coordinate sys-
tems, give strategies for choosing optimal coordinates for scalar multiplication and introduce Mont-
gomery coordinates and their arithmetic. Finally, we show how to compress the representation of a
point.

An elementary multiplication in Fq (resp. a squaring and an inversion) will be abbreviated by M
(resp. S and I).

13.2.1 Choice of the coordinates

This section is based on [COMI+ 1998].
In Section 13.1.1 we explained the group law in general. Here we shall give formulas for the

coordinates of the result of the

• addition of two points P and Q ∈ E(Fp) provided P �= +−Q,
• doubling of P .

13.2.1.a Affine coordinates (AAAAAA)

We can assume that E is given by

y2 = x3 + a4x + a6.

By the arguments above, we know that the opposite of the point (x1, y1) lying on E is (x1,−y1).
Also we have:

Addition

Let P = (x1, y1), Q = (x2, y2) such that P �= +−Q and P ⊕Q = (x3, y3). In this case, addition is
given by

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1, λ =
y1 − y2

x1 − x2
·
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Doubling

Let [2]P = (x3, y3). Then

x3 = λ2 − 2x1, y3 = λ(x1 − x3) − y1, λ =
3x2

1 + a4

2y1
·

For these formulas one can easily read off that an addition and a doubling require I + 2M + S and
I + 2M + 2S, respectively.

Doubling followed by an addition

Building on the ideas in [EILA+ 2003], the authors of [CIJO+ 2003] show how to speed up the
computation of a doubling followed by an addition using [2]P ⊕Q as (P ⊕Q)⊕P . The basic idea,
i.e., omitting the computation of the intermediate values y3 and x3, saves one multiplication and the
new formulas are more efficient whenever a field inversion is more expensive than 6 multiplications.
The formulas are as follows where we assume that P �= +−Q and [2]P �= −Q

A = (x2 − x1)2, B = (y2 − y1)2 C = A(2x1 + x2) − B,

D = C(x2 − x1), E = D−1, λ = CE(y2 − y1),
λ2 = 2y1A(x2 − x1)E − λ, x4 = (λ2 − λ)(λ + λ2) + x2, y4 = (x1 − x4)λ2 − y1,

needing I + 9M + 2S.

13.2.1.b Projective coordinates (PPPPPP)

In projective coordinates, the equation of E is

Y 2Z = X3 + a4XZ2 + a6Z
3.

The point (X1 : Y1 : Z1) on E corresponds to the affine point (X1/Z1, Y1/Z1) when Z1 �= 0 and to
the point at infinity P∞ = (0 : 1 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : −Y1 : Z1).

Addition

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) such that P �= +−Q and P ⊕ Q = (X3 : Y3 : Z3).
Then set

A = Y2Z1 − Y1Z2, B = X2Z1 − X1Z2, C = A2Z1Z2 − B3 − 2B2X1Z2

so that

X3 = BC, Y3 = A(B2X1Z2 − C) − B3Y1Z2, Z3 = B3Z1Z2.

Doubling

Let [2]P = (X3 : Y3 : Z3) then put

A = a4Z
2
1 + 3X2

1 , B = Y1Z1, C = X1Y1B, D = A2 − 8C

and

X3 = 2BD, Y3 = A(4C − D) − 8Y 2
1 B2, Z3 = 8B3.

No inversion is needed, and the computation times are 12M+2S for a general addition and 7M+5S
for a doubling. If one of the input points to the addition is given by (X2 : Y2 : 1), i.e., directly
transformed from affine coordinates, then the requirements for an addition decrease to 9M + 2S.
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13.2.1.c Jacobian and Chudnovsky Jacobian coordinates (JJJJJJ and J cJ cJ cJ cJ cJ c)

With Jacobian coordinates the curve E is given by

Y 2 = X3 + a4XZ4 + a6Z
6.

The point (X1 : Y1 : Z1) on E corresponds to the affine point (X1/Z
2
1 , Y1/Z

3
1 ) when Z1 �= 0 and to

the point at infinity P∞ = (1 : 1 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : −Y1 : Z1).

Addition

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) such that P �= +−Q and P ⊕ Q = (X3 : Y3 : Z3).
Then set

A = X1Z
2
2 , B = X2Z

2
1 , C = Y1Z

3
2 , D = Y2Z

3
1 , E = B − A, F = D − C

and

X3 = −E3 − 2AE2 + F 2, Y3 = −CE3 + F (AE2 − X3), Z3 = Z1Z2E.

Doubling

Let [2]P = (X3 : Y3 : Z3). Then set

A = 4X1Y
2
1 , B = 3X2

1 + a4Z
4
1

and

X3 = −2A + B2, Y3 = −8Y 4
1 + B(A − X3), Z3 = 2Y1Z1.

The complexities are 12M + 4S for an addition and 4M + 6S for a doubling. If one of the points is
given in the form (X1 : Y1 : 1) the costs for addition reduce to 8M + 3S.

The doubling involves one multiplication by the constant a4. If it is small this multiplication
can be performed by some additions and hence be neglected in the operation count. Especially if
a4 = −3 one can compute T = 3X2

1 − 3Z4
1 = 3(X1 − Z2

1 )(X1 + Z2
1 ) leading to only 4M + 4S

for a doubling. Brier and Joye [BRJO 2003] study the use of isogenies to map a given curve to an
isogenous one having this preferable parameter. Their conclusion is that for most randomly chosen
curves there exists an isogeny of small degree mapping it to a curve with a4 = −3, which justifies
that the curves in the standards have this parameter.

The parameter a4 = 0 is even more advantageous as the costs drop down to 3M + 4S. However,
this choice is far more special and the endomorphism ring End(E) contains a third root of unity.

In Jacobian coordinates, doublings are faster and additions slower than for the projective coor-
dinates. To improve additions, a point P can be represented as a quintuple (X1, Y1, Z1, Z

2
1 , Z3

1 ).
These coordinates are called Chudnovsky Jacobian coordinates. Additions and doublings are given
by the same formulas as for J but the complexities are 11M + 3S and 5M + 6S.

13.2.1.d Modified Jacobian coordinates (J mJ mJmJmJmJm)

Modified Jacobian coordinates were introduced by Cohen et al. [COMI+ 1998]. They are based on
J but the internal representation of a point P is the quadruple (X1, Y1, Z1, a4Z

4
1). The formulas

are essentially the same as for J . The main difference is the introduction of C = 8Y1
4 so that

Y3 = B(A − X3) − C and a4Z
4
3 = 2C(a4Z

4
1 ) with the notation of Section 13.2.1.c. An addition

takes 13M + 6S and a doubling 4M + 4S. If one point is in affine coordinates, an addition takes
9M + 5S. As I takes on average between 9 and 40M and S is about 0.8M, this system offers the
fastest doubling procedure.
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13.2.1.e Example

Take
E2 : y2 = x3 + 1132x + 278

and let P2 = (1120, 1391) and Q2 = (894, 1425) be two affine points on E2. We recall below
the equation and the internal representation of P2 and Q2 for each coordinate system. Note that for
projective like systems we put Z to some random value and multiply X and Y by the respective
powers.

System Equation P2 Q2

A y2 = x3 + 1132x + 278 (1120, 1391) (894, 1425)

P Y 2Z = X3 + 1132XZ2 + 278Z3 (450 : 541 : 1449) (1774 : 986 : 1530)

J Y 2 = X3 + 1132XZ4 + 278Z6 (1213 : 408 : 601) (1623 : 504 : 1559)

J c — (1213, 408, 601, 661, 667) (1623, 504, 1559, 842, 713)

J m — (1213, 408, 601, 1794) (1623, 504, 1559, 1232)

With these particular values of P2 and Q2, let us compute P2 ⊕ Q2, [2]P2 and [763]P2 within the
different systems using the double and add method.

System P2 ⊕ Q2 [2]P2 [763]P2

A (1683, 1388) (1467, 143) (1455, 882)

P (185 : 825 : 1220) (352 : 504 : 956) (931 : 1316 : 1464)

J (763 : 440 : 1934) (1800 : 1083 : 1684) (752 : 1146 : 543)

J c (763, 440, 1934, 755, 1986) (1800, 1083, 1684, 1611, 862) (752, 1146, 543, 408, 1214)

J m (763, 440, 1934, 1850) (1800, 1083, 1684, 1119) (752, 1146, 543, 1017)

For each computation, one can check that we obtain a result equivalent to the affine one.

13.2.2 Mixed coordinates

To compute scalar multiples of a point one can use all the methods introduced in Chapter 9, espe-
cially the signed-digit representations, which are useful, as the negative of P is obtained by simply
negating the y-coordinate.

The main idea here is to mix the different systems of coordinates defined above. This idea was
already mentioned in adding an affine point to one in another system. In general, one can add points
expressed in two different systems and give the result in a third one. For example J + J c = Jm

means that we add points in Jacobian and Chudnovsky Jacobian coordinates and express the result
in the modified Jacobian system. So, we are going to choose the most efficient combination for
each action we have to perform. See Table 13.3 on page 284 for a precise count of the required
operations.

Precomputations

The following analysis is given in [COMI+ 1998, Section 4]. Suppose that we want to compute
[n]P . We shall use the NAFw representation of n; see Section 9.1.4. So, we need to precompute
[i]P for each odd i such that 1 < i < 2w−1. For these precomputations, it is useful to choose
either A if some inversions can be performed in the precomputation stage, or J c otherwise, as these
systems give rise to the most efficient (mixed) addition formulas. If A is selected, the Montgomery
trick of simultaneous inversions in Fp should be used, cf. Algorithm 11.15. This leads to

(w − 1)I +
(
5 × 2w−2 + 2w − 12

)
M +

(
2w−2 + 2w − 5

)
S
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Table 13.3 Operations required for addition and doubling.

Doubling Addition

Operation Costs Operation Costs

2P 7M + 5S Jm + Jm 13M + 6S
2J c 5M + 6S Jm + J c = Jm 12M + 5S
2J 4M + 6S J + J c = J m 12M + 5S

2Jm = J c 4M + 5S J + J 12M + 4S
2Jm 4M + 4S P + P 12M + 2S

2A = J c 3M + 5S J c + J c = J m 11M + 4S
2Jm = J 3M + 4S J c + J c 11M + 3S
2A = J m 3M + 4S J c + J = J 11M + 3S
2A = J 2M + 4S J c + J c = J 10M + 2S

— — J + A = Jm 9M + 5S
— — J m + A = J m 9M + 5S
— — J c + A = Jm 8M + 4S
— — J c + A = J c 8M + 3S
— — J + A = J 8M + 3S
— — Jm + A = J 8M + 3S
— — A + A = J m 5M + 4S
— — A + A = J c 5M + 3S
2A I + 2M + 2S A + A I + 2M + S

for the precomputations. Note also that it is possible to avoid some doublings as explained in
Remark 9.11 (iii).

Scalar multiplication

A scalar multiplication [n]P consists of a sequence of doublings and additions. If a signed win-
dowing method is used with precomputations, there are often runs of doublings interfered with only
a few additions. Thus it is worthwhile to distinguish between intermediate doublings, i.e., those
followed by a further doubling, and final doublings, which are followed by an addition and choose
different coordinate systems for them. Cohen et al. propose to perform the intermediate doublings
within J m and to express the result of the last doubling in J since the next step is an addition.
More explicitly, for each nonzero coefficient in the expansion of n the intermediate variable Q is
replaced in each step by some

[2s]Q +− [u]P,

where [u]P is in the set of precomputed multiples. So, we actually perform (s − 1) doublings of
the type 2Jm = Jm, a doubling of the form 2Jm = J , and then an addition J + A = J m or
J + J c = J m depending on the coordinates of the precomputed values.

Let the windowing work as

n = 2n0(2n1(· · · 2nv−1(2nvW [v] + W [v − 1]) · · · ) + W [0]),

where W [i] is an odd integer in the range−2w−1+1 � W [i] � 2w−1−1 for all i, W [v] > 0, n0 � 0
and ni � w + 1 for i � 1.
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In the main loop we perform u =
∑v

i=0 ni doublings and v additions. Put l1 = l − (w − 1)/2 and
K = 1/2 − 1/(w + 1). On average l1 + K doublings and (l1 − K)/(w + 1) additions are used.

Then we need approximately

(
l1 + K +

l1 − K

w + 1

)
I +
(
2(l1 + K) +

2
w + 1

(l1 − K)
)
M +

(
2(l1 + K) +

2
w + 1

(l1 − K)
)
S

to compute [n]P excluding the costs for the precomputations if only affine coordinates are used,

(
4(l1 + K) +

8
w + 1

(l1 − K)
)
M +

(
4(l1 + K) +

5
w + 1

(l1 − K)
)
S

if the precomputed points are in A and the computations are done without inversions using J and
Jm for the intermediate points, and

(
4(l1 + K) +

11
w + 1

(l1 − K)
)
M +

(
4(l1 + K) +

5
w + 1

(l1 − K)
)
S

if the precomputed points are in J c. Now depending on the ratio I/M, A or J c should be cho-
sen. For instance, for a 192-bits key length we choose A if I < 33.9M and J c otherwise, cf.
[COMI+ 1998].

13.2.3 Montgomery scalar multiplication

This technique was first described by Montgomery [MON 1987] for a special type of curve in large
characteristic and has been generalized to other curves and to even characteristic; see Section 13.3.4.

13.2.3.a Montgomery form

Let EM be an elliptic curve expressed in Montgomery form, that is

EM : By2 = x3 + Ax2 + x. (13.6)

The arithmetic on EM relies on an efficient x-coordinate only computation and can be easily imple-
mented to resist side-channel attacks, cf. Chapter 29. Indeed, let P = (x1, y1) be a point on EM .
In projective coordinates, we write P = (X1 : Y1 : Z1) and let [n]P = (Xn : Yn : Zn). The sum
[n + m]P = [n]P ⊕ [m]P is given by the following formulas where Yn never appears.

Addition: n �= m

Xm+n = Zm−n

(
(Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn)

)2
,

Zm+n = Xm−n

(
(Xm − Zm)(Xn + Zn) − (Xm + Zm)(Xn − Zn)

)2
.

Doubling: n = m

4XnZn = (Xn + Zn)2 − (Xn − Zn)2,
X2n = (Xn + Zn)2(Xn − Zn)2,
Z2n = 4XnZn

(
(Xn − Zn)2 +

(
(A + 2)/4

)
(4XnZn)

)
.

Thus an addition takes 4M and 2S whereas a doubling needs only 3M and 2S.



286 Ch. 13 Arithmetic of Elliptic Curves

For some systems, the x-coordinate xn of [n]P is sufficient but others, like some signature schemes,
need the y-coordinate as well, cf. Chapter 1. To recover yn = Yn/Zn, we use the following formula
[OKSA 2001]

yn =
(x1xn + 1)(x1 + xn + 2A) − 2A − (x1 − xn)2xn+1

2By1

, (13.7)

where P = (x1, y1) and xn and xn+1 are the affine x-coordinates of [n]P and [n + 1]P .

13.2.3.b General case

Brier et Joye [BRJO 2002] generalized Montgomery’s idea to any curve in short Weierstraß equation

E : y2 = x3 + a4x + a6.

Their formulas require more elementary operations.

Addition: n �= m

Xm+n = Zm−n

(
−4a6ZmZn(XmZn + XnZm) + (XmXn − a4ZmZn)2

)
,

Zm+n = Xm−n(XmZn − XnZm)2.

Doubling: n = m

X2n = (X2
n − a4Z

2
n)2 − 8a6XnZ3

n,

Z2n = 4Zn

(
Xn(X2

n + a4Z
2
n) + a6Z

3
n

)
.

When P is an affine point, an addition requires 9M and 2S whereas a doubling needs 6M and 3S.
To recover yn in this case, we apply the formula

yn =
2a6 + (x1xn + a4)(x1 + xn) − (x1 − xn)2xn+1

2y1

.

13.2.3.c Transformation to Montgomery form

It is always possible to convert a curve in Montgomery form (13.6) into short Weierstraß equation,
putting a4 = 1/B2 − A2/3B2 and a6 = −A3/27B3 − a4A/3B. But the converse is false. Not
all elliptic curves can be written in Montgomery form. However, this holds true as soon as p ≡ 1
(mod 4) and x3 + a4x + a6 has three roots in Fp. More generally, a curve in short Weierstraß form
can be converted to Montgomery form if and only if

• the polynomial x3 + a4x + a6 has at least one root α in Fp,

• the number 3α2 + a4 is a quadratic residue in Fp.

Put A = 3αs, B = s where s is a square root of (3α2 + a4)−1 and the change of variables
(x, y) �→ (x/s + α, y/s) is an isomorphism that transforms E into EM . For such curves (0, 0) is a
point of order 2 and |E(Fp)| is divisible by 4.

Note that recent standards [SEC, NIST] recommend that the cardinality of E should be a prime
number times a cofactor less than or equal to 4. One can state divisibility conditions in terms of
the Legendre symbol

( ·
p

)
· For a curve in Montgomery form |E(Fp)| is not divisible by 8 in the

following cases:
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p ≡ 1 (mod 4) p ≡ 3 (mod 4)
“

A+2
p

” “
A−2

p

” “
B
p

” “
A+2

p

” “
A−2

p

”

−1 +1 −1 −1 +1

+1 −1 −1

+1 +1 −1

−1 −1 +1

Let v be a quadratic nonresidue and let Ẽv be the quadratic twist of E by v, cf. Example 13.19. Then
either both E and Ẽv are transformable to Montgomery form or none is. Together with Schoof’s
point counting algorithm (see Section 17.2) this gives an efficient method for generating a curve
transformable to Montgomery form whose cofactor is equal to 4.

Example 13.34 Let us show that E2/Fp

E2 : y2 = x3 + 1132x + 278

can be expressed in Montgomery form.
First, α = 1702 satisfies

α3 + 1132α + 278 = 0

and 3α2 + a4 = 527 is a quadratic residue modulo p = 2003. Since s = 899 is an inverse square
root of 527, we have A = 1421, B = 899 and the isomorphism (x, y) �→

(
899(x − 1702), 899y

)
maps the points of E2 on the points of

E2,M : 899y2 = x3 + 1421x2 + x.

For instance, P2 = (1120, 1391) on E2 is sent on P2,M = (1568, 637) on E2,M .

13.2.3.d Montgomery ladder

Whatever the form of the curve, we use a modified version of Algorithm 9.5 adapted to scalar
multiplication to compute [n]P .

Algorithm 13.35 Scalar multiplication using Montgomery’s ladder

INPUT: A point P on E and a positive integer n = (n�−1 . . . n0)2.

OUTPUT: The point [n]P .

1. P1 ← P and P2 ← [2]P

2. for i = � − 2 down to 0 do

3. if ni = 0 then

4. P1 ← [2]P1 and P2 ← P1 ⊕ P2

5. else

6. P1 ← P1 ⊕ P2 and P2 ← [2]P2

7. return P1
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Remarks 13.36

(i) At each step, one performs one addition and one doubling, which makes this method interest-
ing against side-channel attacks, cf. Chapter 29.

(ii) We can check that P2�P1 is equal to P at each step so that Zm−n = Z1 in the formulas above.
If P is expressed in affine coordinates this saves an extra multiplication in the addition. So the
total complexity to compute [n]P is (6M + 4S)(|n|2 − 1) for elliptic curves in Montgomery
form and (14M + 5S)(|n|2 − 1) in short Weierstraß form.

Example 13.37 Let us compute [763]P2,M with Algorithm 13.35. We have 763 = (1011111011)2
and the different steps of the computation are given in the following table where P stands for P2,M

and the question mark indicates that the y-coordinate is unknown.

i ni (P1, P2) P1 P2

9 1 (P, [2]P ) (1568 : 637 : 1) (35 : ? : 1887)

8 0 ([2]P, [3]P ) (35 : ? : 1887) (1887 : ? : 1248)

7 1 ([5]P, [6]P ) (531 : ? : 162) (120 : ? : 1069)

6 1 ([11]P, [12]P ) (402 : ? : 1041) (909 : ? : 1578)

5 1 ([23]P, [24]P ) (1418 : ? : 1243) (1389 : ? : 1977)

4 1 ([47]P, [48]P ) (613 : ? : 37) (1449 : ? : 231)

3 1 ([95]P, [96]P ) (1685 : ? : 1191) (1256 : ? : 842)

2 0 ([190]P, [191]P ) (119 : ? : 1871) (1501 : ? : 453)

1 1 ([381]P, [382]P ) (1438 : ? : 956) (287 : ? : 868)

0 1 ([763]P, [764]P ) (568 : ? : 746) (497 : ? : 822)

To recover the y-coordinate of [763]P2,M , we apply (13.7) with x1 = 1568, y1 = 637, xn and xn+1

respectively equal to 568/746 and 497/822. Finally, [763]P2,M = (280, 1733).

13.2.4 Parallel implementations

For the addition formulas in affine coordinates only a few field operations are used and, hence,
parallelization is not too useful. In the other coordinate systems two processors can be applied to
reduce the time for a group operation.

For Montgomery coordinates a parallel implementation using two processors is immediate, name-
ly one can take care of the addition while the other performs the doubling. This is possible as both
operations need about the same amount of operations, reducing the idle time.

Smart [SMA 2001] investigates parallel implementations of Hessian coordinates.
For Jacobian coordinates on arbitrary curves, Izu and Takagi [IZTA 2002a] propose a parallel

version that additionally proposes methods for k-fold doubling. It can be implemented together
with precomputations and windowing methods for scalar multiplication. Also [FIGI+ 2002] deals
with parallel implementation. We come back to efficient parallel implementations in the chapter on
side-channel attacks, cf. Chapter 29.

13.2.5 Compression of points

For some applications it might be desirable to store or transmit as few bits as possible and still keep
the same amount of information.

The following technique works for elliptic curves E/Fq over arbitrary finite fields Fq = Fpd =
Fp(θ) of odd characteristic p (for details on the arithmetic of finite fields we refer to Chapter 11).
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For an elliptic curve E : y2 = x3 + a2x
2 + a4x + a6 there are at most two points with the same

x-coordinate, namely P = (x1, y1) and −P = (x1,−y1). They are equal if and only if y1 = 0, i.e.,
for the Weierstraß points.

Compression

To uniquely identify the point one saves x1 and one bit b(y1). It is set to 0 if in the field representa-
tion y1 =

∑d−1
i=0 ciθ

i the value of c0 taken as a nonnegative integer is even and set to 1 otherwise.
This procedure works as −y1 has p−c0 as its least significant coefficient, which is of opposite parity
as p is odd. Hence, one simply needs to check for the least significant bit of the least significant
coefficient of y1.

Decompression

To recover the y-coordinate from
(
x1, b(y1)

)
some more work needs to be done. Namely, one

evaluates x3
1 + a2x

2
1 + a4x1 + a6, which has to be a square in Fq since x1 is the x-coordinate of a

point on E. Algorithms for square root computation, cf. Section 11.1.5, allow us to recover the two
values +− y1 and the bit b(y1) determines the correct y-coordinate.

Example 13.38 On the curve E2/Fp the point P2 = (1120, 1391) ∈ E(Fp) is coded by (1120, 1)
while R2 = (443θ2 + 1727θ + 1809, 929θ2 + 280θ + 946) ∈ E(Fp3) is represented by (443θ2 +
1727θ + 1809, 0).

13.3 Arithmetic of elliptic curves defined over F2dF2dF2dF2dF2dF2dF2dF2d

In this section we consider elliptic curves over F2d . We first provide the transfer to short Weierstraß
equations and state formulas for the arithmetic on supersingular and ordinary elliptic curves in affine
coordinates. For the remainder of the section we concentrate on ordinary curves. The curves given
in Weierstraß form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

can be transformed depending on the value of a1.

Supersingular curves

If a1 = 0, we need to have a3 �= 0 as otherwise the curve is singular. The transformation x �→ x+a2

leads to the equation

E : y2 + a3y = x3 + a′
4x + a′

6,

which is nonsingular as a3 �= 0. Such a curve E has no point P = (x1, y1) of order two over F2d ,
as these satisfy P = −P , i.e., y1 = y1 + a3 and this would only be true for a3 = 0. Therefore,
E[2] = {P∞} and E is supersingular by Definition 13.14.

In Section 24.2.1, we extensively study supersingular curves as they come with an efficiently
computable pairing. This has many consequences. For instance, the DLP is easier to solve for these
curves. However, there also exist constructive aspects of pairings, e.g., see Chapter 24, and this
justifies to investigate the arithmetic of these curves. Indeed, the arithmetic on the supersingular
curve

E : y2 + a3y = x3 + a4x + a6

is given by the following formulas where P = (x1, y1) and Q = (x2, y2) are two points in E(F2d)
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• −P = (x1, y1 + a3).

• if P �= +−Q, we have P ⊕ Q = (x3, y3) where

x3 = λ2 + x1 + x2, y3 = λ(x1 + x3) + y1 + a3, λ =
y1 + y2

x1 + x2
·

• if P �= −P , we have [2]P = (x3, y3) where

x3 = λ2, y3 = λ(x1 + x3) + y1 + a3, λ =
x2

1 + a4

a3
·

Example 13.39 Let us consider F211 , represented as F2(θ) with θ11 + θ2 + 1 = 0. The elements of
F211 will be represented using hexadecimal basis. For instance, 0x591 corresponds to the sequence
of bits (0101 1001 0001) and therefore stands for the element θ10 + θ8 + θ7 + θ4 + 1.

A supersingular elliptic curve over F211 is given by

E5 : y2 + a3y = x3 + a4x + a6

with a3 = 0x6EE, a4 = 0x1CC and a6 = 0x3F6. The discriminant of E5 is ∆ = 0x722 while its
j-invariant is zero.

The points P5 = (0x3DF, 0x171) and Q5 = (0x732, 0x27D) belong to E5(F211) and

−P5 = (0x3DF, 0x79F),
P5 ⊕ Q5 = (0x314, 0x4BC),

[2]P5 = (0xEF, 0x6C3).

The cardinality of E5(F211) is equal to 211 + 26 + 1 = 2113 which is prime. Thus the group
E5(F211) is cyclic and is generated by any one of its element.

Ordinary curves

If a1 �= 0, the transformations

y �→ a3
1y +

a2
3 + a2

1a4

a3
1

, x �→ a2
1x +

a3

a1

followed by a division by a6
1 lead to an isomorphic curve given by

y2 + xy = x3 + a′
2x

2 + a′
6,

which is nonsingular whenever a′
6 �= 0. In this case, the curve is ordinary.

Remark 13.40 It is always possible to choose a′
2 small in the sense that multiplications by a′

2 can
be carried out by a few additions only. Let c be an element of absolute trace 0, i.e., TrF2d /F2(c) = 0,
such that multiplications by a′

2 + c can be carried out efficiently. In practice, d should be odd, (cf.
Section 23.2.2.c) and in this case if TrF2d/F2(a

′
2) = 1 then TrF2d /F2(a

′
2 + 1) = 0. So in any case, c

can be taken equal to a′
2 or a′

2 + 1 with the result that a′
2 + c is an element of F2. Let λ be such that

λ2 + λ + c = 0. Indeed, (13.8) allows for a further transformation

x �→ x, y �→ y + λx,

which leads to the curve
y2 + xy = x3 + (a′

2 + c)x2 + a′
6.
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Example 13.41 An ordinary elliptic curve over F211 is given by

E6 : y2 + xy = x3 + a2x
2 + a6

with a2 = 0x6EE and a6 = 0x1CC. As the trace of a2 is 1 we can put c = a2 + 1 which is of trace
0 and find λ = 0x51E such that λ2 + λ = c. Now the change of variables x �→ x, y �→ y + λx,
with λ = 0x68B transforms the curve E6 into

E7 : y2 + xy = x3 + x2 + a6.

The discriminant of E7 is ∆ = a6 and its j-invariant is 1/a6 = 0x37F. The points P7 =
(0x420, 0x5B3) and Q7 = (0x4B8, 0x167) are on E7. The curve E7 has 2026 rational points
in F211 and E7(F211) is cyclic generated by P7.

13.3.1 Choice of the coordinates

The remainder of this chapter is entirely devoted to ordinary curves, i.e., curves given by

E : y2 + xy = x3 + a2x
2 + a6, (13.8)

with a2, a6 ∈ F2d such that a6 �= 0. The coefficient a2 can be chosen with a reduced number of
terms and can even be taken in F2 when d is odd, cf. Remark 13.40 for explanations.

We first give a study on the addition formulas in different coordinate systems and study mixed
coordinate systems, then give a generalization of Montgomery coordinates and introduce a further
endomorphism on the curve, the point halving. Finally we discuss compression techniques.

As in Section 13.2, an elementary multiplication in F2d (respectively a squaring and an inversion)
will be represented by M (respectively S and I).

This section is mainly based on [HALÓ+ 2000]. As for curves over prime fields we study differ-
ent systems of coordinates, namely affine, projective, Jacobian and López–Dahab. For these binary
fields some extra tricks are applicable.

We shall give formulas for the

• addition of two points P and Q ∈ E(F2d) provided P �= +−Q,

• doubling of P .

13.3.1.a Affine coordinates (AAAAAA)

Recall that we can choose an elliptic curve of the form

E : y2 + xy = x3 + a2x
2 + a6.

The opposite of P = (x1, y1) equals −P = (x1, x1 + y1).

Addition

Let P = (x1, y1), Q = (x2, y2) such that P �= +−Q then P ⊕ Q = (x3, y3) is given by

x3 = λ2 + λ + x1 + x2 + a2, y3 = λ(x1 + x3) + x3 + y1, λ =
y1 + y2

x1 + x2

.

Doubling

Let P = (x1, y1) then [2]P = (x3, y3), where

x3 = λ2 + λ + a2, y3 = λ(x1 + x3) + x3 + y1, λ = x1 +
y1

x1
·

Thus an addition and a doubling require exactly the same number of operations, that is, I+ 2M+S.
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Doubling followed by an addition

Extending an idea presented in Section 13.2.1.a (see also [EILA+ 2003]), Ciet et al. [CIJO+ 2003],
propose a method to compute [2]P ⊕Q as as single operation. The formulas are given below where
we assume that P �= +−Q and [2]P �= −Q

A = x2 + x1, B = y2 + y1, C = A2(x2 + a2) + B(B + A),

D = (AC)−1, λ = BCD, λ2 = A3Dx1 + λ + 1,

x4 = (λ + λ2)2 + λ + λ2 + x2, y4 = (x1 + x4)λ2 + y1 + x4,

requiring I + 9M + 2S.

13.3.1.b Projective coordinates (PPPPPP)

With projective coordinates the curve is parameterized by the equation

Y 2Z + XY Z = X3 + a2X
2Z + a6Z

3.

Like in odd characteristic, we let (X1 : Y1 : Z1) represent the affine point (X1/Z1, Y1/Z1) if
Z1 �= 0 and P∞ = (0 : 1 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : X1 + Y1 : Z1).

Addition

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) such that P �= +−Q then P ⊕ Q = (X3 : Y3 : Z3) is
given by

A = Y1Z2 + Z1Y2, B = X1Z2 + Z1X2, C = B2,

D = Z1Z2, E = (A2 + AB + a2C)D + BC,

X3 = BE, Y3 = C(AX1 + Y1B)Z2 + (A + B)E, Z3 = B3D.

Doubling

If P = (X1 : Y1 : Z1) then [2]P = (X3 : Y3 : Z3) is given by

A = X2
1 , B = A + Y1Z1, C = X1Z1,

D = C2, E = (B2 + BC + a2D),

X3 = CE, Y3 = (B + C)E + A2C, Z3 = CD.

In projective coordinates, no inversion is needed. An addition needs 16M + 2S and a doubling
requires 8M + 4S.

If the addition receives one input point in affine coordinates, i.e., as (X2 : Y2 : 1), the costs
reduce to 12M + 2S. Such an addition in mixed coordinates is studied in larger generality in the
next section.

All operations profit from small a2 as one multiplication is saved.

13.3.1.c Jacobian coordinates (JJJJJJ )

In Jacobian coordinates, the curve is given by the equation

Y 2 + XY Z = X3 + a2X
2Z2 + a6Z

6.

The point represented by (X1 : Y1 : Z1) corresponds to the affine point (X1/Z
2
1 , Y1/Z

3
1) when

Z1 �= 0 and to P∞ = (1 : 1 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : X1Z1 + Y1 :
Z1).
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Addition

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) such that P �= +−Q then P ⊕ Q = (X3 : Y3 : Z3) is
given by

A = X1Z
2
2 , B = X2Z

2
1 , C = Y1Z

3
2 ,

D = Y2Z
3
1 , E = A + B, F = C + D,

G = EZ1, H = FX2 + GY2, Z3 = GZ2,

I = F + Z3, X3 = a2Z
2
3 + FI + E3, Y3 = IX3 + G2H.

Doubling

If P = (X1 : Y1 : Z1) then [2]P = (X3 : Y3 : Z3) is given by

A = X2
1 , B = A2, C = Z2

1 ,

X3 = B + a6C
4, Z3 = X1C, Y3 = BZ3 + (A + Y1Z1 + Z3)X3.

In Jacobian coordinates an addition requires 16M+3S in general and only 11M+3S if one input is
in affine coordinates. Also if a2 ∈ {0, 1} we need one multiplication less in the addition of points.
A doubling needs 5M + 5S including one multiplication by a6.

13.3.1.d López–Dahab coordinates (LDLDLDLDLDLD)

López and Dahab [LÓDA 1998] introduced a further set of coordinates in which the curve is given
by the equation

Y 2 + XY Z = X3Z + a2X
2Z2 + a6Z

4.

The triple (X1 : Y1 : Z1) represents the affine point (X1/Z1, Y1/Z
2
1 ) when Z1 �= 0 and P∞ = (1 :

0 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : X1Z1 + Y1 : Z1).

Addition

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) such that P �= +−Q then P ⊕ Q = (X3 : Y3 : Z3) is
given by

A = X1Z2, B = X2Z1, C = A2,

D = B2, E = A + B, F = C + D,

G = Y1Z
2
2 , H = Y2Z

2
1 , I = G + H,

J = IE, Z3 = FZ1Z2, X3 = A(H + D) + B(C + G),

Y3 = (AJ + FG)F + (J + Z3)X3.

A general addition P ⊕Q in this coordinate system takes 13M+4S as shown by Higuchi and Takagi
[HITA 2000]. Note that the original formulas proposed in [LÓDA 1998] need 14M + 6S.

Mixed Addition

If Q is in affine coordinates the costs drop to 10M+3S. In fact, it is possible to do a bit better, since
Al–Daoud et al. [ALMA+ 2002] proved that only 9M + 5S are sufficient in this case. The formulas
are given below.

A = Y1 + Y2Z
2
1 , B = X1 + X2Z1, C = BZ1,

Z3 = C2, D = X2Z3, X3 = A2 + C(A + B2 + a2C),

Y3 = (D + X3)(AC + Z3) + (Y2 + X2)Z2
3 .
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Note that when a2 ∈ {0, 1} one further multiplication is saved.

Doubling

If P = (X1 : Y1 : Z1) then [2]P = (X3 : Y3 : Z3) is given by [LÓDA 1998]

A = Z2
1 , B = a6A

2, C = X2
1 ,

Z3 = AC, X3 = C2 + B, Y3 = (Y 2
1 + a2Z3 + B)X3 + Z3B.

To analyze the complexity, first note that in practice a2 can be chosen in F2, cf. Remark 13.40,
saving one product.
For fixed a2 and a6 it is also possible to use less additions if

√
a6 can be precomputed. E.g., for

a2 = 1 one can use

A = X2
1 , B =

√
a6Z

2
1 , C = X1Z1,

Z3 = C2, X3 = (A + B)2, Y3 =
(
AC + (Y1 + B)(A + B)

)2
requiring 4M + 5S including one multiplication by

√
a6.

For fixed a2 = 0, X3 and Z3 are given as above whereas Y3 =
(
BC + (Y1 + B)(A + B)

)2
,

which also requires 4M + 5S including one multiplication by
√

a6.
It is also possible to trade this multiplication by a constant and a squaring for a general multipli-

cation [LAN 2004b], which might be interesting if the curve varies or if
√

a6 is big. The formulas
are as follows

A = X1Z1, B = X2
1 , C = B + Y1, (13.9)

D = AC, Z3 = A2, X3 = C2 + D + a2Z3,

Y3 = (Z3 + D)X3 + B2Z3

requiring 5M + 4S including one multiplication by a2.

13.3.1.e Example

Take the curve

E7 : y2 + xy = x3 + x2 + a6 (13.10)

with a6 = 0x1CC. We recall below the equation of E7 as well as the coordinates of P7 =
(0x420, 0x681) and Q7 = (0x4B8, 0x563) on E7 for each coordinate system. Note that the third
coordinate in projective, Jacobian and López–Dahab systems is chosen at random.

System Equation P7 Q7

A y2 + xy = x3 + x2 + a6 (0x420, 0x5B3) (0x4B8, 0x167)

P Y 2Z + XY Z = X3 + X2Z + a6Z
3 (0x64F : 0x5BA : 0x1C9) (0x4DD : 0x1F0 : 0x3FA)

J Y 2 + XY Z = X3 + X2Z2 + a6Z
6 (0x4DA : 0x1F7 : 0x701) (0x383 : 0x5BA : 0x1E1)

LD Y 2 + XY Z = X3Z + X2Z2 + a6Z
4 (0x6BE : 0x15F : 0x7B3) (0x757 : 0x3EF : 0xA1C)

With these particular values of P7 and Q7, let us compute P7 ⊕ Q7, [2]P7 and [763]P7 within the
different systems using the double and add method.
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System P7 ⊕ Q7 [2]P7 [763]P7

A (0x724, 0x7B3) (0x14D, 0x4CB) (0x84, 0x475)

P (0x675 : 0x6D5 : 0x4D5) (0x4D5 : 0x21E : 0x705) (0x582 : 0x14 : 0x543)

J (0x12 : 0x46B : 0x5F) (0x5B1 : 0x417 : 0x7D) (0x2F7 : 0x572 : 0x3E2)

LD (0x7C5 : 0x1D2 : 0x3D2) (0x444 : 0x4A0 : 0x193) (0x2F : 0x265 : 0x220)

For each computation, the obtained result is equivalent to the affine one.

13.3.2 Faster doublings in affine coordinates

Let P = (x1, y1) be a point lying on the ordinary curve

E : y2 + xy = x3 + a2x
2 + a6.

When the solution of a quadratic equation can be quickly found, e.g., if F2d is represented by a nor-
mal basis, the following method [SOL 1997] replaces one general multiplication by a multiplication
by the fixed constant a6.

Namely, compute x3 = x2
1 + a6/x2

1, which is also equal to λ2 + λ + a2. Then find µ such that
µ2+µ = x3+a2, see Section 11.2.6. So λ = µ+ε where ε = 0 or 1. Therefore µx1+x2

1+y1 = εx1

and we deduce ε from this equation. Note that it is not necessary to perform µx1 in full but rather to
compute one well chosen coordinate in the product. Thus the computation of λ is almost free and it
remains to perform y3 = x2

1 + (λ + 1)x3.

To perform several doublings in a row of P = (x1, y1), it is faster to store the intermediate values by
the x-coordinate and the slope of the tangent, i.e., to represent [2i]P as (x2i , λ2i). This is possible
because

x2 = λ2
1 + λ1 + a2 and

λ2 = λ2
1 + λ1 + a2 +

λ1(x1 + λ2
1 + λ1 + a2) + λ2

1 + λ1 + a2 + y1

λ2
1 + λ1 + a2

= λ2
1 + a2 +

a6

x4
1 + a6

·

This idea leads to the following algorithm described in [LÓDA 2000b].

Algorithm 13.42 Repeated doublings

INPUT: A point P = (x1, y1) on E such that [2k]P �= P∞ and an integer k � 2.

OUTPUT: The point [2k]P of coordinates (x3, y3).

1. λ ← x1 + y1/x1 and u ← x1

2. for i = 1 to k − 1 do

3. x′ ← λ2 + λ + a2

4. λ′ ← λ2 + a2 +
a6

u4 + a6

5. u ← x′ and λ ← λ′

6. x3 ← λ2 + λ + a2 and y3 ← u2 + (λ + 1)x3

7. return (x3, y3)
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This algorithm needs kI + (k + 1)M + (3k − 1)S.

Example 13.43 Take P7 on E7 as defined in Example 13.41 and let us compute [25]P7. The values
of λ and u along the execution of Algorithm 13.42 are given below.

i — 1 2 3 4

λ 0x1C 0x67 0x6F7 0x96 0x719

u 0x420 0x14D 0x479 0x344 0x1AB

At the end, x3 = 0x67C and y3 = 0x71C.

Another strategy is to use a closed formula to get [2k]P directly rather than computing succes-
sive doublings. The interest is to perform only one inversion at the cost of extra multiplications
[GUPA 1997]. We do not state these formulas here as the same number of operations can be ob-
tained by using López–Dahab coordinates for the intermediate doublings and transforming the result
to affine coordinates afterwards.

13.3.3 Mixed coordinates

In the previous part we introduced different representations for the point on E together with the
algorithms to perform addition and doubling. For the additions we also mentioned the number of
operations needed if one of the input points is in affine coordinates. Like in odd characteristic
we now study arbitrary mixes of coordinates to perform scalar multiplications where we use two
(different) systems of coordinates as input and one as output. By J + A = LD we denote the
addition taking as input one point in Jacobian coordinates and one in affine and giving the result in
López–Dahab coordinates.

Additionally we use the abbreviations A′ to denote the representation by (x, λ) introduced in the
previous section for multiple doublings. For A′ coordinates the table entry refers to the asymptotic
complexity of a doubling in a sequence of k consecutive doublings, thus we neglect other marginal
operations. Table 13.4 on page 297 gives the number of field operations needed depending on the
coordinate systems. Compared to the case of odd characteristic, changes between the coordinate
systems are not too interesting and are therefore not listed. We denote the costs for multiplication
with a2 by M2 and concentrate on the most interesting cases. We do not take into account the effects
of small a6 as this cannot be achieved generically.

No precomputation

If the system offers no space to store precomputations one should use A if inversions are affordable,
i.e., less than 8 times as expensive as a multiplication, and otherwise use LD for the doublings and
LD + A = LD for the additions if the input is in affine coordinates and as LD + LD otherwise.

Precomputations

Also in even characteristic, using the NAFw representation, cf. Section 9.1.4 is advantageous to
compute scalar multiples [n]P . This requires precomputing all odd multiples [i]P for 1 < i <
2w−1. They can be obtained as a sequence of additions and one doubling.

If inversions in F2d are not too expensive one should choose affine coordinates as a system for the
precomputations as they offer the fastest mixed coordinates. Like in the case of odd characteristic
this does not mean that one needs to perform 2w−2 inversions but one can follow [COMI+ 1998,
section 4] and apply Montgomery’s trick of simultaneous inversions. For details we refer to the
study for odd characteristic, cf. Section 13.2.2. Then one needs:

(w − 1)I +
(
5 × 2w−2 + 2w − 12

)
M +

(
2w−2 + w − 3

)
S.
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Table 13.4 Operations required for addition and doubling.

Doubling Addition

Operation Costs Operation Costs

2P 7M + 4S + M2 J + J 15M + 3S + M2

2J 5M + 5S P + P 15M + 2S + M2

2LD 4M + 4S + M2 LD + LD 13M + 4S

2A = P 5M + 2S + M2 P + A = P 11M + 2S + M2

2A = LD 2M + 3S + M2 J + A = J 10M + 3S + M2

2A = J M + 2S + M2 LD + A = LD 8M + 5S + M2

— — A + A = LD 5M + 2S + M2

2A I + 2M + S A + A = J 4M + S + M2

2A′ I + M + S A + A = A′ 2I + 3M + S

2A′ = A M + 2S A + A I + 2M + S

If inversions are prohibitively expensive one should choose LD coordinates as they are the most
efficient inversion-free system, provided that one multiplication is at least as expensive as three
squarings, which is usually the case in binary fields. This way(

13 × 2w−2 − 8
)
M + 4 × 2w−2S

are needed for the precomputations.
Using one I and 3(2w−2 − 2)M the resulting precomputed points can be transformed to affine.

Furthermore, the use of precomputations leads to long runs of doublings in the algorithms and they
are much faster in LD than in P , which otherwise would offer the lowest number of operations per
addition.

Scalar multiplication

A scalar multiplication consists of a sequence of doublings and additions. If a signed windowing
method is used with precomputations there are often runs of doublings interfered with only a few
additions. Thus it is worthwhile to distinguish between intermediate doublings, i.e., those followed
by a further doubling, and final doublings, which are followed by an addition, and to choose different
coordinate systems for them.

We first assume that the precomputed points are in A as this leads to the most interesting mixes of
coordinates. If one inversion per bit of the scalar is affordable one should use A′ for the intermediate
doublings.

More explicitly, the intermediate variable Q is replaced each step by some

[2s]Q +− [u]P,

where [u]P is in the set of precomputed multiples. So we actually perform (s− 1) doublings of the
type 2A′ = A′, a doubling of the form 2A′ = A and then an addition A + A = A′.

Let l be the binary length of n, let l1 = l − (w − 1)/2, and K = 1/2 − 1/(w + 1).
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In the main loop, we perform on average l1 + K − v doublings of the form 2A′ = A′, v doublings
of the form 2A′ = A, and v additions, where v = (l1 − K)/(w + 1). Then we need approximately

(
l1 + K +

l1 − K

w + 1

)
I +

(
l1 + K + 3

l1 − K

w + 1

)
M +

(
l1 + K + 2

l1 − K

w + 1

)
S.

If the algorithm should not make use of inversions but the precomputed points are in A, Table 13.4
shows that the doublings should be performed within LD. This is followed by one addition of the
type LD + A = LD. This needs approximately

(
4(l1 + K) + 8

l1 − K

w + 1

)
M +

(
4(l1 + K) + 5

l1 − K

w + 1

)
S +

(
l1 + K +

l1 − K

w + 1

)
M2.

If the precomputed points are in LD the most efficient way is to choose this coordinate system for
all operations. In total this needs asymptotically

(
4(l1 + K) + 13

l1 − K

w + 1

)
M +

(
4(l1 + K) + 4

l1 − K

w + 1

)
S +

(
l1 + K

)
M2.

13.3.4 Montgomery scalar multiplication

López and Dahab [LÓDA 1999] generalized Montgomery’s idea, cf. Section 13.2.3, to binary
curves. Let P = (x1, y1) be a point on E. In projective coordinates, we write P = (X1 : Y1 : Z1)
and let [n]P = (Xn : Yn : Zn). The sum [n + m]P = [n]P ⊕ [m]P is given by the following
formulas where Yn does not occur.

Addition: n �= m

Zm+n = (XmZn)2 + (XnZm)2,
Xm+n = Zm+nXm−n + XmZnXnZm.

Doubling: n = m

X2n = X4
n + a6Z

4
n =

(
X2

n +
√

a6Z
2
n

)2
,

Z2n = X2
nZ2

n.

An addition takes 4M and 1S whereas a doubling needs only 2M and 3S, if
√

a6 is precomputed.
For the full scalar multiplication [n]P , we use Montgomery’s ladder, cf. Algorithm 13.35, which
requires (6M + 4S)(|n|2 − 1) in total.

To recover the y-coordinate of [n]P = (Xn : Yn : Zn) we first compute the affine x-coordinates
of [n]P and [n + 1]P , that is xn = Xn/Zn and xn+1 = Xn+1/Zn+1 and then use the formula
[LÓDA 1999, OKSA 2001]

yn =
(xn + x1)

(
(xn + x1)(xn+1 + x1) + x2

1 + y1

)
x1

+ y1. (13.11)

Example 13.44 Let us compute [763]P7 with Algorithm 13.35. The different steps of the compu-
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tation are given in the following table where P stands for P7 ∈ E7, given by (13.10).

i ni (P1, P2) P1 P2

9 1 (P, [2]P ) (0x420 : ? : 0x1) (0x158 : ? : 0x605)

8 0 ([2]P, [3]P ) (0x158 : ? : 0x605) (0x7E9 : ? : 0x2FD)

7 1 ([5]P, [6]P ) (0x295 : ? : 0x56B) (0x620 : ? : 0x43B)

6 1 ([11]P, [12]P ) (0x5D0 : ? : 0x247) (0xA6 : ? : 0x6CE)

5 1 ([23]P, [24]P ) (0x755 : ? : 0x21B) (0x409 : ? : 0x93)

4 1 ([47]P, [48]P ) (0xBD : ? : 0x25E) (0x26 : ? : 0x4BE)

3 1 ([95]P, [96]P ) (0x4EE : ? : 0x51D) (0x4D6 : ? : 0x304)

2 0 ([190]P, [191]P ) (0x4C1 : ? : 0x58C) (0x553 : ? : 0x386)

1 1 ([381]P, [382]P ) (0x613 : ? : 0x7E4) (0x2BB : ? : 0x60B)

0 1 ([763]P, [764]P ) (0x6C4 : ? : 0x105) (0x655 : ? : 0x485)

To end the computation, we apply (13.11) to obtain that [763]P7 = (0x84, 0x475).

13.3.5 Point halving and applications

In this section we introduce a further map on the group of points of an elliptic curve.
Let |E(F2d)| = 2k	, where 	 is odd. If k = 1 then E is said to have minimal 2-torsion as curves

of the form

E : y2 + xy = x3 + a2x
2 + a6 (13.12)

considered here always have one point of order 2, namely the point T = (0,
√

a6). Hence, the
doubling map [2] is not injective. Now assume E to have minimal 2-torsion and let G be a subgroup
of odd order. If P belongs to G then there is a unique point Q ∈ G such that P = [2]Q. Then
denote Q =

[
1
2

]
P and define the one-to-one halving map by[

1
2

]
: G → G

P �→ Q such that [2]Q = P.

In the following, we shall represent a point P = (x1, y1) as (x1, λ1) where λ1 = x1 + y1/x1.
In the context of a scalar multiplication based on halvings, this representation leads to a faster
implementation as for repeated doublings.

In [KNU 1999] Knudsen develops an efficient technique to halve a point in affine coordinates
lying on an elliptic curve with minimal 2-torsion. Independently, Schroeppel proposed the same
method [SCH 2000c].

Note that half the curves of the form (13.12) defined over F2d have minimal 2-torsion, since this
property is equivalent to Tr(a2) = 1.

Let P = (x1, λ1) ∈ G and Q =
[

1
2

]
P = (x2, λ2). Inverting doubling formulas, one has

λ2
2 + λ2 = a2 + x1,

x2
2 = x1(λ2 + 1) + y1 = x1(λ2 + λ1 + x1 + 1),

y2 = x2(x2 + λ2).
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The algorithm is as follows. First find γ such that γ2 + γ = a2 + x1. The other solution of the
equation is then γ + 1, cf. Lemma 11.56. One corresponds to λ2 and Q and the other one to λ2 + 1
and Q ⊕ T . If E has minimal 2-torsion it is possible to determine if γ is equal to λ2 or not. Indeed
only Q can be halved but not Q ⊕ T . So (x2, λ2) is equal to

[
1
2

]
P if and only if the equation

X2 + X = a2 + x2 has a solution in F2d . This holds true if and only if Tr(a2 + x2) = 0. Clearly
Tr(a2 + x2) = Tr(a2

2 + x2
2) and this remark saves a square root computation.

So one first obtains w = x1(γ + λ1 + x1 + 1), which is a candidate for x2
2. If Tr(a2

2 + w) = 0
then λ2 = γ and x2 =

√
w. Otherwise λ2 = γ + 1 and x2 =

√
w + x1.

All these steps are summarized in the following algorithm.

Algorithm 13.45 Point halving

INPUT: The point P = (x1, y1) ∈ G represented as (x1, λ1).

OUTPUT: The point
[

1
2

]
P = (x2, y2) represented as (x2, λ2).

1. compute γ such that γ2 + γ = a2 + x1

2. w ← x1(γ + λ1 + x1 + 1)

3. if Tr(a2
2 + w) = 1 then γ ← γ + 1 and w ← w + x1

4. λ2 ← γ and x2 ← √
w

5. return Q = (x2, λ2)

Remarks 13.46

(i) To determine (x2, λ2) Algorithm 13.45 requires us to compute the solution of a quadratic
equation, one square root, one multiplication, and one absolute trace. A further multiplication
is necessary to obtain y2.

(ii) See Section 11.2.6 for a description of algorithms to compute γ and
√

w.

(iii) The computation of the trace in Line 3 is straightforward, cf. Remarks 11.57.

(iv) Algorithm 13.45 can be easily generalized when E(F2d) has a subgroup isomorphic toZ/2kZ

with k > 1 [KNU 1999]. Nevertheless, it is necessary, in this case, to solve k equations,
perform k + 1 multiplications, one test, and k or k + 1 square root computations to find
(x2, y2), so that in practice the technique is usually not interesting for k > 1.

Example 13.47 The point P7 = (0x420, 0x5B3) on E7 is a point of order 2026. This implies that
R7 = [2]P7 = (0x14D, 0x4CB) is a point of odd order 	 = 1013. Thus in the group G = 〈R7〉,
the halving map is well defined. Let us compute

[
1
2

]
R7 with Algorithm 13.45. First, we have

λ1 = 0x67. We deduce that γ = 0x1C and w = 0x605. Since the trace of a2
2 + w is equal to one,

the values of γ and w are changed to 0x1D and 0x748. Finally, λ2 = 0x1D and x2 = 0x3B8. It
follows that the unique point S7 ∈ G such that [2]S7 = R7 is (0x3B8, 0x441).

We also have P7 = S7 ⊕ T7 where T7 = (0x0, 0x19A) is the 2-torsion point of E7.

Now, let us explain how to compute the scalar multiplication [n]P of a point P of odd order 	1 | 	.
Let m = �lg 	1�. Then if

2m−1n =
m−1∑
i=0

n̂i2i mod 	1, with ni ∈ {0, 1}
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one has

n ≡
m−1∑
i=0

n̂m−1−i

2i
(mod 	1)

and [n]P can be obtained by the following algorithm. We additionally put
[

1
2

]
P∞ = P∞.

Algorithm 13.48 Halve and add scalar multiplication

INPUT: A point P ∈ E(F2d) of odd order �1 and a positive integer n.

OUTPUT: The point [n]P .

1. m ← �lg �1�
2. bn ← (2m−1n) mod �1 [bn = (bnm−1 . . . bn0)2]

3. Q ← P∞

4. for i = 0 to m − 1 do

5. Q ← ˆ
1
2

˜
Q

6. if bni = 1 then Q ← Q ⊕ P

7. return Q

Remarks 13.49

(i) All the window and recoding techniques seen in Chapter 9 apply as well. In particular, if∑m
i=0 n̂i2i is the NAFw representation of 2mn modulo 	1, then

n ≡
m∑

i=0

n̂m−i

2i
(mod 	1).

(ii) No method is currently known to halve a point in projective coordinates. In [HAME+ 2003]
two halve-and-add algorithms for the NAFw representation are given. The one operating from
the right to the left halves the input P rather than the accumulators, which can therefore be
represented in projective coordinates. In this case mixed addition formulas can be used for a
better efficiency.

(iii) Point halving can be used to achieve faster scalar multiplication on Koblitz curves; see Chap-
ter 15 and [AVCI+ 2004].

Example 13.50 Let us compute [763]R7 with Algorithm 13.48. As R7 is of odd order 1013, we
have m = 10 and 29 × 763 ≡ 651 (mod 1013). Now 651 = (1010001011)2 which implies that

763 ≡ 1
29

+
1
28

+
1
26

+
1
22

+ 1 (mod 1013).

Thus, the main steps of the computation, expressed in the form (x, λ), are[
1
2

]
R7 ⊕ R7 = (0x1, 0x21D),[

1
2

]3
R7 ⊕

[
1
2

]2
R7 ⊕ R7 = (0x644, 0x184),[

1
2

]7
R7 ⊕

[
1
2

]6
R7 ⊕

[
1
2

]4
R7 ⊕ R7 = (0x77C, 0x3EC),[

1
2

]9
R7 ⊕

[
1
2

]8
R7 ⊕

[
1
2

]6
R7 ⊕

[
1
2

]2
R7 ⊕ R7 = (0x2EA, 0x281).
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We deduce that [763]R7 = (0x2EA, 0x7C8) in affine coordinates.
It is also easy to obtain the multiple of a point that does not belong to G. For instance, let us

compute [763]P7. We have P7 =
[

1
2

]
R7 ⊕ T7 and since the maps

[
1
2

]
and [n] commute, it follows

that

[763]P7 =
[

1
2

]
[763]R7 ⊕ T7,

= (0x5CF, 0x485) ⊕ (0x0, 0x19A),
= (0x84, 0x475).

13.3.6 Parallel implementation

Also, for fields of even characteristic, parallel implementations have gained some interest, one of
the first works being [KOTS 1993]. However, applications using affine coordinates usually try to
achieve parallelism on the lower level of field arithmetic.

In the chapter on side-channel attacks, cf. Chapter 29, we discuss several parallel implementa-
tions as this is mainly of interest for small devices like smart cards. There, the additional restriction
is that the implementation should be secured against some particular attacks. Common choices are
Montgomery coordinates distributed on two processors. We refer the reader to that chapter for de-
tails and mention here only the work of Mishra [MIS 2004a], who derives a pipelined computation
such that in a scalar multiplication the average number of clock cycles needed per group operation
is only 6 when using two processors.

13.3.7 Compression of points

Let P = (x1, y1) be a point on E/F2d : y2 + xy = f(x). As for odd characteristic, we show how
to represent P by

(
x1, b(y1)

)
, where b(y1) is a bit distinguishing P from −P = (x1, y1 + x1).

There exists exactly one Weierstraß point having x1 = 0. For the other points we follow the steps
in the next paragraphs.

Decompression

In even characteristic it is easier to explain decompression first. Thus, assume that P is given
by
(
x1, b(y1)

)
, and b(y1) ∈ {0, 1}. As x1 is the x-coordinate of a point, the quadratic equation

y2 + x1y + x3
1 + a2x

2
1 + a6 has two solutions. It is clear that such a solution exists if Y 2 + Y +

(x3
1 + a2x

2
1 + a6)/x2

1 has a solution, i.e., if Tr
(
(x3

1 + a2x
2
1 + a6)/x2

1

)
= 0, cf. Section 11.2.6. If y′

1

is one solution then y′
1 + 1 is the other. Hence, for the roots y′

1 the least significant bit allows us to
distinguish between the solutions and we need to resort to the equation in Y to compute the roots.
To find the solutions of the original equation we put y1 = y′

1x1 for the y′
1 determined by b(y1).

Compression

We have just seen that the least significant bit of y′
1 = y1/x1 should be used as b(y1). Unfortunately,

this requires one inversion, hence, some work is also needed to compress a point. This is in contrast
to the case of odd characteristic.
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In Chapter 1 we introduced the discrete logarithm problem and showed that the main operation in a
public-key cryptosystem is the computation of scalar multiples in a cyclic group. Chapter 9 showed
how the computation of scalar multiples can be reduced to a sequence of additions and doublings in
the group. Hence, for an efficient system we need to have groups with efficient group laws.

In Chapter 13 we detailed the arithmetic on elliptic curves. This chapter deals with hyperelliptic
curves, which can be seen as a generalization of elliptic curves. We first give a brief overview of the
main properties of hyperelliptic curves repeating the definitions for the convenience of the reader.
The details can be found in Chapter 4. In the applications, group elements must be stored and
transmitted. For restricted environments or restricted bandwidth it might be useful to use compres-
sion even though recovering the original coordinates needs some efforts. Accordingly, we consider
compression techniques.
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The main emphasis of this chapter is put on the arithmetic properties, i.e., on algorithms to perform
the group operation. We state Cantor’s algorithm, which works for arbitrary ground field and genus
of the curve. To obtain better performance one needs to fix the genus and develop explicit formulas
as for elliptic curves (cf. Chapters 13.2 and 13.3). We first specialize to considering curves of
genus 2, separately over finite fields of odd and then of even characteristic. For both cases we give
formulas for different coordinate systems, namely affine, projective, and new coordinates. The latter
two systems allow us to avoid inversions in the group operation. For odd characteristic we also state
two possible generalizations of Montgomery coordinates (cf. Section 13.2.3); for even characteristic
there is no such generalization yet.

Also for genus 3 hyperelliptic curves, explicit formulas have been proposed. We give explicit
formulas in affine coordinates in Section 14.6. Also nonhyperelliptic curves of genus 3 have been
proposed for cryptographic applications. The final section gives references to these publications and
also for genus 4 hyperelliptic curves before we conclude with a comparison and timings.

14.1 Summary of background on hyperelliptic curves

For cryptographic purposes we concentrate on imaginary quadratic hyperelliptic curves given by
an equation, as below. Only in Chapter 18 we need to deal with the most general definition as given
in Definition 4.121.

Definition 14.1 A curve given by an equation of the form

C : y2 + h(x)y = f(x), h, f ∈ K[x], deg(f) = 2g + 1, deg(h) � g, f monic (14.1)

is called a hyperelliptic curve of genus g over K if no point on the curve over the algebraic closure
K of K satisfies both partial derivatives 2y + h = 0 and f ′ − h′y = 0.

The last condition ensures that the curve is nonsingular. The negative of a point P = (x, y) is given
by −P =

(
x,−y − h(x)

)
. The points fixed under this hyperelliptic involution are called Weier-

straß points. Elliptic curves are subsumed under this definition as curves of genus one (cf. Defini-
tion 13.1). Even though this is not entirely standard from the classical viewpoint, the algorithmic
properties that constitute our focus are equal. For a discussion see the remark after Definition 4.121.

Example 14.2 Let p = 2003. Over the finite field Fp, the equation y2 = x5 + 1184x3 + 1846x2 +
956x + 560 gives a hyperelliptic curve of genus 2.

We can check explicitly that the partial derivative 2y equals 0 only if y = 0 and this leads to
a point P = (x1, 0) only if f(x1) = 0. The partial derivative with respect to x gives f ′(x) =
5x4 +1549x2 +1689x+956. One can check by direct calculation that no root of f simultaneously
satisfies f ′.

In general, f ′ evaluates to 0 at a root x1 of f if and only if x1 is a multiple root of f . For odd
characteristic, the equation y2 = f(x) defines a nonsingular and hence hyperelliptic curve if and
only if f has no multiple roots.

14.1.1 Group law for hyperelliptic curves

For elliptic curves one can take the set of points together with a point at infinity as a group. For
curves of genus larger than one this is no longer possible. The way out is to take finite sums of points
as group elements and perform the addition coefficient-wise like (P +Q)⊕(R+Q) = P +2Q+R.
This would lead to an infinite group and longer and longer representations of the group elements.
The group one actually uses is the quotient group of this group by all sums of points that lie on a
function.
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Before stating this as a formal definition we give a pictorial description for a genus 2 curve over
the reals given by an equation y2 = f(x) with f monic of degree 5. As for elliptic curves, f is not
allowed to have multiple roots over the algebraic closure to satisfy the condition of the definition.

Figure 14.1 Group law on genus 2 curve over the reals R, y2 = f(x), deg f = 5 for (P1 + P2) ⊕
(Q1 + Q2) = R1 + R2.

P1

P2

Q1

Q2

−R1

−R2

R1

R2

Figure 14.1 demonstrates again that one cannot continue using the chord-and-tangent method from
elliptic curves as a line intersects in 5 instead of 3 points. To build a group we take the quotient
of the group of sums of points on the curve by the subset of those sums where the points lie on a
function, e.g., R1 = (xR1 , yR1) and −R1 = (xR1 ,−yR1) lie on the curve given by x = xR1 and,
hence, R1 ⊕ (−R1) = 0. Likewise the six points P1, P2, Q1, Q2,−R1,−R2 on the cubic add up to
zero in the quotient group we consider.

This way one sees that each element can be represented by at most two points that do not have the
same x-coordinate and inverse y-coordinate. Namely, any n > 1 points give rise to a polynomial of
degree n − 1. There are max{5, 2(n − 1)} − n other points of intersection. As soon as n > 2 the
inverse of this sum of points, obtained by inflecting all points at the x-axis, contains fewer points.
Repeating this process gives a reduced group element with at most 2 points. The second condition
can be seen to hold as points (x1, y1) and (x1,−y1) both lie on the function x = x1.

Adding two elements is done in two steps. First the formal sum is formed and then it is reduced.
In the general case both group elements consist of 2 points given by P1 + P2 and Q1 + Q2 and the
4 points are all different. A function y = s(x) of degree 3 in x passes through all of them having
2 more points of intersection with C. The two new points −R1 and −R2 are inflected and give the
result of the addition (P1 + P2) ⊕ (Q1 + Q2) = R1 + R2.

As in the case of elliptic curves, one can derive the group law from this description by making all
steps explicit. For genus 2 curves over finite fields this is done in Sections 14.3, 14.4, and 14.5. If
h �= 0 there are still two points with equal x-coordinate but the opposite of P = (x1, y1) is given
by −P =

(
x1,−y1 − h(x1)

)
.
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For hyperelliptic curves of arbitrary genus g one obtains that each group element is represented by
at most g points and that in the reduction step one might need several rounds to find a minimal
representative. Note that so far we did not touch the problem over which fields the points should
be defined. In the following an isomorphic representation is introduced, which is advantageous for
implementation purposes.

14.1.2 Divisor class group and ideal class group

The group we described so far is called the divisor class group Pic0
C of C. To formally define the

group law we need to take into account a further point P∞ called the point at infinity. (For curves of
the form (14.1) there is only a single point at infinity and this is crucial for the way we implement
the arithmetic.) In the picture it can be visualized as lying far out on the y-axis such that any line
parallel to it passes through P∞.

We repeat the main definitions from Chapter 4.

Definition 14.3 Let C be a hyperelliptic curve of genus g over K given by an equation of the form
(14.1). The group of divisors of C of degree 0 is given by

Div0
C =

{
D =

∑
P∈C

nP P | nP ∈ Z, nP = 0 for almost all P ∈ C,∑
P∈C

nP = 0, and such that σ(D) = D for all σ ∈ GK

}
.

This latter condition means that the divisor is defined over K . This is equivalent to nσ(P ) = nP for
all σ ∈ GK , the Galois group of K .

Definition 14.4 The divisor class group Pic0
C of C is the quotient group of Div0

C by the group of
principal divisors, that are divisors of degree zero resulting from functions.

Each divisor class can be uniquely represented by a finite sum

r∑
i=1

Pi − rP∞, Pi ∈ C � {P∞}, r � g,

where for i �= j we have Pi = (xi, yi) �=
(
xj ,−yj − h(xj)

)
= −Pj .

The following theorem introduces a different representation that is more useful for implementations,
and for which one can simply read off the field of definition of the group elements. The theoretical
background for this alternative representation is the fact that for curves of the form (14.1) the divisor
class group is isomorphic to the ideal class group of the function field K(C). Furthermore, the
divisor class group is isomorphic to the group of K-rational points of the Jacobian JC of C. (For
details see Section 4.4.6.a.) Mumford representation makes explicit this isomorphism and we will
use the representation as an ideal class group for the arithmetic. However, to develop the formulas
we come back to the representation as a finite sum of points. To fix names we keep speaking of the
divisor class group and call the group elements divisor classes even when using the notation as ideal
classes.

Theorem 14.5 (Mumford representation)
Let C be a genus g hyperelliptic curve as in (14.1) given by C : y2 + h(x)y = f(x), where
h, f ∈ K[x], deg f = 2g + 1, deg h � g. Each nontrivial divisor class over K can be represented
via a unique pair of polynomials u(x) and v(x), u, v ∈ K[x] , where
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1. u is monic,

2. deg v < deg u � g,

3. u | v2 + vh − f .

Let D =
∑r

i=1 Pi − rP∞, where Pi �= P∞, Pi �= −Pj for i �= j and r � g. Put Pi = (xi, yi).
Then the divisor class of D is represented by

u(x) =
r∏

i=1

(x − xi)

and if Pi occurs ni times then(
d

dx

)j [
v(x)2 + v(x)h(x) − f(x)

]
|x=xi

= 0, for 0 � j � ni − 1.

A divisor with at most g points in the support satisfying Pi �= P∞, Pi �= −Pj for i �= j is called a
reduced divisor. The first part states that each class can be represented by a reduced divisor. The
second part of the theorem means that for all points Pi = (xi, yi) occurring in D we have u(xi) = 0
and the third condition guarantees that v(xi) = yi with appropriate multiplicity.

We denote the class represented by u(x) and v(x) by [u(x), v(x)]. To unify notation we denote
the neutral element of the group by [1, 0].

There are basically two ways for finding a K-rational divisor class. This can be done by building
it from K-rational points on the curve. For instance, choose a random x1 ∈ K , and try to find
y1 ∈ K such that

y2
1 + h(x1)y1 − f(x1) = 0. (14.2)

In odd characteristic or characteristic zero when h = 0, the problem reduces to computing a square
root when there exists one. This can be checked with the Legendre symbol, see Section 2.3.4. If
the result of this test, performed with Algorithm 11.19 in a prime field and Algorithm 11.69 in an
extension field, is negative, then one chooses another x1 and repeats the process. Otherwise, one
deduces y1 with one of the Algorithms 11.23 and 11.26.

For a field of characteristic 2, see Section 11.2.6 and Lemma 11.56 for a criterion of existence of
a solution to (14.2) and a method to compute y1.

Already a single point gives rise to a divisor and [x − x1, y1] is a valid representative of a di-
visor class

__
D. Unless y1 = 0 (or in general ord(

__
D) small) the multiples [n]

__
D will have the first

polynomial of full degree g for n � g.
Later in this chapter we consider explicit formulas to perform the group operations. For applica-

tions we suggest implementing only the most frequent cases of inputs — which implies that the first
polynomial u has to have degree g before one can start computing scalar multiples. To build such a
class of full degree one takes g random distinct points as above and combines them using Lagrange
interpolation: to the points P1 = (x1, y1), . . . , Pg = (xg, yg) correspond the polynomials

u(x) =
g∏

i=1

(x − xi) and v(x) =
t∑

i=g

∏
j �=i(x − xj)∏
j �=i(xi − xj)

yi.

The resulting classes are not completely random as they are built from points defined over K while
a K-rational class may also contain points defined over an extension field L/K of degree [L : K] �
g. The second strategy avoids this possible drawback. One chooses a random monic polynomial
u(x) ∈ K[x] of degree g by randomly choosing its g free coefficients. Using the decompression
techniques as explained in Sections 14.2.1 and 14.2.2 one tries to recover a polynomial v satisfying
u | v2 + vh− f . If this fails one starts anew with a different choice of u. By Theorem 14.5 the tuple
[u, v] represents a divisor class.
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The amount of work to find v is equal to solving the g quadratic equations in the first approach.
However, checking if a u belongs to a class requires more effort. Hence, for an implementation one
can trade off the generality of the class for less work.

Example 14.6 On the curve from Example 14.2, a divisor class is given by
__
D = [x2 + 376x +

245, 1015x + 1368]. We have [2]
__
D = [x2 + 1226x + 335, 645 + 1117] and [3874361]

__
D = [1, 0].

Using this compact description of the elements, one can transfer the group law that was derived
above as a sequence of composition and reduction to an algorithm operating on the representing
polynomials and using only polynomial arithmetic over the field of definition K . This algorithm
was described by Cantor [CAN 1987] for odd characteristic and by Koblitz [KOB 1989] for arbitrary
fields.

Algorithm 14.7 Cantor’s algorithm

INPUT: Two divisor classes
__
D1 = [u1, v1] and

__
D2 = [u2, v2] on the curve C : y2 + h(x)y =

f(x).

OUTPUT: The unique reduced divisor D such that
__
D =

__
D1 ⊕

__
D2.

1. d1 ← gcd(u1, u2) [d1 = e1u1 + e2u2]

2. d ← gcd(d1, v1 + v2 + h) [d = c1d1 + c2(v1 + v2 + h)]

3. s1 ← c1e1, s2 ← c1e2 and s3 ← c2

4. u ← u1u2

d2
and v ← s1u1v2 + s2u2v1 + s3(v1v2 + f)

d
mod u

5. repeat

6. u′ ← f − vh − v2

u
and v′ ← (−h − v) mod u′

7. u ← u′ and v ← v′

8. until deg u � g

9. make u monic

10. return [u, v]

We remark that Cantor’s algorithm is completely general and holds for any field and genus. It is a
nice exercise to check that the addition formulas derived in Section 13.1.1 for elliptic curves can be
obtained as a special case of Cantor’s algorithm making all steps explicit for g = 1.

14.1.3 Isomorphisms and isogenies

Some changes of variables do not fundamentally alter the hyperelliptic curve. More precisely, let
the hyperelliptic curve C/K of genus g be given by C : y2 + h(x)y = f(x). The maps

y �→ u2g+1y′+agx
′g+· · ·+a1x

′+a0 and x �→ u2x′+b with (ag, . . . , a1, a0, b, u) ∈ Kg+2×K∗

are invertible and map each point of C to a point of C′ : y′2 + h̃(x′)y′ = f̃(x′), where h̃, f̃ are
defined over K and can be expressed in terms of h, f, a, b, c, d and u. Via the inverse map we
associate to each point of C′ a point of C showing that both curves are isomorphic. These changes
of variables are the only ones leaving invariant the shape of the defining equation and, hence, they
are the only admissible isomorphisms.

The following examples study even and odd characteristic separately as they allow us different
isomorphic transformations of the curve equation. These transformations will be useful for the
arithmetic of the curves.
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Example 14.8 In the case of odd characteristic the transformation y �→ y′ − h(x)/2 allows to
consider an isomorphic curve of the form

y′2 = f̃(x) = x2g+1 + f̃2gx
2g + · · · + f̃3x

3 + f̃2x
2 + f̃1x + f̃0, with f̃i ∈ K, (14.3)

where f̃ has no multiple roots over the algebraic closure K.
Furthermore, if char(K) �= 2g+1 we can obtain a further coefficient being zero. Namely, putting

x �→ x′ − f̃2g/(2g + 1) leads to

y′2 = f̂(x′) = x′2g+1 + f̂2g−1x
′2g−1 + · · · + f̂1x

′ + f̂0, with f̂i ∈ K. (14.4)

Example 14.9 In the case of even characteristic a nonsingular curve must have h(x) �= 0 as will be
shown now. The partial derivative equations are given by 2y − h(x) = h(x) and h′(x)y − f ′(x).

If h(x) = 0 identically then the partial derivative for y vanishes completely and the one for x
simplifies to f ′(x) = 0. Over the algebraic closure K this equation has 2g roots. Let x1 be one
of them. Over K , there exists an y1 with f(x1) = y2

1 , and, hence, a singular point P = (x1, y1)
satisfying the curve equation and both partial derivative equations.

Hence, we can always assume h(x) �= 0 and the transformation x �→ x′+f2g leads to an equation

y2 + h̃(x′)y = x′2g+1 + f̃2g−1x
′2g−1 + · · · + f̃1x

′ + f̃0, with f̃i ∈ K.

Some more transformations are possible and useful to obtain efficient doublings. We come back to
this in Section 14.5 and Section 14.6.3.

Even if the curves are not isomorphic, the Jacobians of C and C′ might share some common prop-
erties. One calls JC and JC′ isogenous if there exists a morphism ψ : JC → JC′ mapping [1, 0]
to the neutral element of JC′ . One important property of isogenies is that for every isogeny there
exists a unique isogeny ψ̂ : JC′ → JC called the dual isogeny such that

ψ̂ ◦ ψ = [n] and ψ ◦ ψ̂ = [n]′,

where [n]′ denotes the multiplication by n map on JC′ . The degree of the isogeny ψ is equal to this
n. For more background on isogenies we refer to Section 4.3.4.

By abuse of notation, two curves C/K and C′/K are called isogenous if the corresponding
Jacobian varieties JC and JC′ are isogenous.

14.1.4 Torsion elements

Definition 14.10 The kernel of [n] on JC is denoted by JC [n]. An element
__
D ∈ JC [n] is called an

element of n-torsion.

Theorem 14.11 Let C be a hyperelliptic curve defined over K . If the characteristic of K is either
zero or prime to n then

JC [n] � (Z/nZ)2g .

Otherwise, when char(K) = p and n = pe then

JC [pe] � (Z/peZ)r ,

with 0 � r � g, for all e � 1.

The following definition was given for general abelian varieties in Definition 4.74. We repeat it here
for easy reference in the special case of Jacobians of curves.
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Definition 14.12 Let char(K) = p. The p-rank of C/K is defined to be the integer r in Theo-
rem 14.11.

An elliptic curve E is called supersingular if it has E[pe] � {P∞}, i.e., if it has p-rank 0. A
Jacobian of a curve is called supersingular if it is the product of supersingular elliptic curves. Thus,
especially the p-rank of a supersingular Jacobian variety is 0 but the converse does not have to hold.

One also uses the term supersingular curve to denote that the Jacobian of this curve is supersingular.

14.1.5 Endomorphisms

The multiplication by n is an endomorphism of JC . The set of all endomorphisms of JC defined
over K will be denoted by EndK(JC) or more simply by End(JC), and contains at least Z.

Definition 14.13 If End(JC) ⊗ Q contains a number field F of degree 2g over Q we say that JC

has complex multiplication.

Thus, one has complex multiplication if the endomorphism ring is strictly bigger than Z.

Remark 14.14 Let C be a nonsupersingular hyperelliptic curve over Fq. Then JC always has com-
plex multiplication. Indeed, the Frobenius automorphism φq of Fq extends to the points of the
curve by sending P∞ to itself and P = (x1, y1) to (xq

1, y
q
1). One can easily check that the point

φq(P ) = (xq
1, y

q
1) is again a point on the curve irrespective of the field of definition of P . The map

also extends to the divisors and divisor classes. Hence, φq is an endomorphism of JC , called the
Frobenius endomorphism. It is different from [n] for all n ∈ Z.

14.1.6 Cardinality

Let the hyperelliptic curve C be defined over a finite field Fq. As for elliptic curves we have bounds
on the number of points over a finite field and on the group order of the divisor class group. The
following bounds depend only on the finite field and the genus of the curve:

Theorem 14.15 (Hasse–Weil)

(q1/2 − 1)2g � |Pic0
C | � (q1/2 + 1)2g.

The Frobenius endomorphism φq operates on the points by raising the coordinates to the power of
q. This action is inherited by the divisor class group and there φq maps the divisor class [u(x), v(x)]
to [φq(u(x)), φq(v(x))], where it is applied to the coefficients of the polynomials. The Frobenius
endomorphism satisfies a characteristic polynomial defined over the integers.

Theorem 14.16 Let C by a hyperelliptic curve of genus g defined over Fq.
The Frobenius endomorphism satisfies a characteristic polynomial of degree 2g given by

χ(φq)C(T ) = T 2g + a1T
2g−1 + · · · + agT

g + · · · + a1q
g−1T + qg,

where ai ∈ Z, 1 � i � g.

Denote by Mr the number of points of C(Fq) that are defined over Fqr or a subfield Fqs with s | r,
and put Nk = |Pic0

C·F
qk
|. There is a relationship between the Ni and the numbers Mr for 1 � r � g

given by the following theorem, which also provides the characteristic polynomial χ(φq)C(T ) of
the Frobenius endomorphism.
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Theorem 14.17 Let C be a hyperelliptic curve of genus g defined over Fq and let the factorization
of the characteristic polynomial χ(φq)C(T ) of the Frobenius endomorphism over C be

χ(φq)C(T ) =
2g∏

i=1

(T − τi) with τi ∈ C.

Then

(i) The roots of χ(φq)C satisfy |τi| =
√

q for 1 � i � 2g.

(ii) There exists an ordering with τi+g = τ i, hence, τiτi+g = q for 1 � i � g.

(iii) For any integer k, we have

Nk =
2g∏

i=1

(1 − τk
i ),

Mk = qk + 1 −
2g∑

i=1

τk
i ,

|Mk − (qk + 1)| � g
2qk/2�.

(iv) Put a0 = 1, then for 1 � i � g we have

iai =
(
Mi − (qi + 1)

)
a0 +

(
Mi−1 − (qi−1 + 1)

)
a1 + · · · +

(
M1 − (q + 1)

)
ai−1.

By the last property one sees that from the first g numbers Mi of points on the curve one can obtain
the whole polynomial χ(φq)C(T ) and thus the cardinality of Pic0

C as χ(φq)C(1). To illustrate this
relation: for a genus 2 curve we have to count the number of points defined over Fq and Fq2 to obtain
a1 = M1 − q − 1 and a2 = (M2 − q2 − 1 + a2

1)/2. For curves over large prime fields this poses
a nontrivial problem. For details on point counting we refer to Chapter 17. For curves defined over
small finite fields this way of determining the group order over extension fields is advantageous. We
deal with such curves, called Koblitz curves, in Section 15.1.

14.2 Compression techniques

We now study the question of how to compress divisor classes [u, v] for a genus g curve given by
(14.1). To this aim we fist consider compression of points as done for elliptic curves.

We observe that for a point P = (x1, y1) there is at most one more point with the same x-
coordinate, namely−P =

(
x1,−y1−h(x1)

)
. There is no further point exactly if y1 = −y1−h(x1).

Therefore, the x-coordinate determines a point up to the choice of two y-coordinates. This choice
can be given by a further bit, hence, a point can be represented by its x-coordinate and a further bit.

The compression technique by Hess, Seroussi, and Smart [HESE+ 2001] uses Mumford repre-
sentation (cf. Theorem 14.5) and recovers the points representing the divisor class [u, v].

For our exposition we first follow the approach of Stahlke [STA 2004]. To obtain efficient com-
pression and decompression techniques we need to study odd and even characteristic independently
and use the isomorphic transformations from Examples 14.8 and 14.9.

14.2.1 Compression in odd characteristic

In this paragraph we show how to compress a representative [u, v] of a divisor class by storing u
and some more bits, such that we can reconstruct v. Since the characteristic is odd we can assume
h(x) = 0. The same considerations hold in characteristic 0. Assume v to be unknown.
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Since u | v2 − f , there is a s ∈ K[x] such that us = v2 − f . This is an equation between two
polynomials of degree 2g+1 as deg f = 2g+1. The unknowns are the (2g+2−degu) coefficients
of s and at most deg u coefficients of v. Therefore, by comparison of coefficients we have 2g + 2
equations with at most 2g + 2 unknowns. We expect at most 2g solutions for v in which case the
choice of one solution can be encoded in g bits.

This expectation has to be verified in each case, of course. For elliptic curves we get two solutions
for v and with just one bit we can reconstruct v, which corresponds to calculating the y-coordinate
from the x-coordinate of a point (cf. Section 13.2.5). By way of illustration, from now on we restrict
ourselves to genus g = 2.

Then a curve can be defined by

y2 = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0,

where f has only simple roots in the algebraic closure. Let fi be the coefficients of f , (respectively
ui of u, vi of v and si of s). From us + f = v2 by comparison of coefficients we get

s(x) = −x3 + (u1 − f4)x2 + (u0 − u2
1 + f4u1 − f3)x + s0.

The discriminant of

u(x)s(x) + f(x) =
(
s0 + f2 − f3u1 − f4(u0 − u2

1) + u1(2u0 − u2
1)
)

x2 (14.5)

+
(
u1s0 + f1 − f3u0 + f4u0u1 + u0(u0 − u2

1)
)

x

+ u0s0 + f0

is of degree at most 2 in s0 and all coefficients are known. It is zero because u(x)s(x) + f(x) is a
square (namely v(x)2). From v(x)2 = u(x)s(x) + f(x) we get relations for v0 and v1:

v2
0 = u0s0 + f0, (14.6)

2v0v1 = u1s0 + f1 − f3u0 + f4u0u1 + u0(u0 − u2
1), (14.7)

v2
1 = s0 + f2 − f3u1 − f4(u0 − u2

1) + u1(2u0 − u2
1). (14.8)

Compression

The fi, ui and vi are known. Calculate s0 from (14.6) or (if u0 = 0) from (14.8). Consider the
right hand side of (14.5) as polynomial in x and let d(s0) be its discriminant, which we consider as
polynomial in s0. If u2

1 − 4u0 �= 0, consider the discriminant of d and decide which root gives the
correct value for s0. Store this choice in Bit1. As q is odd, the most convenient choice might be to
take as Bit1 the least significant bit of the root (i.e., the parity of a coordinate of the root considered
as number in [0, p− 1]).

Exception: If u2
1 − 4u0 = 0 then d(s0) is of degree 1 and Bit1 can be chosen arbitrarily.

In fact d(s0) is never of degree 0, otherwise a short calculation shows that f(−u1/2) = 0 and
f ′(−u1/2) = 0, so −u1/2 would be a singular point of the curve.

Now store in Bit2 the correct choice of v0 as root of u0s0 + f0 (cf. (14.6)). (Again the most
convenient choice might be to take as Bit2 the least significant bit of v0.) But if v0 = 0 then instead
store in Bit2 the correct choice of v1 as root of the right hand side of (14.8).

The compressed point is the tuple (u0, u1, Bit1, Bit2).

Decompression

The fi and ui are known. Also known are Bit1 and Bit2. We need to recover v0 and v1. Take the
discriminant of u(x)s(x) + f(x) (see (14.5)) and consider this discriminant d(s0) as polynomial in
s0. Calculate s0 from d(s0) = 0 according to Bit1. Calculate v0 from (14.6) according to Bit2. If
v0 �= 0 then calculate v1 from (14.7). If v0 = 0 then calculate v1 from (14.8) according to Bit2.



§ 14.3 Arithmetic on genus 2 curves over arbitrary characteristic 313

14.2.2 Compression in even characteristic

Here, we focus on finite fields of characteristic 2. Thus, we now assume that the genus g curve C
is given by C : y2 + h(x)y = f(x), with h(x) �= 0 and h, f ∈ F2d [x] and that the divisor class
[u(x), v(x)] has u, v ∈ F2d [x]. The following algorithm is a special case of [HESE+ 2001] and we
provide the version for arbitrary genus. Hence, one needs to factor the first polynomial u(x). Note
that for fixed genus and type of the curve it is again possible to take advantage of ideas as in the
previous section and work without factoring u(x), as shown for genus g = 2 in [LAN 2005a].

Compression

Let m1(x), m2(x), . . . , ml(x) be the factorization of u(x) overF2d ordered in some prescribed way.
For each factor mi(x) compute ri(x) = v(x) mod mi(x) and r̃i(x) = v(x) + h(x) mod mi(x),
and determine a bit to carry the correct choice as follows: if ri(x) is smaller than r̃i(x) according
to the ordering, then put Biti to 0, otherwise assign Biti = 1.

Remarks 14.18

(i) For fixed h(x) it is possible to omit the computation of r̃i(x) and derive a condition
depending on ri(x) only to distinguish the two choices.

(ii) If two factors mi(x) and mi+1(x) are equal, the computation of ri needs to be done
only once and one can put Biti+1 = Biti.

The class is then represented by [u(x), Bit1, . . . , Bitl] needing at most gd + g bits.

Decompression

To recover the full representation one needs to invert the above process. Again one starts with
factoring u(x) into m1(x), m2(x), . . . , ml(x).

For each polynomial mi(x) one performs the following procedure. Note that these factors are
irreducible and hence define a field extension L = F2d [x]/(mi(x)) of degree deg(mi). In particular
this means that one can compute in L and solve quadratic equations in the polynomial ring L[Y ] as
explained in Section 11.2.6.

Compute the two solutions ri1(x) and ri2(x) of Y 2 + h(x)Y + f(x) (mod mi(x)). The results
are interpreted as polynomials of degree less than deg(mi) over F2d .

The bit Biti determines which one to choose as the solutions correspond exactly to the polynomi-
als ri(x) and r̃i(x) computed above.

As above, these computations need not be performed if mi = mi+1.
This way one recovers [u(x), v(x)] = [m1(x), r1(x)] ⊕ [m2(x), r2(x)] ⊕ · · · ⊕ [ml(x), rl(x)].

Note that these additions do not involve reductions as the combined divisor class is reduced. This
means that v(x) can be obtained by interpolation, while u is known directly from the transmitted
values.

14.3 Arithmetic on genus 22222222 curves over arbitrary characteristic

For elliptic curves the group law can be stated as a sequence of multiplications, squarings, inver-
sions, and additions over the field. For hyperelliptic curves we have Cantor’s algorithm to perform
addition and doubling. Here we aim at deriving explicit formulas for genus two curves.

The first attempt to find such explicit formulas was done by Spallek [SPA 1994] and by Krieger
[KRI 1997]. The first practical formulas were obtained by Harley [HAR 2000], which were gener-
alized to even characteristic by Lange [LAN 2001a]; an improvement of the former paper can be
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found in Matsuo, Chao, and Tsujii [MACH+ 2001]. A significant improvement was obtained inde-
pendently by Takahashi [TAK 2002] and Miyamoto, Doi, Matsuo, Chao, and Tsujii [MIDO+ 2002];
this was generalized to even characteristic in [SUMA+ 2002] and independently in [LAN 2002b].
The second reference allows more general curves and manages to trade more multiplications for
squarings, which is desirable for characteristic 2 implementations.

In this section we give the main ingredients to study explicit formulas for the group law for genus
two curves. To this end we first give the case study of [LAN 2001a] investigating what can be
the input of Cantor’s Algorithm 14.7 and proceed in considering these different cases. We state
algorithms for the addition and doubling in the most frequent cases for even and odd characteristic.

These formulas involve (at least) 1 inversion per addition or doubling respectively. In some
environments inversions are extremely time or space critical. In the following two Sections 14.4
and 14.5 we consider in more detail the case of odd and even characteristic and also describe other
coordinate systems that avoid inversions on the cost of more multiplications.

Unless stated otherwise, the following formulas hold independently of the characteristic, there-
fore we take care of the signs; in characteristic 2, 2y is understood as zero.

For all following sections we fix the notation to refer to the coefficient of xi in a polynomial l(x)
as li.

14.3.1 Different cases

Consider the composition step of Cantor’s Algorithm 14.7. The input are two classes represented by
two polynomials each, namely [u1, v1] and [u2, v2]. Recall that Mumford representation 14.5 links
each such class to at most two finite points of the curve.

Without loss of generality, let deg u1 � deg u2.

1. If u1 is of degree 0 then
__
D1 must be the neutral element [u1, v1] = [1, 0]. The result of the

combination and reduction is the second class [u2, v2].
2. If u1 is of degree 1, then either u2 is of degree 1 as well or it has full degree.

A. Assume deg u2 = 1, i.e., ui = x + ui0 and the vi are constant. Then if u1 = u2 we
obtain for v1 = −v2 − h(−u10) the zero element [1, 0] and for v1 = v2 we double the
divisor to obtain

u = u2
1, (14.9)

v =

(
f ′(−u10) − v1h

′(−u10)
)
x +

(
f ′(−u10) − v1h

′(−u10)
)
u10

2v1 + h(−u10)
+ v1.

Otherwise the composition leads to

u = u1u2 and v =
(
(v2 − v1)x + v2u10 − v1u20

)
/(u10 − u20).

In all cases the results are already reduced.

B. Now let the second polynomial be of degree 2, i.e., u2 = x2 + u21x + u20. Then the
corresponding divisors are given by

D1 = P1 − P∞ and D2 = P2 + P3 − 2P∞, with Pi �= P∞.

i. If u2(−u10) �= 0 then P1 and −P1 do not occur in D2. This case will be dealt with
below in Section 14.3.2.b.

ii. Otherwise if D2 = 2P1 − 2P∞, which holds if u21 = 2u10 and u20 = u2
10 one

first doubles D2 as in 3.A.ii and then subtracts D1 using 2.B.i. If v2(−u10) =
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v1 + h(−u10) then −P1 occurs in D2 and the resulting class is given by u =
x + u21 − u10 and v = v2(−u21 + u10). Otherwise one first doubles [u1, v1] by
(14.9) and then adds

[x + u21 − u10, v2(−u21 + u10)],

hence, reduces the problem to the case 2.B.i.

3. Let deg u1 = deg u2 = 2.

A. Let first u1 = u2. This means that for an appropriate ordering

D1 = P1 + P2 − 2P∞ and D2 = P3 + P4 − 2P∞,

where the x-coordinates of Pi and Pi+2 are equal.

i. If v1 ≡ −v2 − h (mod u1) then the result is [1, 0].
ii. If v1 = v2 then we are in the case in which we double a class of order different

from 2 and with first polynomial of full degree. Again we need to consider two
subcases depending on whether a point in the support has order 2.
If D1 = P1 + P2 − 2P∞ where P1 is equal to its opposite, then the result is 2P2

and can be computed as above. The point P1 = (x1, y1) is equal to its opposite,
if and only if h(x1) = −2y1. To check for this case we compute the resultant of
h + 2v1 and u1.

a. If Res(h + 2v1, u1) �= 0 then we are in the usual case where both points are not
equal to their opposite. This will be considered in Section 14.3.2.c.

b. Otherwise we compute the gcd(h + 2v1, u1) = (x − x1) to get the coordinate
of P1 and double [x + u11 + x1, v1(−u11 − x1)].

iii. Now we know that without loss of generality P1 = P3 and P2 �= P4 is the opposite
of P4. Let vi = vi1x + vi0, then the result 2P1 is obtained by doubling[

x − (v10 − v20)/(v21 − v11), v1

(
(v10 − v20)/(v21 − v11)

)]
using (14.9).

B. For the remaining case u1 �= u2, we need to consider the following possibilities:

i. If Res(u1, u2) �= 0 then no point of D1 is equal to a point or its opposite in D2.
This is the most frequent case. We deal with it in Section 14.3.2.a.

ii. If the above resultant is zero then gcd(u1, u2) = x − x1 and we know that either
D1 = P1 + P2 − 2P∞, D2 = P1 + P3 − 2P∞ or D2 contains the opposite of P1

instead. This can be checked by inserting x1 in both v1 and v2.

a. If the results are equal then we are in the first case and proceed by computing
D′ = 2(P1 −P∞), then D′′ = D′ + P2 −P∞ and finally D = D′′ + P3 −P∞
by the formulas in 2. We extract the coordinates of P2 and P3 by

P2 =
(
−u11 − x1, v1(−u11 − x1)

)
P3 =

(
−u21 − x1, v2(−u21 − x1)

)
.

b. In case v1(x1) �= v2(x1) the result is P2 + P3 − 2P∞.

If one uses the resultant as recommended in 3.A.ii and 3.B.i then one needs to compute a greatest
common divisor as well, to extract the coordinates of P1 when needed. However, most frequently
we are in the case of nonzero resultant and thus we save on average.



316 Ch. 14 Arithmetic of Hyperelliptic Curves

14.3.2 Addition and doubling in affine coordinates (AAAAAA)

We now present in detail the algorithms for the cases left out above. These are the most common
cases. For the complexity estimates we always assume h2 ∈ {0, 1} and f4 = 0 as this can always be
achieved by isomorphic transformations unless the characteristic is 5. If the curve is not brought to
this form some computations should be performed differently (e.g., s0(s0+h2) instead of s2

0+s0h2).
We would like to stress that the formulas remain correct for other values of h2 and f4, only the
operation count changes. Depending on the equation of the curve and the characteristic some further
transformations can save operations. Later sections specialize the characteristic and thus obtain a
lower operation count.

Finally, we mention that we only count multiplications, squarings, and inversions because addi-
tions and subtractions are comparably cheap.

14.3.2.a Addition in most common case

In this case the two divisor classes to be combined consist of four points different from each other
and from each other’s negative. The results of the composition in Cantor’s Algorithm 14.7 are
u = u1u2 and a polynomial v of degree � 3 satisfying u | v2 + vh − f (see Theorem 14.5).
As we started with ui | v2

i + vih − f we can obtain v using the Chinese remainder theorem (cf.
Section 10.6.4).

v ≡ v1 (mod u1), (14.10)

v ≡ v2 (mod u2).

Then we compute the resulting first polynomial u′ by making (f − vh − v2)/(u1u2) monic and
taking v′ = (−h − v) mod u′.

To optimize the computations we do not follow this literally. We now list the needed subexpres-
sions and then show that in fact we obtain the desired result.

t ← (f − v2h − v2
2)/u2

s ←
(
(v1 − v2)/u2

)
mod u1

l ← su2

u ←
(
t − s(l + h + 2v2)

)
/u1

u′ ← u made monic

v′ ←
(
−h − (l + v2)

)
mod u′

The divisions made to get t and u are exact divisions due to the definition of the polynomials. Let
us first verify that v = l + v2 = su2 + v2 satisfies the system of equations (14.10). This is obvious
for the second equation. For the first one we consider

v ≡ su2 + v2 ≡
(
(v1 − v2)/u2

)
u2 + v2 ≡ v1 (mod u1).

Now we check that u = (f − vh − v2)/(u1u2) by expanding out

u1u2u = u2

(
t − s(l + h + 2v2)

)
= f − v2h − v2

2 − l(l + h) − 2lv2 = f − vh − v2.

In the course of computing we do not need all coefficients of the polynomials defined above. As
f = x5 +

∑4
i=0 fix

i is monic and of degree 5, u2 is monic of degree 2, deg h � 2, and deg v2 = 1
we have that t(x) = x3+(f4−u21)x2 +cx+c′, where c, c′ are some constants. In the computation
of u we divide an expression involving t by a polynomial of degree 2, thus we only need the above
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known part of t. In the computation of a product of polynomials we use the following Karatsuba
style formula (cf. Section 10.3.2) to save one multiplication:

(ax + b)(cx + d) = acx2 +
(
(a + b)(c + d) − ac − bd

)
x + bd.

To reduce a polynomial of degree 3 modulo a monic one of degree 2 we use

ax3+bx2+cx+d ≡
(
c−(i+j)

(
a+(b−ia)

)
+ia+j(b−ia)

)
x+d−j(b−ia) (mod x2+ix+j)

using only 3 multiplications instead of 4. Furthermore, we use an almost-inverse in the computation
of s and compute rs instead, where r is the resultant of u1 and u2, postponing and combining the
inversion of r with that of s. This leads us to consider a further subcase, namely deg s = 1.

In the following table we list the intermediate steps together with the number of multiplications,
squarings and inversions needed (respectively denoted by M, S and I). The names of the inter-
mediate variables refer to the above computations. A prime ′ indicates relative changes. For an
actual implementation less variables are needed. However, we favored readability by humans in this
exposition.

In the case study we have already computed the resultant of u1 and u2 when we arrive at this
algorithm. Hence, we can assume that ũ2 = u2 (mod u1) and Res(ũ2, u1) are known. However,
we include the costs in the table, as we use these expressions to compute 1/ũ2 mod u1.

The following Algorithm 14.19 presents the complete addition formula. We apply the trick in-
troduced by Takahashi [TAK 2002] to use a monic s′′. Note that the following algorithm needs the
same number of operations (assuming M = S) as his but manages to trade one more multiplication
for a squaring, which might be advantageous for implementations.

For even characteristic the independent work [SUMA+ 2002] needs the same number of opera-
tions but considers only the case of deg h = 2. Furthermore, in even characteristic squarings are
much cheaper than multiplications and therefore our algorithm is faster. If h1 = 1 the algorithm
presented now saves one multiplication in Line 6. The complexity for each step is given in brackets.

Algorithm 14.19 Addition (g = 2 and deg u1 = deg u2 = 2)

INPUT: Two divisor classes [u1, v1], [u2, v2] with ui = x2 + ui1x + ui0 and vi = vi1x + vi0.

OUTPUT: The divisor class [u′, v′] = [u1, v1] ⊕ [u2, v2].

1. compute r = Res(u1, u2)r = Res(u1, u2)r = Res(u1, u2)r = Res(u1, u2)r = Res(u1, u2)r = Res(u1, u2) [3M + S]
z1 ← u11 − u21, z2 ← u20 − u10, z3 ← u11z1 + z2 and r ← z2z3 + z2

1u10

2. compute almost inverse of u2u2u2u2u2u2 modulo u1u1u1u1u1u1, i.e., inv = (r/u2) mod u1inv = (r/u2) mod u1inv = (r/u2) mod u1inv = (r/u2) mod u1inv = (r/u2) mod u1inv = (r/u2) mod u1

inv1 ← z1 and inv0 ← z3

3. compute s′ = rs =
`
(v1 − v2)inv

´
mod u1s′ = rs =

`
(v1 − v2)inv

´
mod u1s′ = rs =

`
(v1 − v2)inv

´
mod u1s′ = rs =

`
(v1 − v2)inv

´
mod u1s′ = rs =

`
(v1 − v2)inv

´
mod u1s′ = rs =

`
(v1 − v2)inv

´
mod u1 [5M]

w0 ← v10 − v20 , w1 ← v11 − v21, w2 ← inv0w0 and w3 ← inv1w1

s′1 ← (inv0 + inv1)(w0 + w1) − w2 − w3(1 + u11) and s′0 ← w2 − u10w3

if s′1 = 0 see below

4. compute s′′ = x + s0/s1 = x + s′0/s′1s′′ = x + s0/s1 = x + s′0/s′1s′′ = x + s0/s1 = x + s′0/s′1s′′ = x + s0/s1 = x + s′0/s′1s′′ = x + s0/s1 = x + s′0/s′1s′′ = x + s0/s1 = x + s′0/s′1 and s1s1s1s1s1s1 [I + 5M + 2S]
w1 ← (rs′1)

−1, w2 ← rw1 and w3 ← s′1
2
w1

w4 ← rw2, w5 ← w2
4 and s′′0 ← s′0w2

we have w1 = 1/r2s1, w2 = 1/s′1, w3 = s1 and w4 = 1/s1

5. compute l′ = s′′u2 = x3 + l′2x
2 + l′1x + l′0l′ = s′′u2 = x3 + l′2x
2 + l′1x + l′0l′ = s′′u2 = x3 + l′2x
2 + l′1x + l′0l′ = s′′u2 = x3 + l′2x
2 + l′1x + l′0l′ = s′′u2 = x3 + l′2x
2 + l′1x + l′0l′ = s′′u2 = x3 + l′2x
2 + l′1x + l′0 [2M]

l′2 ← u21 + s′′0 , l′1 ← u21s
′′
0 + u20 and l′0 ← u20s

′′
0

6. compute u′ = (s(l + h + 2v2) − t)/u1 = x2 + u′
1x + u′

0u′ = (s(l + h + 2v2) − t)/u1 = x2 + u′
1x + u′

0u′ = (s(l + h + 2v2) − t)/u1 = x2 + u′
1x + u′

0u′ = (s(l + h + 2v2) − t)/u1 = x2 + u′
1x + u′

0u′ = (s(l + h + 2v2) − t)/u1 = x2 + u′
1x + u′

0u′ = (s(l + h + 2v2) − t)/u1 = x2 + u′
1x + u′

0 [3M]
u′

0 ← (s′′0 − u11)(s
′′
0 − z1 + h2w4) − u10

u′
0 ← u′

0 + l′1 + (h1 + 2v21)w4 + (2u21 + z1 − f4)w5

u′
1 ← 2s′′0 − z1 + h2w4 − w5
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7. compute v′ =
`−h − (l + v2)

´
mod u′ = v′

1x + v′
0v′ =

`−h − (l + v2)
´

mod u′ = v′
1x + v′

0v′ =
`−h − (l + v2)

´
mod u′ = v′

1x + v′
0v′ =

`−h − (l + v2)
´

mod u′ = v′
1x + v′

0v′ =
`−h − (l + v2)

´
mod u′ = v′

1x + v′
0v′ =

`−h − (l + v2)
´

mod u′ = v′
1x + v′

0 [4M]
w1 ← l′2 − u′

1, w2 ← u′
1w1 + u′

0 − l′1 and v′
1 ← w2w3 − v21 − h1 + h2u

′
1

w2 ← u′
0w1 − l′0 and v′

0 ← w2w3 − v20 − h0 + h2u
′
0

8. return [u′, v′] [total complexity: I + 22M + 3S]

In case s = s0, one needs to replace Lines 4–6 with the following.

4’. compute ssssss [I + M]
inv ← 1/r and s0 ← s′0inv

5’. compute u′ =
`
t − s(l + h + 2v2)

´
/u1 = x + u′

0u′ =
`
t − s(l + h + 2v2)

´
/u1 = x + u′

0u′ =
`
t − s(l + h + 2v2)

´
/u1 = x + u′

0u′ =
`
t − s(l + h + 2v2)

´
/u1 = x + u′

0u′ =
`
t − s(l + h + 2v2)

´
/u1 = x + u′

0u′ =
`
t − s(l + h + 2v2)

´
/u1 = x + u′

0 [S]
u′

0 ← f4 − u21 − u11 − s2
0 − s0h2

6’. compute v′ =
`−h − (l + v2)

´
mod u′ = v′

0v′ =
`−h − (l + v2)

´
mod u′ = v′

0v′ =
`−h − (l + v2)

´
mod u′ = v′

0v′ =
`−h − (l + v2)

´
mod u′ = v′

0v′ =
`−h − (l + v2)

´
mod u′ = v′

0v′ =
`−h − (l + v2)

´
mod u′ = v′

0 [3M]
w1 ← s0(u21 + u′

0) + h1 + v21 − h2u
′
0 and w2 ← u20s0 + v20 + h0

v′
0 ← u′

0w1 − w2

In this case the total complexity drops to I + 12M + 2S.

14.3.2.b Addition in case deg u1 = 1deg u1 = 1deg u1 = 1deg u1 = 1deg u1 = 1deg u1 = 1 and deg u2 = 2deg u2 = 2deg u2 = 2deg u2 = 2deg u2 = 2deg u2 = 2

We now treat case 2.B.i of Section 14.3.1 in which for u1 = x + u10 we have u2(−u10) �= 0.
In principle we follow the same algorithm as stated in the previous section. But to obtain u we

divide by a polynomial of degree one, therefore we need an additional coefficient of t and save a lot
in the other operations. Algorithm 14.20 shows that this case is much cheaper than the general one;
however, it is not too likely to happen as with all special cases.

Algorithm 14.20 Addition (g = 2, deg u1 = 1, and deg u2 = 2)

INPUT: Two divisor classes [u1, v1], [u2, v2] with u1 = x+u10, u2 = x2+u21x+u20, v1 = v10

and v2 = v21x + v20 .

OUTPUT: The divisor class [u′, v′] = [u1, v1] ⊕ [u2, v2].

1. compute r = u2 mod u1r = u2 mod u1r = u2 mod u1r = u2 mod u1r = u2 mod u1r = u2 mod u1 [M]
r ← u20 − (u21 − u10)u10

2. compute inverse of u2u2u2u2u2u2 modulo u1u1u1u1u1u1 [I]
inv ← 1/r

3. compute s =
`
(v1 − v2)inv

´
mod u1s =

`
(v1 − v2)inv

´
mod u1s =

`
(v1 − v2)inv

´
mod u1s =

`
(v1 − v2)inv

´
mod u1s =

`
(v1 − v2)inv

´
mod u1s =

`
(v1 − v2)inv

´
mod u1 [2M]

s0 ← inv(v10 − v20 − v21u10)

4. compute l = su2 = s0x
2 + l1x + l0l = su2 = s0x
2 + l1x + l0l = su2 = s0x
2 + l1x + l0l = su2 = s0x
2 + l1x + l0l = su2 = s0x
2 + l1x + l0l = su2 = s0x
2 + l1x + l0 [2M]

l1 ← s0u21 and l0 = s0u20

5. compute t = (f − v2h − v2
2)/u2 = x3 + t2x

2 + t1x + t0t = (f − v2h − v2
2)/u2 = x3 + t2x

2 + t1x + t0t = (f − v2h − v2
2)/u2 = x3 + t2x

2 + t1x + t0t = (f − v2h − v2
2)/u2 = x3 + t2x

2 + t1x + t0t = (f − v2h − v2
2)/u2 = x3 + t2x

2 + t1x + t0t = (f − v2h − v2
2)/u2 = x3 + t2x

2 + t1x + t0 [M]
t2 ← f4 − u21 and t1 ← f3 − (f4 − u21)u21 − v21h2 − u20

6. compute u′ =
`
t − s(l + h + 2v2)

´
/u1 = x2 + u′

1x + u′
0u′ =

`
t − s(l + h + 2v2)

´
/u1 = x2 + u′

1x + u′
0u′ =

`
t − s(l + h + 2v2)

´
/u1 = x2 + u′

1x + u′
0u′ =

`
t − s(l + h + 2v2)

´
/u1 = x2 + u′

1x + u′
0u′ =

`
t − s(l + h + 2v2)

´
/u1 = x2 + u′

1x + u′
0u′ =

`
t − s(l + h + 2v2)

´
/u1 = x2 + u′

1x + u′
0 [2M + S]

u′
1 ← t2 − s2

0 − s0h2 − u10

u′
0 ← t1 − s0(l1 + h1 + 2v21) − u10u

′
1

7. compute v′ =
`−h − (l + v2)

´
mod u′ = v′

1x + v′
0v′ =

`−h − (l + v2)
´

mod u′ = v′
1x + v′

0v′ =
`−h − (l + v2)

´
mod u′ = v′

1x + v′
0v′ =

`−h − (l + v2)
´

mod u′ = v′
1x + v′

0v′ =
`−h − (l + v2)

´
mod u′ = v′

1x + v′
0v′ =

`−h − (l + v2)
´

mod u′ = v′
1x + v′

0 [2M]
v′
1 ← (h2 + s0)u

′
1 − (h1 + l1 + v21)

v′
0 ← (h2 + s0)u

′
0 − (h0 + l0 + v20)

8. return [u′, v′] [total complexity: I + 10M + S]
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14.3.2.c Doubling

The above case study left open how one computes the double of a class where the first polynomial
has degree 2 and both points of the representing divisor are not equal to their opposites. Put u =
x2 + u1x + u0, v = v1x + v0. Composing [u, v] with itself should result in a class [unew, vnew],
where

unew = u2,

vnew ≡ v (mod u), (14.11)

unew | v2
new + vnewh − f. (14.12)

Then this class is reduced to obtain [u′, v′]. We use the following subexpressions:

t ← (f − hv − v2)/u

s ← t/(h + 2v) mod u

l ← su

ũ ← s2 −
(
(h + 2v)s − t

)
/u

u′ ← ũ made monic

v′ ←
(
−h − (l + v)

)
mod u′

Note that as above we do not compute the semi-reduced divisor explicitly, here

vnew = l + v = su + v.

Hence, we see that (14.11) holds. To prove (14.12) we consider

v2
new + vnewh − f = l2 + 2lv + v2 + hl + hv − f = s2u2 + u(s(h + 2v) − t)

and
(h + 2v)s − t ≡ (h + 2v)t/(h + 2v) − t ≡ 0 (mod u).

Finally, one finds by

(v2
new + vnewh − f)/unew = (s2u2 + (h + 2v)su − tu)/u2

that ũ is in fact obtained as described in the reduction algorithm.
Unlike in the addition case we now need the exact polynomial t to compute the result. For

the doublings it is necessary to separately count the operations for odd and even characteristic.
The given formulas are most general, but for an actual implementation they should be modified,
depending on the characteristic. For odd characteristic we assume h = 0, as this can be achieved
by replacing y by y−h(x)/2 in the defining equation, which transforms the curve to an isomorphic
one.

For even characteristic the different types of defining equation lead to many ways of improve-
ment. They are studied in Section 14.5 in more detail. Therefore, we skip counting them in the
following Algorithm 14.21.

Algorithm 14.21 Doubling (g = 2 and deg u = 2)

INPUT: A divisor class [u, v] with u = x2 + u1x + u0 and v = v1x + v0.

OUTPUT: The divisor class [u′, v′] = [2][u, v].

1. compute ṽ = (h + 2v) mod u = ṽ1x + ṽ0ṽ = (h + 2v) mod u = ṽ1x + ṽ0ṽ = (h + 2v) mod u = ṽ1x + ṽ0ṽ = (h + 2v) mod u = ṽ1x + ṽ0ṽ = (h + 2v) mod u = ṽ1x + ṽ0ṽ = (h + 2v) mod u = ṽ1x + ṽ0

ṽ1 ← h1 + 2v1 − h2u1 and ṽ0 = h0 + 2v0 − h2u0
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2. compute resultant r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u) [3M + 2S]
w0 ← v2

1 , w1 ← u2
1 and w2 ← ṽ2

1 (note that w2 = 4w0)
w3 ← u1ṽ1 and r ← u0w2 + ṽ0(ṽ0 − w3)

3. compute almost inverse inv′ = r invinv′ = r invinv′ = r invinv′ = r invinv′ = r invinv′ = r inv
inv′

1 ← −ṽ1 and inv′
0 ← ṽ0 − w3

4. compute t′ =
`
(f − hv − v2)/u

´
mod u = t′1x + t′0t′ =

`
(f − hv − v2)/u

´
mod u = t′1x + t′0t′ =

`
(f − hv − v2)/u

´
mod u = t′1x + t′0t′ =

`
(f − hv − v2)/u

´
mod u = t′1x + t′0t′ =

`
(f − hv − v2)/u

´
mod u = t′1x + t′0t′ =

`
(f − hv − v2)/u

´
mod u = t′1x + t′0 [M]

w3 ← f3 + w1, w4 ← 2u0 and t′1 ← 2(w1 − f4u1) + w3 − w4 − h2v1

t′0 ← u1(2w4 − w3 + f4u1 + h2v1) + f2 − w0 − 2f4u0 − h1v1 − h2v0

5. compute s′ = (t′inv′) mod us′ = (t′inv′) mod us′ = (t′inv′) mod us′ = (t′inv′) mod us′ = (t′inv′) mod us′ = (t′inv′) mod u [5M]
w0 ← t′0inv′

0 and w1 ← t′1inv′
1

s′1 ← (inv′
0 + inv′

1)(t
′
0 + t′1) − w0 − w1(1 + u1) and s′0 ← w0 − u0w1

if s′1 = 0 see below

6. compute s′′ = x + s0/s1s′′ = x + s0/s1s′′ = x + s0/s1s′′ = x + s0/s1s′′ = x + s0/s1s′′ = x + s0/s1 and s1s1s1s1s1s1 [I + 5M + 2S]
w1 ← 1/(rs′1), w2 ← rw1 and w3 ← s′21w1

w4 ← rw2, w5 ← w2
4 and s′′0 ← s′0w2

we have w1 = 1/r2s1, w2 = 1/s′1, w3 = s1 and w4 = 1/s1

7. compute l′ = s′′u = x3 + l′2x
2 + l′1x + l′0l′ = s′′u = x3 + l′2x
2 + l′1x + l′0l′ = s′′u = x3 + l′2x
2 + l′1x + l′0l′ = s′′u = x3 + l′2x
2 + l′1x + l′0l′ = s′′u = x3 + l′2x
2 + l′1x + l′0l′ = s′′u = x3 + l′2x
2 + l′1x + l′0 [2M]

l′2 ← u1 + s′′0 , l′1 ← u1s
′′
0 + u0 and l′0 ← u0s

′′
0

8. compute u′ = s2 + (h + 2v)s/u + (v2 + hv − f)/u2u′ = s2 + (h + 2v)s/u + (v2 + hv − f)/u2u′ = s2 + (h + 2v)s/u + (v2 + hv − f)/u2u′ = s2 + (h + 2v)s/u + (v2 + hv − f)/u2u′ = s2 + (h + 2v)s/u + (v2 + hv − f)/u2u′ = s2 + (h + 2v)s/u + (v2 + hv − f)/u2 [2M + S]
u′

0 ← s′′0
2
+ w4

`
h2(s

′′
0 − u1) + 2v1 + h1

´
+ w5(2u1 − f4)

u′
1 ← 2s′′0 + h2w4 − w5

9. compute v′ =
`−h − (l + v)

´
mod u′ = v′

1x + v′
0v′ =

`−h − (l + v)
´

mod u′ = v′
1x + v′

0v′ =
`−h − (l + v)

´
mod u′ = v′

1x + v′
0v′ =

`−h − (l + v)
´

mod u′ = v′
1x + v′

0v′ =
`−h − (l + v)

´
mod u′ = v′

1x + v′
0v′ =

`−h − (l + v)
´

mod u′ = v′
1x + v′

0 [4M]
w1 ← l′2 − u′

1, w2 ← u′
1w1 + u′

0 − l′1 and v′
1 ← w2w3 − v1 − h1 + h2u

′
1

w2 ← u′
0w1 − l′0 and v′

0 ← w2w3 − v0 − h0 + h2u
′
0

10. return [u′, v′] [total complexity: I + 22M + 5S]

In case s = s0, one replaces Lines 6–9 by the following.

6’. compute ssssss and precomputations [I + 2M]
w1 ← 1/r, s0 ← s′0w1 and w2 ← u0s0 + v0 + h0

7’. compute u′ = (f − hv − v2)/u2 − (h + 2v)s/u − s2u′ = (f − hv − v2)/u2 − (h + 2v)s/u − s2u′ = (f − hv − v2)/u2 − (h + 2v)s/u − s2u′ = (f − hv − v2)/u2 − (h + 2v)s/u − s2u′ = (f − hv − v2)/u2 − (h + 2v)s/u − s2u′ = (f − hv − v2)/u2 − (h + 2v)s/u − s2 [S]
u′

0 ← f4 − s2
0 − s0h2 − 2u1

8’. compute v′ =
`−h − (su + v)

´
mod u′v′ =

`−h − (su + v)
´

mod u′v′ =
`−h − (su + v)

´
mod u′v′ =

`−h − (su + v)
´

mod u′v′ =
`−h − (su + v)

´
mod u′v′ =

`−h − (su + v)
´

mod u′ [2M]
w1 ← s0(u1 − u′

0) − h2u
′
0 + v1 + h1 and v′

0 ← u′
0w1 − w2

In this case the total complexity drops to I + 13M + 3S.

14.4 Arithmetic on genus 22222222 curves in odd characteristic

In the previous section we derived explicit formulas for addition and doubling on genus 2 curves
over finite fields of arbitrary characteristic. Already for the operation count of the doubling we
needed to separate even characteristic fields from those of odd characteristic. In this section we
consider further improvements for different coordinate systems. Here, we concentrate on fields of
odd characteristic.

We introduce different sets of coordinates and consider the most frequent cases of inputs, namely
those given in detail in the previous section, and assume the most general output cases. Thus the
special case of s = s0 is no longer considered. Then we consider the task of computing scalar mul-
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tiplication in the divisor class group and investigate the advantages of the different representations
with and without precomputations.

14.4.1 Projective coordinates (P)(P)(P)(P)(P)(P)

So far, in the process of computation one inversion is required for each addition or doubling. Now,
instead of following this line, we introduce a further coordinate called Z as with elliptic curves and
let the quintuple [U1, U0, V1, V0, Z] stand for [x2 + U1/Z x + U0/Z, V1/Z x + V0/Z]. Due to the
obvious resemblance with the case of elliptic curves we refer to this representation as projective
coordinates and to the original one as affine coordinates. If the output of a scalar multiplication
should be in the usual affine representation we need one inversion and four multiplications at the
end of the computations.

This idea was first proposed for genus 2 curves in [MIDO+ 2002] and then largely improved and
generalized by Lange in [LAN 2002c]. The idea of using affine and projective inputs together for
the addition algorithm was proposed for elliptic curves in [COMI+ 1998] and generalized to genus
2 curves in [LAN 2002c].

We now proceed to investigate the arithmetic in the main cases. For applications one usually
chooses prime fields Fq = Fp, where p is large, or optimal extension fields Fpd (cf. Chapter 2 for
the definitions) for p ∼ 232. In particular one can assume that p �= 5 and thus choose f4 = 0 by
Example 14.4.

14.4.1.a Addition in projective coordinates for odd characteristic

Here we consider the case that we add two classes, both in projective representation. This is needed
if the whole system avoids inversion and classes are transmitted using this quintuple representation,
if during the verification of a signature intermediate results should be added, or when using precom-
putations given in projective representation. Obviously this algorithm also works for affine inputs if
one writes [u1, v1] as [u11, u10, v11, v10, 1]. The numbers in brackets refer to the case, that the first
input is affine, i.e., has Z1 = 1. A more careful implementation of this case allows us to save some
further multiplications (see [LAN 2002c]), namely then one addition needs 40M + 3S.

Algorithm 14.22 Addition in projective coordinates (g = 2 and q odd)

INPUT: Two divisor classes
__
D1 and

__
D2 represented by

__
D1 = [U11, U10, V11, V10, Z1] and__

D2 = [U21, U20, V21, V20, Z2].

OUTPUT: The divisor class [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′] =
__
D1 ⊕

__
D2.

1. precomputations [5M (none)]
Z ← Z1Z2, eU21 ← Z1U21, eU20 ← Z1U20, eV 21 ← Z1V21 and eV 20 ← Z1V20

2. compute resultant r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2) [6M + S (5M + S)]
z1 ← U11Z2 − eU21 and z2 ← eU20 − U10Z2

z3 ← U11z1 + z2Z1 and r ← z2z3 + z2
1U10

3. compute almost inverse of u2u2u2u2u2u2 modulo u1u1u1u1u1u1

inv1 ← z1 and inv0 ← z3

4. compute ssssss [8M (7M)]
w0 ← V10Z2 − eV 20 and w1 ← V11Z2 − eV 21

w2 ← inv0w0 and w3 ← inv1w1

s1 ← (inv0 + Z1inv1)(w0 + w1) − w2 − w3(Z1 + U11)
s0 ← w2 − U10w3
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5. precomputations [8M + S]
R ← Zr, s0 ← s0Z, s3 ← s1Z and eR ← Rs3

S3 ← s2
3, S ← s0s1, eS ← s3s1, bS ← s0s3 and bR ← eR eS

6. compute llllll [3M]
l2 ← eS eU21, l0 ← S eU20 and l1 ← ( eS + S)(eU21 + eU20) − l2 − l0
l2 ← l2 + bS

7. compute U ′U ′U ′U ′U ′U ′ [8M + 2S]
U ′

0 ← s2
0 + s1z1

`
s1(z1 + eU21) − 2s0

´
+ z2

eS + R
`
2s1
eV 21 + r(z1 + 2eU21 − f4Z)

´

U ′
1 ← 2bS − eSz1 − R2

8. precomputations [4M]
l2 ← l2 − U ′

1, w0 ← U ′
0l2 − S3l0 and w1 ← U ′

1l2 + S3(U
′
0 − l1)

9. adjust [3M]
Z′ ← eRS3, U ′

1 ← eRU ′
1 and U ′

0 ← eRU ′
0

10. compute V ′V ′V ′V ′V ′V ′ [2M]

V ′
0 ← w0 − bR eV 20 and V ′

1 ← w1 − bR eV 21

11. return [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′] [total complexity: 47M + 4S (40M + 4S)]

14.4.1.b Doubling in projective coordinates for odd characteristic

For the doubling algorithm the input is almost always in projective representation. Multiplications
by f4 are not counted.

Algorithm 14.23 Doubling in projective coordinates (g = 2 and q odd)

INPUT: A divisor class represented by [U1, U0, V1, V0, Z].

OUTPUT: The divisor class [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′] = [2][U1, U0, V1, V0, Z].

1. compute resultant and precomputations [4M + 3S]
Z2 ← Z2 , eV 1 ← 2V1, eV 0 ← 2V0, w0 ← V 2

1 , w1 ← U2
1 and w2 ← 4w0

w3 ← eV 0Z − U1
eV 1 and r ← eV 0w3 + w2U0

2. compute almost inverse
inv1 ← −eV 1 and inv0 ← w3

3. compute tttttt [5M]
w3 ← f3Z2 + w1, w4 ← 2U0 , t1 ← 2w1 + w3 − Z(w4 + 2f4U1)
t0 ← U1

`
Z(2w4 + f4U1) − w3

´
+ Z

`
Z(f2Z − 2f4U0) − w0

´

see Remark 14.24 (ii)

4. compute ssssss [7M]
w0 ← t0inv0, w1 ← t1inv1 and s3 ← (inv0 + inv1)(t0 + t1) − w0 − (1 + U1)w1

s1 ← s3Z and s0 ← w0 − ZU0w1

5. precomputations [6M + 2S]
R ← Z2r, eR ← Rs1, S1 ← s2

1 and S0 ← s2
0

s1 ← s1s3, s0 ← s0s3, S ← s0Z and bR ← eRs1

6. compute llllll [3M]
l2 ← U1s1, l0 ← U0s0 and l1 ← (s1 + s0)(U1 + U0) − l2 − l0

7. compute U ′ [4M + S]
U ′

0 ← S0 + R
`
2s3V1 + Zr(2U1 − f4Z)

´
and U ′

1 ← 2S − R2
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8. precomputations [4M]
l2 ← l2 + S − U ′

1, w0 ← U ′
0l2 − S1l0 and w1 ← U ′

1l2 + S1(U
′
0 − l1)

9. adjust [3M]
Z′ ← S1

eR, U ′
1 ← eRU ′

1 and U ′
0 ← eRU ′

0

10. compute V ′ [2M]

V ′
0 ← w0 − bRV0 and V ′

1 ← w1 − bRV1

11. return [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′] [total complexity: 38M + 6S]

Remarks 14.24

(i) First of all one notices that doublings are much faster than general additions; this is
especially interesting as doublings occur much more frequently than additions in any
algorithm to compute scalar multiples, most striking in windowing methods.

(ii) If f4 = 0, then t0 in Line 3 is computed as t0 ← U1(2Zw4 − w3) + Z(f2Z2 − w0).
Here, we use that Zw4 is already obtained during the computation of t1.

It is interesting to note that the value of the additional coordinate Z ′ was not kept minimal. One
could have avoided (at least) a factor of Z2

1Z2 of the denominator in the addition and of Z in the
doubling. However, as we tried to minimize the number of operations, we allowed the larger value
of Z4rs3

1 in both cases as this proved to be more efficient. Besides one sees that U ′
1 and U ′

0 have to
be adjusted to have the same (larger) denominator Z ′ as V ′

1 , V ′
0 .

14.4.2 New coordinates in odd characteristic (N )(N )(N )(N )(N )(N )

As we just noticed, the necessary denominator of the Vi’s differs from that of the Ui’s. This leads us
to consider a further set of coordinates. Here, we suggest letting [U1, U0, V1, V0, Z1, Z2] correspond
to the affine class [x2+U1/Z

2
1 x+U0/Z

2
1 , V1/(Z3

1Z2)x+V0/(Z3
1Z2)]. This means that now a point

corresponds to a sextuple; thus one needs one more entry than for projective coordinates. Coordinate
systems in which not all entries have the same denominator are called weighted coordinates. For
elliptic curves this corresponds to Jacobian coordinates. Compared to the case of elliptic curves, for
equal security the entries for g = 2 are of only half the size, thus the space requirements are similar.

As usual we assume f4 = 0. This time we do not include this coefficient in the formulas. To
increase the performance we enlarge the set of coordinates to [U1, U0, V1, V0, Z1, Z2, z1, z2], where
z1 = Z2

1 and z2 = Z2
2 . These additional entries are computed anyway during each addition or

doubling and keeping them saves in the following operation. Both addition and doubling profit
from z1 whereas z2 is only used for the doublings. We do not include Z1Z2 because it is not useful
in doublings and is not automatically computed.

If space is more restricted such that we can only use the sextuple of coordinates, we need two
extra squarings in the first step of the doubling or addition.

These new coordinates were first proposed by the Lange [LAN 2002d]; they generalize the con-
cepts of Jacobian, Chudnovsky Jacobian and modified Jacobian coordinates from elliptic to hyper-
elliptic curves. The respective counterparts can be seen if one varies the additional coordinates —
the original Jacobian coordinates correspond to allowing only Z1, Z2. In the following we state
the most efficient algorithms, the additional coordinates become more and more useful with the in-
crease of the window size in scalar multiplications, and hence they form the counterpart to modified
Jacobian coordinates. The topic of which coordinates to choose in which system is treated further
in Section 14.4.3.
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14.4.2.a Addition in new coordinates in odd characteristic

If one computes a scalar multiple of a point given in affine coordinates and has the intermediate re-
sults non-normalized, then in the addition, the intermediate result enters in new coordinates whereas
the other class enters always as [U11, U10, V11, V10, 1, 1, 1, 1]. The numbers in brackets refer to this
(cheaper) case. For an algorithm devoted to this case see [LAN 2002d]. It needs only 36M + 5S.

Algorithm 14.25 Addition in new coordinates (g = 2 and q odd)

INPUT: Two divisor classes
__
D1 and

__
D2 represented by

__
D1 = [U11, U10, V11, V10, Z11, Z12, z11,

z12] and
__
D2 = [U21, U20, V21, V20, Z21, Z22, z21, z22].

OUTPUT: The divisor class
__
D′ = [U ′

1, U
′
0, V

′
1 , V ′

0 , Z′
1, Z

′
2, z

′
1, z

′
2] =

__
D1 ⊕

__
D2.

1. precomputations [8M (2M)]
z13 ← Z11Z12, z23 ← Z21Z22 , z14 ← z11z13 and z24 ← z21z23

eU21 ← U21z11, eU20 ← U20z11, eV 21 ← V21z14 and eV 20 ← V20z14

2. compute resultant r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2) [11M + 4S (8M + 3S)]
y1 ← U11z21 − eU21, y2 ← eU20 − U10z21 and y3 ← U11y1 + y2z11

r ← y2y3 + y2
1U10, Z′

2 ← Z11Z21, eZ2 ← Z12Z22 and Z′
1 ← Z′2

2

eZ2 ← eZ2Z
′
1r, Z′

2 ← Z′
2
eZ2, eZ2 ← eZ2

2 and z′
2 ← Z′2

2

3. compute almost inverse of u2u2u2u2u2u2 modulo u1u1u1u1u1u1

inv1 ← y1 and inv0 ← y3

4. compute ssssss [8M (7M)]
w0 ← V10z24 − Ṽ20, w1 ← V11z24 − Ṽ21, w2 ← inv0w0 and w3 ← inv1w1

s1 ← (inv0 + z11inv1)(w0 + w1) − w2 − w3(z11 + U11)
s0 ← w2 − U10w3

5. precomputations [6M + 3S]
S1 ← s2

1, S0 ← s0Z
′
1, Z′

1 ← s1Z
′
1, S ← Z′

1S0 and S0 ← S2
0

R ← rZ′
1, s0 ← s0Z

′
1, s1 ← s1Z

′
1 and z′

1 ← Z′2
1

6. compute llllll [3M]
l2 ← s1

eU21, l0 ← s0
eU20 and l1 ← (s0 + s1)(eU20 + eU21) − l0 − l2

l2 ← l2 + S

7. compute U ′U ′U ′U ′U ′U ′ [6M]
V ′

1 ← ReV 21

U ′
0 ← S0 + y1

`
S1(y1 + eU21) − 2s0

´
+ y2s1 + 2V ′

1 + (2eU21 + y1) eZ2

U ′
1 ← 2S − y1s1 − z′

2

8. precomputations [2M]
l2 ← l2 − U ′

1, w0 ← l2U
′
0 and w1 ← l2U

′
1

9. compute V ′V ′V ′V ′V ′V ′ [3M]
V ′

1 ← w1 − z′
1(l1 + V ′

1 − U ′
0) and V ′

0 ← w0 − z′
1(l0 + ReV 20)

10. return [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′
1, Z

′
2, z

′
1, z

′
2] [total complexity: 47M + 7S (37M + 6S)]

14.4.2.b Doubling

The formulas for doubling make obvious why we include z2 = Z2
2 as well. If space is very limited

such that one cannot apply windowing methods at all, this is the first coordinate to drop if one needs
to restrict the storage. Still, any binary method is fastest when including z2.
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Algorithm 14.26 Doubling in new coordinates (g = 2 and q odd)

INPUT: A divisor class represented by
__
D = [U1, U0, V1, V0, Z1, Z2, z1, z2].

OUTPUT: The divisor class [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′
1, Z

′
2, z

′
1, z

′
2] = [2]

__
D.

1. compute resultant and precomputations [8M + 3S]
eU0 ← U0z1, w0 ← V 2

1 , w1 ← U2
1 and w3 ← V0z1 − U1V1

r ← w0U0 + V0w3, eZ2 ← Z2rz1, Z′
2 ← 2 eZ2Z1 and eZ2 ← eZ2

2

2. compute almost inverse
inv1 ← −V1 and inv0 ← w3

3. compute tttttt [6M + S]
z3 ← z2

1 , w3 ← f3z3 + w1 and t1 ← z2

`
2(w1 − eU0) + w3

´

z3 ← z3z1 and t0 ← z2

`
U1(4eU0 − w3) + z3f2

´− w0

4. compute ssssss [5M]
w0 ← t0inv0 and w1 ← t1inv1

s1 ← (inv0 + inv1)(t0 + t1) − w0 − w1(1 + U1) and s0 ← w0 − w1
eU0

5. precomputations [5M + 3S]
S0 ← s2

0, Z′
1 ← s1z1, z′

1 ← Z′
1
2 and S ← s0Z

′
1

R ← rZ′
1, z′

2 ← Z′2
2 , s0 ← s0s1 and s1 ← Z′

1s1

6. compute llllll [3M]
l2 ← s1U1, l0 ← s0U0 and l1 ← (s0 + s1)(U0 + U1) − l0 − l2
l2 ← l2 + S

7. compute U ′ [2M]
V ′

1 ← RV1, U ′
0 ← S0 + 4(V ′

1 + 2 eZ2U1) and U ′
1 ← 2S − z′

2

8. precomputations [2M]
l2 ← l2 − U ′

1, w0 ← l2U
′
0 and w1 ← l2U

′
1

9. compute V ′ [3M]
V ′

1 ← w1 − z′
1(l1 + 2V ′

1 − U ′
0) and V ′

0 ← w0 − z′
1(l0 + 2RV0)

10. return [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′
1, Z

′
2, z

′
1, z

′
2] [total complexity: 34M + 7S]

14.4.3 Different sets of coordinates in odd characteristic

So far we have given algorithms to perform the computations within one system and briefly men-
tioned additions involving one input in affine coordinates. Now we are concerned with mixes of
coordinate systems. To have suitable abbreviations, we denote by C1 + C2 = C3 the computation of
an addition, where the first input is in coordinate system C1, the second in C2 and the output is in
C3. Similarly, 2C1 = C2 denotes a doubling with input in system C1 and output in C2. We denote the
affine system by A, the projective by P and the new by N . In the following we estimate the costs
of computing scalar multiples using various systems of coordinates. To have the figures in mind,
the following Table 14.2 lists the costs for the most useful additions and doublings.

14.4.3.a Scalar multiples in odd characteristic

In this section we concentrate on the computation of n-folds [n]
__
D, where n is an integer and

__
D is a

divisor class. For references on how to compute the respective expansions of n, see Chapter 9 and
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the references given therein.

Table 14.2 Addition and doubling in different systems and in odd characteristic.

Doubling Addition

Operation Costs Operation Costs

2N = P 38M + 7S N + N = P 51M + 7S
2P = P 38M + 6S N + P = P 51M + 4S
2P = N 35M + 6S N + N = N 47M + 7S
2N = N 34M + 7S N + P = N 48M + 4S

— — P + P = P 47M + 4S
— — P + P = N 44M + 4S
— — A + N = P 40M + 5S
— — A + P = P 40M + 3S
— — A + N = N 36M + 5S
— — A + P = N 37M + 3S

2A = A I + 22M + 5S A + A = A I + 22M + 3S

Let n =
∑l−1

i=0 ni2i. The direct approach to compute [n]
__
D for a given class

__
D is to use the binary

double and add method, starting with the most significant bit of n. For every ni = 1 we need to per-
form an addition as well as a doubling, while for a 0 one only doubles. The density is asymptotically
1/2.

Here we deal with the divisor class group of hyperelliptic curves and the negative of a class
is obtained by negating the coordinates Vi or vi respectively. Hence, signed binary expansions
are useful. They have the lower density of 1/3 if one uses an NAF of the multiplier, and are
approximately of the same length.

If we can afford some precomputations, windowing methods (cf. Section 9.1.3) provide better
performance; we consider signed expansions here. The NAFw representation, cf. Section 9.1.4 is
advantageous to compute scalar multiples [n]P . This requires us to precompute all odd multiples
[i]P for 1 < i < 2w−1. They can be obtained as a sequence of additions and one doubling.

We will first consider systems without precomputations and then investigate good matches of co-
ordinate systems for windowing methods. The reason for treating these cases separately is that for
precomputations, the addition will involve the set of coordinates that is advantageous for the pre-
computations, whereas in the system without precomputations this choice depends on the efficiency
of the mixed addition only.

No precomputation

In this approach we perform approximately l doublings and l
3 additions per scalar multiple of length

l. Table 14.3 lists the number of operations depending on the coordinate system; details are given
below. We assume l to be large and therefore leave out the costs for the initial moving from one
system to the other as they occur only once. However, note that except for the first line, where
inversions are assumed to be cheap, this conversion involves no divisions.

If inversions are relatively cheap, affine coordinates provide the best performance; thus, if the
class is given in a non-normalized system we first normalize it. This takes I + 4M for P → A and
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I+7M for N → A. Then we double l times and add on average l
3 times using l

3 (4I + 88M + 18S).

Table 14.3 Without precomputations, odd characteristic.

Systems Cost

2A = A and A + A = A l
3 (4I + 88M + 18S)

2N = N and A + N = N l
3 (138M + 26S)

2N = N and N + P = N l
3 (150M + 25S)

Otherwise, for affine input the new system is best, as the most common operation (doubling) is
cheaper than in any other fixed system and the mixed addition is also fast.

If the input is in P and inversions are very expensive, we need to find two systems C1 and C2 such
that 2C1 = C1, 2C1 = C2 and C2 +P = C1 are as cheap as possible, the first being the most frequent
operation. By Table 14.2 we choose C1 = N . For C2 it is equal to choose N or P , therefore we
use N to save some bookkeeping. Thus the first doubling is done as 2P = N and all further as
2N = N . There are approximately l doublings 2N = N and l

3 additions N + P = N leading to
l
3 (150M + 25S).

If the input is in new coordinates, we do the same, except that the first doubling is 2N = N
needing 1 more S, and we use 4M for N → P of the initial point.

To compare, using only projective coordinates we would need l
3 (161M + 22S) and using only

new coordinates results in l
3 (149M + 28S); thus mixing the coordinate systems is advantageous.

We state the overview in Table 14.3.

Windowing methods

To obtain the table of precomputed values, i.e., all odd multiples [i]D for 1 < i < 2w−1, we need
one doubling and 2w−2 − 1 additions.

As before, we distinguish cases depending on the relative cost of inversions. If inversions are
not too expensive, the precomputations are performed in affine coordinates. To still trade off some
inversions for multiplications, we make use of Montgomery’s trick of simultaneous inversions. As in
[COMI+ 1998] (cf. Chapter 13) we first compute [2]

__
D, then ([3]

__
D, [4]

__
D), then ([5]

__
D, [7]

__
D, [8]

__
D),

. . . ,([2w−3 +1]
__
D, . . . , [2w−2−1]

__
D, [2w−2]

__
D), and finally ([2w−2+1]

__
D, . . . , [2w−1−1]

__
D), where

each sequence involves only one I. Computing m inversions simultaneously is done by I + 3(m −
1)M. Thus we need

(w − 1)I, (w − 2) class-doublings, 2w−2 − 1 class-additions, and 3(2w−2 − 2) extra M.

As most of the operations for the precomputations are additions, we choose projective coordinates
P if we want to perform the precomputations avoiding inversions. Table 14.2 shows that additions
involving at least one point in affine coordinates and leading to inversion-free coordinates are much
faster than those involving two non-affine points. Therefore, it can be useful to allow some more
multiplications and 1 inversion to transform the precomputed points to affine coordinates. The costs
for these three approaches leading to A and also for precomputations in P are listed in Table 14.4;
in the last row we assume that the class was given in projective coordinates.

If inversions are cheap we stick to the affine system to compute the scalar multiplication. If
we can afford the w inversions (or one more for non-affine input) to do the precomputations in
affine, we use the new system for doublings, and perform the additions using the new mixed system
A + N = N . Finally, if inversions are very expensive, the best match is obtained if one uses
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projective coordinates for the precomputations, and the doublings are performed as 2N = N . Then
the addition is done as N + P = N .

Table 14.4 Precomputations in odd characteristic.

System I M S

A 2w−2 22 × 2w−2 3 × 2w−2 + 2

A w − 1 25 × 2w−2 + 22w − 72 3 × 2w−2 + 5w − 3

A 1 50 ×w−2 −15 4 × 2w−2 + 2

P 47 × 2w−2 − 9 4 × 2w−2 + 2

As in the case of elliptic curves, we put l1 = l − (w − 1)/2 and K = 1/2 − 1/(w + 1). In a scalar
multiplication using an NAFw representation, on average l1 + K doublings and (l1 − K)/(w + 1)
additions are used. The costs are listed in Table 14.5. Some more computations can be saved using
the tricks of [COMI+ 1998]. Again, we leave out the initial costs for conversions and state the
precomputations separately in Table 14.4.

Table 14.5 Windowing method in odd characteristic.

Systems I M S

2A = A, A + A = A l1 + K + l1−K
w+1 22

(
l1 + K + l1−K

w+1

)
5(l1 + K) + 3 l1−K

w+1

2N = N , A + N = N 34(l1 + K) + 36 l1−K
w+1 7(l1 + K) + 5 l1−K

w+1

2N = N , N + P = N 34(l1 + K) + 48 l1−K
w+1 7(l1 + K) + 4 l1−K

w+1

14.4.4 Montgomery arithmetic for genus 222222 curves in odd characteristic

For elliptic curves we have shown in Section 13.2.3 that for certain curves a more efficient arithmetic
is possible, one that also avoids inversions and uses the Montgomery ladder (cf. Algorithm 9.5). This
allows us to have the uniform sequence of operations in the scalar multiplication of performing an
addition and a doubling for each bit of the scalar. This is advantageous if one tries to find counter-
measures against side-channel attacks as considered in Chapter 29. Furthermore, compared to the
direct application of ladder techniques, one can save some space by neglecting the y-coordinate.

In this section we provide an analogue for genus 2 curves over fields of odd characteristic and
show how one can also neglect the second part of the representations here, i.e., the v in [u, v]. Note
that this is still an active area of research and that so far explicit formulas have only been derived for
odd characteristic fields. Furthermore, both publications [DUQ 2004, LAN 2004a] take their main
motivation from achieving countermeasures against side-channel attacks. Finding an analogue of
Montgomery coordinates in the sense of obtaining a very efficient projective coordinate system is
still an open problem.

To describe Duquesne’s generalization [DUQ 2004] we need to consider a new object related to
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genus 2 curves, the Kummer surface. His approach works only for curves that have a second Fq-
rational Weierstraß point, hence they have at least a cofactor of 2. Lange’s proposal [LAN 2004a]
can be applied to arbitrary curves but is less efficient. Therefore, we decided not to put it in this
chapter on efficient implementations.

14.4.4.a A Montgomery-like form for genus 222222 curves

Definition

In the following, we will say that a curve C is transformable into Montgomery-like form if it is
isomorphic to a curve given by an equation of the type

By2 = x5 + f4x
4 + f3x

3 + f2x
2 + x. (14.13)

It is easy to prove that a curve C as defined in (14.1) is transformable into Montgomery-like form if
and only if

• the polynomial f(x) has at least one root α in Fq.
• for this root, f ′(α) is a fourth power in Fq .

Thus, as in the case of elliptic curves, not all the curves are transformable into the Montgomery-like
form. Nevertheless, there are O(q3) genus 2 curves over Fq showing that the choice of curves in
Montgomery-like form is not too special. Note that different choices of f4, f3 and f2 give rise to
different isomorphism classes while B distinguishes only between the two quadratic twists.

The Kummer surface

Montgomery coordinates for elliptic curves allow us to avoid storing the y-coordinate (cf. Sec-
tion 13.2.3). This means that for the representation P and −P are identified. The analog for genus
2 curves is called the Kummer surface, where a divisor and its opposite are identified. The Kum-
mer surface is a quartic surface in P3. We give here the definition of the Kummer surface and its
properties without proofs for curves in Montgomery-like form. They were obtained using the same
method as in the book of Cassels and Flynn on genus 2 curves (cf. [CAFL 1996] or [FLY 1993]).
We use the fact that each divisor class

__
D of degree 0 in Pic0

C can be uniquely represented by at most
2 points P = (x1, y1) and Q = (x2, y2) and identify the class

__
D with this representation. Let S be

the subset of Pic0
C such that each divisor class is represented by a reduced divisor with exactly two

different points in the support.
The Kummer surface is the image of the map

κ : S −→ P3(Fq){
(x1, y1), (x2, y2)

}
�−→

(
1 : x1 + x2 : x1x2 :

F0(x1, x2) − 2By1y2

(x1 − x2)2

)
,

with

F0(x1, x2) = (x1 + x2) + 2f2x1x2 + f3(x1 + x2)x1x2 + 2f4x
2
1x

2
2 + (x1 + x2)x2

1x
2
2,

together with the neutral element, which is represented by (0 : 0 : 0 : 1).
In the following, for any divisor class

__
D, we will denote the components of the map κ as

κ(
__
D) =

(
k1(

__
D) : k2(

__
D) : k3(

__
D) : k4(

__
D)
)
.

More precisely, the Kummer surface is the projective locus given by an equation K of degree four
in the first three variables and of degree two in the last one. The exact equation can be found
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online [FLY]. In passing from the Jacobian to the Kummer surface, we have lost the group structure
(as was already the case with elliptic curves) but traces of it remain. For example, it is possible to
double on the Kummer surface.

Nevertheless, for general divisor classes
__
D1 and

__
D2, we cannot determine the values of the

ki(
__
D1 ⊕

__
D2) from the values of the ki(

__
D1) and ki(

__
D2) since the latter do not distinguish between

+−
__
D1 and +−

__
D2, and so not between

__
D1 ⊕

__
D2 and

__
D1 �

__
D2. However the values of the ki(

__
D1 ⊕__

D2)kj(
__
D1 �

__
D2) + ki(

__
D1 �

__
D2)kj(

__
D1 ⊕

__
D2) are well defined.

Theorem 14.27 There are explicit polynomials ϕij biquadratic in the ki(
__
D1), ki(

__
D2) such that

projectively

ki(
__
D1 ⊕

__
D2)kj(

__
D1 �

__
D2) + ki(

__
D1 �

__
D2)kj(

__
D1 ⊕

__
D2) = ϕij

(
κ(

__
D1), κ(

__
D2)

)
. (14.14)

Using these biquadratic forms, we can easily compute the ki(
__
D1 ⊕

__
D2) if the kj(

__
D1 �

__
D2) are

known. We can also compute the ki([2]
__
D1) by putting

__
D1 =

__
D2.

By abuse of notation we put [2]κ(
__
D) = κ([2]

__
D) and κ(

__
D1) ⊕ κ(

__
D2) = κ(

__
D1 ⊕

__
D2) defining

a group law on the Kummer surface, provided that this is possible, i.e., that κ(
__
D1) � κ(

__
D2) =

κ(
__
D1 �

__
D2) is known.

Addition

Proposition 14.28 Let Fq be a field of characteristic p �= 2, 3 and let C/Fq be a curve of genus 2
in Montgomery form (14.13). Let KC denote the Kummer surface of C. Let

__
D1 and

__
D2 be two

divisor classes of C, and assume that the difference
__
D1 �

__
D2 is known and that the third coordinate

of its image in the Kummer surface is 1 (remember we are in P3(Fq) and thus can normalize as long
as x1x2 �= 0).

Then we obtain the Kummer coordinates for
__
D1 ⊕

__
D2 by the following formulas :

k1(
__
D1 ⊕

__
D2) = ϕ11

(
κ(

__
D1), κ(

__
D2)

)
, (14.15)

k2(
__
D1 ⊕

__
D2) = 2

(
ϕ12

(
κ(

__
D1), κ(

__
D2)

)
− k1(

__
D1 ⊕

__
D2)k2(

__
D1 �

__
D2)

)
,

k3(
__
D1 ⊕

__
D2) = k1(

__
D1 �

__
D2)ϕ33

(
κ(

__
D1), κ(

__
D2)

)
,

k4(
__
D1 ⊕

__
D2) = 2

(
ϕ14

(
κ(

__
D1), κ(

__
D2)

)
− k1(

__
D1 ⊕

__
D2)k4(

__
D1 �

__
D2)

)
,

where the ϕij are the biquadratic forms described in Theorem 14.27.

The expressions of the ϕij

(
κ(

__
D1⊕

__
D2)

)
, are available by anonymous ftp [FLY] but require a large

number of operations in the base field to be computed. The main difficulty is to find expressions
that require the least possible number of multiplications in Fq. We now give more precisely these
expressions for those ϕij we are interested in. We use the notation κ(

__
D1) = (k1 : k2 : k3 : k4) and

κ(
__
D2) = (l1 : l2 : l3 : l4).

ϕ11

(
κ(

__
D1), κ(

__
D2)

)
=

(
(k4l1 − k1l4) + (k2l3 − k3l2)

)2
,

ϕ12

(
κ(

__
D1), κ(

__
D2)

)
=

(
(k2l3 + k3l2) + (k1l4 + k4l1)

)(
f3(k1l3 + k3l1) + (k2l4 + k4l2)

)
+ 2(k1l3 + k3l1)

(
f2(k1l3 + k3l1) + (k1l2 + k2l1) − (k3l4 + k4l3)

)
+ 2f4(k1l4 + k4l1)(k2l3 + k3l2),

ϕ33

(
κ(

__
D1), κ(

__
D2)

)
=

(
(k3l4 − k4l3) + (k1l2 − k2l1)

)2
,

ϕ14

(
κ(

__
D1), κ(

__
D2)

)
= (k1l1 − k3l3)

[
f3

(
(k1l4 + k4l1) − (k2l3 + k3l2)

)
+ 2

(
(k1l2 + k2l1) − (k3l4 + k4l3)

)
+ f2(k4l4 + k2l2) + 2f4(k1l1 − k3l3)

]
+ (k2l2 − k4l4)

(
(k2l3 + k3l2) − (k1l4 + k4l1) − f2(k1l1 + k3l3)

)
.
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Doubling

Proposition 14.29 Let Fq be a field of characteristic p �= 2, 3 and let C/Fq be a curve of genus 2
in Montgomery form (14.13). Let KC denote the Kummer surface of C. Let also

__
D1 be a divisor

class of C and κ(
__
D1) = (k1 : k2 : k3 : k4), its image in the Kummer surface. Then we obtain the

Kummer coordinates for [2]
__
D1 given by κ([2]

__
D1) = (δ1 : δ2 : δ3 : δ4) by the following formulas:

δ1 = 2ϕ14

(
κ(

__
D1), κ(

__
D1)

)
, (14.16)

δ2 = 2ϕ24

(
κ(

__
D1), κ(

__
D1)

)
+ 2f3K(

__
D1),

δ3 = 2ϕ34

(
κ(

__
D1), κ(

__
D1)

)
,

δ4 = ϕ44

(
κ(

__
D1), κ(

__
D1)

)
+ 2K(

__
D1),

where the ϕij are the biquadratic forms described in Theorem 14.27 and K is the equation of the
Kummer surface such that K(

__
D1) = 0.

This is just a consequence of Theorem 14.27. Let us note that in δ2 and δ4 we added a multiple of
the equation of the Kummer surface in order to simplify the expressions as much as possible. We
give now more precisely these expressions for the δi.

δ1 = 8(k2
1 − k2

3)
(
f4(k2

1 − k2
3) + 2(k1k2 − k3k4)

)
+ 8(k1k4 − k2k3)

(
k2
4 − k2

2 + f2(k1k4 − k2k3) + f3(k2
1 − k2

3)
)
,

δ2 = 8(k2
1 + k2

3 − f3k1k3 − 3k2k4)(k2
2 + k2

4 − f3(k2
1 + k2

3) + 4k1k3)
+ 16(k2k4 + f3k1k3)

(
f4(k1k2 + k3k4) + 2(k2

2 + k2
4) + f2(k1k4 + k2k3)

)
+ 32k1k3

(
4k2k4 + f2(k1k2 + k3k4) + (f2

2 + f2
4 )k1k3 + 8f4(k1k4 + k2k3)

)
,

δ3 = 8(k2
1 − k2

3)(f2(k2
1 − k2

3) + 2(k1k4 − k2k3) + f3(k1k2 − k3k4)) +
8(k3k4 − k1k2)

(
k2
4 − k2

2 + f4(k3k4 − k1k2)
)
,

δ4 = (k2
2 + k2

4)
(
(k2

2 + k2
4) − 2f3(k2

1 + k2
3) − 8k1k3

)
+ (k2

1 + k2
3)
[
f3k1k3 + f4(k1k4 + k2k3) + 2k2k4 + f2(k1k2 + k3k4)

+ (f2
3 − 4f2f4)(k2

1 + k2
3)
]
− 8f2f4(k1k3)2.

14.4.4.b Montgomery scalar multiplication on genus 222222 curves in Montgomery-like form

We now show how to compute scalar multiplications [n]
__
D for some integer n and divisor class

__
D.

To add two classes in the representation on the Kummer surface we need to know their difference.
Therefore, we can apply the Montgomery ladder (cf. Algorithm 9.5).

Algorithm 14.30 Montgomery scalar multiplication for genus 2 curves

INPUT: A divisor class
__
D ∈ Pic0

C and a positive integer n = (nl−1 . . . n0)2.

OUTPUT: The image κ([n]
__
D) of [n]

__
D in the Kummer surface.

1. (D1, D2) ←
`
(0 : 0 : 0 : 1), κ(

__
D)
´

2. for i = l − 1 down to 0 do

3. if ni = 0 then (D1, D2) ← ([2]D1, D1 ⊕ D2)

4. else (D1, D2) ← (D1 ⊕ D2, [2]D2)

5. return D1
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Note that, at each step, we always have D2 � D1 = κ(
__
D) so that the addition of D1 and D2 is

possible on the Kummer surface.

Number of operations

At each step of the algorithm, we perform both an addition and a doubling, hence we just have
to count the number of operations required for each of them. In the following, M will denote a
multiplication in Fq and S a squaring.

Table 14.6 Doubling of
__
D1 in KC and addition of

__
D1 and

__
D2 in KC if

__
D1 �

__
D2 is known.

Doubling Addition

Operation Costs Operation Costs

Precomputations {kikj}i,j=1,...,4 6M + 4S Precomputations {kilj}i,j=1,...,4 16M

δ1 5M ϕ11

(
κ(

__
D1), κ(

__
D2)

)
S

δ2 11M ϕ12

(
κ(

__
D1), κ(

__
D2)

)
6M

δ3 5M ϕ33

(
κ(

__
D1), κ(

__
D2)

)
S

δ4 5M ϕ14

(
κ(

__
D1), κ(

__
D2)

)
6M

— — κ(
__
D1 ⊕

__
D2) 3M

Total 31M + 5S Total 31M + 2S

Remarks 14.31

(i) To double one uses 31 multiplications including 16 multiplications by coefficients of the
curve. The multiplications f3k1k3, f3(k2

1 + k2
3), f4(k1k4 + k2k3) and f2(k1k2 + k3k4)

are not counted in δ4 since they were already computed in δ2. Furthermore, we assumed
that f2f4, f

2
3 − 4f2f4 and f2

2 + f2
4 were precomputed.

(ii) The 31 multiplications needed for an addition include 7 multiplications by coefficients
of the curve.

Hence, on a curve in the Montgomery form as in (14.13), the scalar multiplication [n]
__
D by n =∑l−1

i=0 ni2i using the Montgomery method requires (62M + 7S)l.

14.4.4.c Comparison with usual algorithms for scalar multiplication

To date, the best algorithms for scalar multiplication on genus 2 curves defined over a field of odd
characteristic are obtained by using mixed new coordinates (cf. Section 14.4.2). In this case, one
needs 34M + 7S for a doubling and 36M + 5S for an addition. Hence, a single operation is more
expensive but the Montgomery ladder requires us to compute both addition and doubling for each
bit of the scalar while the usual arithmetic can be used with N . Assuming an average density of 1/3
of the scalar, new coordinates need only about 46M + 9S per bit. The use of windowing methods
with precomputations allows us to reduce this even further.

Nevertheless, this algorithm is still interesting for many reasons.

Remarks 14.32

(i) As for elliptic curves, the Montgomery algorithm is automatically resistant against sim-
ple side-channel attacks (cf. Section 29.1). Therefore, it is of interest for implementa-
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tions on restricted devices including smart cards.
Compared to the easiest countermeasure of performing a double and always add Algo-
rithm 28.3, the use of Montgomery arithmetic is much more efficient as 62M+7S instead
of 70M + 12S are needed per bit. Furthermore, one does not need dummy operations
that could weaken the system against fault attacks. For more details on side-channel
attacks see Chapters 28 and 29.

(ii) The algorithm is very dependent on the coefficients of the curve. Indeed, there are 23
multiplications by these coefficients but only 2 in Lange’s formulas. Hence, a good
choice of the coefficients of the curve allows better timings. We consider this issue now.

14.4.4.d Some special cases

In order to decrease the number of base field operations for the Montgomery algorithm, certain
choices of coefficients of the curve are better to use. For example, there are 6 multiplications by
f3 in the formulas in (14.15) and (14.16) so that, if one chooses f3 = 0 or 1, the total amount of
multiplications necessary for each bit of the scalar is 63 instead of 69. In Table 14.7, we summarize
the gain obtained in each operation. Let us note that there is no gain for the calculation of ϕ11, ϕ33

and precomputations.

Table 14.7 Gain obtained in different cases.

f2 = 0 f2 small f3 = 0 or small f4 = 0 f4 small

ϕ12 M M M 2M M
ϕ14 2M 2M M M M
δ1 M M M M M
δ2 2M 2M 2M 2M 2M
δ3 M M M M M
δ4 M + S M 0 M + S M

Total 8M + S 8M 6M 8M + S 7M

Remark 14.33 If two of these conditions on the coefficients are satisfied, the gain obtained is at
least the sum of the gains. If f2 and f4 are both small a further M is saved in (f2

2 + f2
4 )k1k3.

Of course, this kind of restriction implies that fewer curves are taken into account. For example,
if f3 = 0, there are basically two free coefficients (namely f2 and f4) so that the number of such
curves is O(q2). Thus, we lose in generality. However, the cryptographic applications require only
one curve such that the divisor class group has a large prime order subgroup.

Let us now examine more precisely a particular case and compare our algorithm to the usual ones.
Let C be a genus 2 curve defined over Fq by an equation of the form

By2 = x5 + f3x
3 + εx2 + x with ε = +− 1 and B and f3 ∈ Fp. (14.17)

Here, Montgomery algorithm of scalar multiplication requires 46M+6S for each bit of the exponent,
whereas with mixed new coordinates,

• a sliding window method with window size equal to 4 requires on average 40M + 8S
per bit,
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• using the NAF representation requires (46M + 9S)l on average.

Thus, this algorithm is 7 percent faster than a double and add and not too far from the sliding
window method (less than 6 percent).

The gain compared to the double-and-always-add algorithm is particularly striking, as there only
70M + 12S are needed per bit. In fact, this is a gain of 37 percent.

Of course, one can even be faster than the sliding window method by choosing a small coefficient
f3, but the number of such curves becomes very small.

Remark 14.34 Another means to accelerate this algorithm would be to choose f2, f3 and f4 to fit
in one word. If the field needs b words then each multiplication is about b times faster, as for such
small field sizes the schoolbook method (Algorithm 10.8) is applied. E.g., if b = 3 then the number
of operations per bit reduces to about 47M + 7S.

14.4.4.e Examples

Here we give examples of genus 2 curves in Montgomery form. The base field is the prime field Fp

with p = 280 + 13 (so that the group size is the same as for elliptic curves over fields of 160 bits).
Let C1, C2 and C3 be the genus 2 curves defined by the equations

C1 : 44294637780422381596577 y2 = x5 + 27193747657561668783534 x4

+ 29755922098575219239037 x3

+ 76047862040141126737826 x2 + x,

C2 : 10377931047456722522292 y2 = x5 + 77304198867988157865677 x3 + x2 + x,

C3 : 69418837068442493864220 y2 = x5 + x3 + x.

Timings for these curves are provided in [DUQ 2004]. Montgomery arithmetic on C3 outperforms
new coordinates with window width w = 4 and gets close to this on C2. The general type curve C1

is slower than new coordinates except for the side-channel resistant implementation.

14.5 Arithmetic on genus 22222222 curves in even characteristic

In this section we consider hyperelliptic curves of genus 2 over binary fields given by an equation
of the form (14.1) y2 + h(x)y = f(x), where h(x) = h2x

2 + h1x + h0 and f(x) = x5 + f4x
4 +

f3x
3 + f2x

2 + f1x + f0 are polynomials defined over F2d . By Example 14.9 we have h(x) �= 0.
In order to get the best possible arithmetic, we first classify genus 2 curves and then give for-

mulas for addition and doubling for each type of curves following [BYDU 2004, LAST 2005,
PEWO+ 2004]. Then we deal with inversion-free systems as in odd characteristic.

In this section, we will call “small” an element in F2d that is represented by a polynomial with
almost all its coefficients equal to zero, so that multiplications by such an element can be performed
via few additions and are almost for free.

14.5.1 Classification of genus 222222 curves in even characteristic

Classification of genus 2 curves in characteristic 2 is considered in, for example, [CHYU 2002,
BYDU 2004, LAST 2005]. We divide them into into three types depending on the polynomial h:

• Type I if deg h = 2. This type can be split in a Type Ia where h has no root in F2d and a
Type Ib where such a root exists.

• Type II if deg h = 1.
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• Type III if deg h = 0.

We will first find equations for these types of curves with the minimal number of nonzero coeffi-
cients. In other words, we give an analogue of the short Weierstraß equations for elliptic curves.

Thanks to a change of variables of the form

x �→ µ2x′ + λ and y �→ µ5y′ + µ4αx′2 + µ2βx′ + γ (14.18)

after dividing the new equation by µ10, we can eliminate some coefficients from the equation (14.1).

Proposition 14.35 A genus 2 curve of Type I defined over F2d by an equation of the form (14.1) is
isomorphic to a curve defined by an equation of one of the following forms:

Type Ia : y2 + (x2 + h1x + th2
1)y = x5 + εtx4 + f1x + f0,

Type Ib : y2 + x(x + h1)y = x5 + εtx4 + f1x + f0,

where ε ∈ F2 and t denotes an element of trace 1 (t = 1 if d is odd). The isomorphism is explicit
and uses the solution of quadratic equations in characteristic 2 explained in detail in Section 11.2.6.
It is obtained using the change of variables (14.18) with

• µ = h2,

• λ a root of h, if the Type is Ib (i.e., if Tr(h0h2h
−2
1 ) = 0) and a solution of h(x) =

th2
1h

−1
2 , if the Type is Ia (i.e., if Tr(h0h2h

−2
1 ) = 1),

• α a root of x2 + h2x + f4 + λ + εth−2
2 with ε = Tr

(
(f4 + λ)h2

2

)
,

• β = (f3 + h1α)h−1
2 ,

• γ =
(
β2 + h1β + αh(λ) + f3λ + f2

)
h−1

2 .

Remark 14.36 For curves of Type I, the three parameters h1, f1 and f0 are free so that this change
of variables provides 4q3 isomorphism classes (with q = 2d).

Proposition 14.37 A genus 2 curve of Type II defined over F2d by an equation of the form (14.1)
is isomorphic to a curve defined by an equation of the form

y2 + xy = x5 + f3x
3 + εx2 + f0, if d is odd

y2 + h1xy = x5 + ε′x3 + εth2
1x

2 + f0, if d is even

where ε and ε′ are in F2 and t denotes an element of trace 1.
The isomorphism is explicit and it is obtained using the change of variables (14.18) with

• µ such that µ3 = h1 if d is odd and µ4 = f3 + h1α if d is even,
• λ = h0h

−1
1 .

• α =
√

λ + f4,

• β a root of x2 + h1x + f2 + f3λ + εth2
1 with ε = Tr

(
(f2 + f3λ)h−2

1

)
and t = 1 if d is

odd,
• γ =

(
λ2f3 + λ4 + f1

)
h−1

1 .
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Remarks 14.38

(i) Finding an element µ such that µ3 = h1 is always possible if d is odd, as then 3 �
2d − 1 (cf. Remark 2.94). Even though d odd is the most common case in cryptographic
applications (because of the Weil descent attack, Section 22.3), we also consider the
case where d is even. In this case, if h1 is not a cube, an element b can be chosen in
F2d such that h1b is a cube. Moreover, the probability that this element can be chosen
“small” is very high so that multiplications by b are almost for free. In this case one can
obtain an isomorphic curve given by an equation that is very similar to the one obtained
if d is odd [LAST 2005]:

y2 + b−1xy = x5 + f3x
3 + εts−2x2 + f0. (14.19)

(ii) There are only two free parameters, f3 and f0 in the first form and h1 and f0 in the
second one, as opposed to three in the general case showing that this type is indeed
special. Thus, we obtain at most 2q2 isomorphism classes of curves of Type II defined
over Fq if d is odd and 4q2 if not.

(iii) It is also possible to have f3 zero at the cost of a nonzero h0, but we will see later that it
is much more useful to have h0 zero.

For curves of Type Ib the group order is always divisible by 4 since there exist three divisor classes
of order 2 resulting from the 2 points with x1 = 0 and x1 = h1. Over F2d the group order of Type
Ia curves is divisible by 2 but not by 4, which needs a quadratic extension. Both types have full
2-rank, i.e., JC [2] � Z/2Z× Z/2Z.

Type II curves have group order divisible by 2 as h has a single root. These curves have 2-rank 1.
Type III curves have 2-rank 0 as h is constant and are thus supersingular (cf. Definition 4.74 and

the remark thereafter). This makes them weak under the Frey–Rück attack [FRRÜ 1994] as they
always have a small embedding degree (cf. Section 24.2.2 and Galbraith [GAL 2001a]). Hence, they
should be avoided for discrete logarithm systems. However, such curves have found an application
in pairing based cryptography so that they must be considered.

Proposition 14.39 A genus 2 curve of Type III defined over F2d by an equation of the form (14.1)
is isomorphic to a curve defined by an equation of the form

y2 + b−1y = x5 + f3x
3 + f1x + εts−2,

where we may assume that b is a “small” element of F2d such that bh0 is a fifth power and ε is in
F2. For odd d we can again achieve b = 1.

Remark 14.40 With this form we do not get a unique representative equation for each isomorphism
class, because it is proven in [CHYU 2002] that there are between 2q and 32q isomorphism classes
for curves of Type III and the form presented here has two free parameters (f3 and f1). In fact, a
further change of variables leads to restrictions on f1 but this involves equations of degree 16.

14.5.2 Explicit formulas in even characteristic in affine coordinates (AAAAAA)

The classification of the previous section allows some improvements in the formulas for the dou-
bling. Addition works the same as in the general case given in Section 14.3.2.a. Of course, as some
coefficients of the curve become zero or “small”, some multiplications can be easily saved in the
formulas. We now show how the doubling Algorithm 14.21 can be sped up for the individual types.

In the following, the element t of trace 1 will always be chosen “small” and multiplications by t
are not taken into account when listing the costs per step.
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The major speedup is obtained when h0 = 0 which holds for curves of Type Ib and II. Lange
and Stevens noticed in [LAST 2005] that r, the resultant computed in the general formulas (see
Section 14.3.2.c for more details) will simplify to the form r = u0r̃ for some r̃. This allows us to
cancel r in the expressions, so its inverse is no longer needed.

Moreover, they use the equation

f + hv + v2 = ut′ + u2(x + f4), (14.20)

to avoid the computation of t′0 and also the exact computation of s′0 is not necessary.
We will now give explicit formulas for doubling an element [u, v] with deg u = 2 (this is the

general case) on each type of curve in affine coordinates.
In Algorithm 14.41 we give doubling formulas for a curve of Type Ia given by an equation of

the form as in Proposition 14.35. In this case, h0 �= 0 so that the improvement of [LAST 2005]
cannot be used. However, it is possible to use the equation (14.20) to trade off a multiplication
for a squaring (which is usually more efficient in characteristic 2) as explained in [LAST 2005].
Finally, we use the fact that h0 = th2

1 to save a multiplication compared to the doubling formulas
in [LAST 2005].

Formulas for such curves contain a lot of multiplications by h1 so that it is interesting for ef-
ficiency’s sake to choose h1 “small”. For h1 = 1 and thus h0 = t, only 15 multiplications, 7
squarings and 1 inversion are required for doubling.

Algorithm 14.41 Doubling on Type Ia curves (g = 2 and q even)

INPUT: A divisor class [u, v] with u = x2 + u1x + u0, v = v1x + v0, h2
1 and t with Tr(t) = 1.

OUTPUT: The divisor class [u′, v′] = [2][u, v].

1. compute t′1t
′
1t
′
1t
′
1t
′
1t
′
1 and precomputations [3M + 2S]

z0 ← u2
0, z1 ← u2

1 and w0 ← h1v1(h1 + v1)
t′1 ← z1 + v1 and w1 ← h1u1

2. compute resultant r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u) [2M]
r ← (u0 + th2

1)(u0 + th2
1 + w1) + h2

1(u0 + tz1)

3. compute s′1s′1s′1s′1s
′
1s
′
1 and almost s′0s′0s′0s′0s

′
0s
′
0 [3M + S]

s′1 ← f1 + z0 + w1

`
t′1 + t(w1 + εu1)

´
+ w0

y ← f0 + εtz0 + (v0 + εtw1)
2 + h1(u0t

′
1 + tw0)

If s′1 = 0 see below

4. compute s′′ ← x + s0/s1s′′ ← x + s0/s1s′′ ← x + s0/s1s′′ ← x + s0/s1s′′ ← x + s0/s1s′′ ← x + s0/s1 and s1s1s1s1s1s1 [I + 5M + 2S]
w1 ← 1/(rs′1), w2 ← rw1 and w3 ← s′21 w1

w4 ← rw2, w5 ← w2
4 and s′′0 ← u1 + yw2

note that w1 = 1/r2s1, w2 = 1/s′1, w3 = s1 and w4 = 1/s1

5. compute l′l′l′l′l′l′ [2M]
l′2 ← u1 + s′′0 , l′1 ← u1s

′′
0 + u0 and l′0 ← u0s

′′
0

6. compute u′u′u′u′u′u′ [M + S]
u′

0 ← s′′0
2
+ w4(s

′′
0 + u1 + h1) + εtw5 and u′

1 ← w4 + w5

7. compute v′v′v′v′v′v′ [4M]
w1 ← l′2 + u′

1 and w2 ← u′
1w1 + u′

0 + l′1
v′
1 ← w2w3 + v1 + h1 + u′

1

w2 ← u′
0w1 + l′0 and v′

0 ← w2w3 + v0 + h0 + u′
0

8. return [u′, v′] [total complexity: I + 20M + 6S]
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In case s = s0, one replaces Lines 4–7 by the following lines.

4’. compute ssssss and precomputations [I + 2M]
w1 ← 1/r, s0 ← yw1 and w2 ← u0s0 + v0 + h0

5’. compute u′u′u′u′u′u′ [S]
u′

0 ← s2
0 + s0 + εt

6’. compute v′v′v′v′v′v′ [2M]
w1 ← s0(u1 + u′

0) + u′
0 + v1 + h1 and v′

0 ← u′
0w1 + w2

In this case the total complexity drops to I + 12M + 4S.
In Algorithm 14.42 we give doubling formulas for a curve of Type Ib given by an equation of

the form given in Proposition 14.35, assuming that h2
1 is precomputed. There are, again, a lot of

multiplications by h1 so that we can get many more operations for free if we are willing to choose
h1 “small”. Therefore we also include this possibility in parentheses.

Algorithm 14.42 Doubling on Type Ib curves (g = 2 and q even)

INPUT: A divisor class [u, v] with u = x2 + u1x + u0, v = v1x + v0 and h2
1.

OUTPUT: The divisor class [u′, v′] = [2][u, v].

1. compute t′1t
′
1t
′
1t
′
1t
′
1t
′
1 and precomputations [2M + 2S (3S)]

z0 ← u2
0, z1 ← u2

1 and w0 ← v1(h1 + v1)
t′1 ← z1 + v1, z2 ← h1u1 and z3 ← εtu1

2. compute resultant r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u)r = Res(ṽ, u)
r̃ ← u0 + h2

1 + z2 note that r̃ = r/u0

3. compute s′1s′1s′1s′1s
′
1s
′
1 and almost s′0s′0s′0s′0s

′
0s
′
0 [3M (M)]

w2 ← u1(t
′
1 + z3) + w0 and w3 ← v0 + h1t

′
1

s′1 ← f1 + z0 + h1w2

m0 ← w2 + w3 note that m0 = (s′0 − u1s
′
1)/u0

If s′1 = 0 see below

4. compute s′′ = x + s0/s1s′′ = x + s0/s1s′′ = x + s0/s1s′′ = x + s0/s1s′′ = x + s0/s1s′′ = x + s0/s1 and s1s1s1s1s1s1 [I + 3M + S]
w2 ← 1/(s′1) and w3 ← u0w2

w4 ← r̃w3 and w5 ← w2
4

s′′0 ← u1 + m0w3

note that w2 = 1/rs1 and w4 = 1/s1

5. compute u′u′u′u′u′u′ [M + S]
z4 ← εtw4 and u′

1 ← w4 + w5

u′
0 ← s′′20 + w4(s

′′
0 + h1 + u1 + z4)

6. compute v′v′v′v′v′v′ [6M + S (5M + S)]
z5 ← w2

`
m2

0 + t′1(s
′
1 + h1m0)

´

z6 ← s′′0 + h1 + z4 + z5

v′
0 ← v0 + z2 + z1 + w4(u

′
0 + z3) + s′′0z6

v′
1 ← v1 + w4(u

′
1 + s′′0 + εt + u1) + z5

7. return [u′, v′] [total complexity: I + 15M + 5S (I + 10M + 6S)]

In case s = s0, one replaces Lines 4–6 by the following lines.

4’. compute ssssss and precomputations [I + 2M]
w1 ← 1/r̃, s0 ← m0w1 and w2 ← u0s0 + v0

5’. compute u′u′u′u′u′u′ [S]
u′

0 ← s2
0 + s0
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6’. compute v′v′v′v′v′v′ [2M]
w1 ← s0(u1 + u′

0) + u′
0 + v1 + h1 and v′

0 ← u′
0w1 + w2

In this case the total complexity drops to I + 9M + 3S, resp. I + 5M + 4S.
In Algorithm 14.43 we give doubling formulas for a curve of Type II given by an equation of the

form

y2 + h1xy = x5 + f3x
3 + f2x

2 + f0.

The number of operations required for each step is given for d odd (since it is the most frequently
used case) and in parentheses for d even. If d is even, h2

1 is precomputed.

Algorithm 14.43 Doubling on Type II curves (g = 2 and q even)

INPUT: A divisor class [u, v] with u = x2 + u1x + u0, v = v1x + v0, h−1
1 , and h2

1.

OUTPUT: The divisor class [u′, v′] = [2][u, v].

1. compute rs1rs1rs1rs1rs1rs1 [3S]
z0 ← u2

0 and t′1 ← u2
1 + f3

w0 ← f0 + v2
0 note that w0 = rs′1/h3

1

If w0 = 0 see below

2. compute 1/s11/s11/s11/s11/s11/s1 and s′′0s′′0s′′0s′′0s
′′
0s
′′
0 [I + 2M]

w1 ← (1/w0)z0 note that w1 = h1/s1

z1 ← t′1w1 and s′′0 ← z1 + u1

3. compute u′u′u′u′u′u′ [2S (2M + S)]
w2 ← h2

1w1, u′
1 ← w2w1 and u′

0 ← s′′20 + w2

4. compute v′v′v′v′v′v′ [3M + S (5M + S)]
w3 ← w2 + t′1
v′
1 ← h−1

1 (w3z1 + w2u
′
1 + f2 + v2

1) and v′
0 ← h−1

1 (w3u
′
0 + z0)

5. return [u′, v′] [total complexity: I + 5M + 6S (I + 9M + 5S)]

If h−1
1 is small then the complexity drops down by 2M in Line 4.

In case w0 = 0, one replaces Lines 2–4 by the following lines.

2’. compute ssssss and precomputations [M (2M)]
s0 ← h−1

1 t′1 and w1 ← u0s0 + v0

3’. compute u′u′u′u′u′u′ [S]
u′

0 ← s2
0

4’. compute v′v′v′v′v′v′ [2M]
w2 ← s0(u1 + u′

0) + v1 + h1 and v′
0 ← u′

0w2 + w1

In this case the total complexity is 3M + 4S for h−1
1 = 1 or small and 4M + 4S otherwise.

Summary

The classification of the different types of genus 2 curves in characteristic 2 allows significant
speedups in the formulas for doublings given in Section 14.3.2.c for general curves. Indeed, the
formulas for general curves in the general case require I + 22M + 5S ([LAN 2005b]) (in affine
coordinates) whereas only I + 5M + 6S are needed for h(x) = x.

We summarize the results in Table 14.8 listing only the general cases; for h of degree 1 and
general h the case “f4 not small” does not apply, since then f4 = 0.
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Table 14.8 Overview.

f4 small f4 not small

h = x I + 5M + 6S n. a.

h = h1x with h−1
1 small I + 7M + 5S n. a.

h = h1x I + 9M + 5S n. a.

h = x2 + h1x with h−1
1 small I + 10M + 6S I + 12M + 6S

Type Ib I + 15M + 5S I + 17M + 5S
Type Ia, h1 = 1 I + 15M + 7S n. a.

Type Ia I + 20M + 6S n. a.

Supersingular curves

Finally, Algorithm 14.44 presents the doubling formulas for supersingular curves, i.e., curves of
Type III. This case is included due to the recent work done with supersingular curves and identity
based encryption (cf. Chapter 24). The Tate–Lichtenbaum pairing on these curves (cf. Chapter 16)
builds on addition and doubling. The costs of the doubling are given for h−1

0 = 1 as for d odd this
case can always be achieved. Otherwise we include h−1

0 in the curve parameters. We state the costs
for arbitrary h0 in parentheses and comment on small h−1

0 below.

Algorithm 14.44 Doubling on Type III curves (g = 2 and q even)

INPUT: A divisor class [u, v] with u = x2 + u1x + u0, v = v1x + v0 and h−1
0 .

OUTPUT: The divisor class [u′, v′] = [2][u, v].

1. compute s1s1s1s1s1s1 [2S]
z0 ← u2

1 and z1 ← v2
1

w0 ← f3 + z0 note that w0 ← s′1/h0

If w0 = 0 see below

2. compute 1/s11/s11/s11/s11/s11/s1 and s′′0s′′0s′′0s′′0s
′′
0s
′′
0 [I + M + S]

w1 ← 1/w0 note that w1 ← h0/s′1
s′′0 ← (f2 + z1)w1 + u1 and z3 ← s′′20

3. compute u′u′u′u′u′u′ [S (2M) ]
w2 ← h2

0w1, u′
1 ← w2w1 and u′

0 ← z3

4. compute v′v′v′v′v′v′ [3M + 2S (5M + 2S)]
v′
1 ← h−1

0

`
f1 + u2

0 + u′
0w0 + w2(u

′
1 + u1 + s′′0 )

´

v′
0 ← h−1

0

`
f0 + v2

0 + u′
0(f2 + z1 + w2)

´
+ h0

5. return [u′, v′] [total complexity: I + 4M + 6S (I + 8M + 5S)]

For small h−1
0 we save 2M in Line 4. In case w0 = 0, one replaces Lines 2–4 by the following lines.

2’. compute ssssss and precomputations [M (2M)]
s0 ← h−1

0 (f2 + z1) and w1 ← u0s0 + v0 + h0

3’. compute u′u′u′u′u′u′ [S]
u′

0 ← s2
0

4’. compute v′v′v′v′v′v′ [2M]
w2 ← s0(u1 + u′

0) + v1 and v′
0 ← u′

0w2 + w1
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In this case the total complexity drops to 4M + S for arbitrary h0 and 3M + 3S for h−1
0 small

including the case h0 = 1.

14.5.3 Inversion-free systems for even characteristic when h2 �= 0h2 �= 0h2 �= 0h2 �= 0h2 �= 0h2 �= 0

In this section we discuss inversion-free coordinate systems starting with some comments on pro-
jective coordinates. It is also possible to design formulas for the Types Ia and Ib separately resulting
in slightly better results.

All considerations for deg(h) = 1 are postponed until the next section.

14.5.4 Projective coordinates (P)(P)(P)(P)(P)(P)

Addition in projective coordinates works almost the same as in Algorithm 14.22. In Line 5 one
additionally computes w4 = s1(w1 + Ũ21) and h̃1 = h1Z . The expressions for the output change
to

U ′
0 ← s2

0 + s1z1w4 + z2S̃ + R
(
h2(s0 + w4) + s1h̃1 + r(z1 + f4Z)

)
U ′

1 ← S̃z1 + h2R + R2

V ′
0 ← w0 + h2u

′
0 + R̂Ṽ 20 + h0Z

V ′
1 ← w1 + h2U

′
1 + R̂(Ṽ 21 + h̃1)

The doubling algorithm differs so much that we give the general formulas for even characteristic
only. For the counting we assume h2 = 1 and f4 = f3 = f2 = 0 as this can be reached for each
curve of Type I by a slightly different change of variables for x and allowing an arbitrary h0.

Algorithm 14.45 Doubling in projective coordinates (g = 2, h2 �= 0, and q even)

INPUT: A divisor class represented by [U1, U0, V1, V0, Z].

OUTPUT: The divisor class [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′] = [2][U1, U0, V1, V0, Z].

1. compute resultant and precomputations [6M + 4S]
h̃1 ← h1Z, h̃0 ← h0Z, Z2 ← Z2 and eV 1 ← h̃1 + h2U1

eV 0 ← h̃0 + h2U0, w0 ← V 2
1 , w1 ← U2

1 and w2 ← eV 2
1

w3 ← eV 0Z + U1
eV 1 and r ← eV 0w3 + w2U0

2. compute almost inverse
inv1 ← eV 1 and inv0 ← w3

3. compute tttttt [5M]
t1 ← w1 + f3Z2 + Zh2V1 see Remark 14.46

t0 ← U1

`
Z(f4U1 + h2V1) + w1 + f3Z2

´
+ Z

`
Z(f2Z + V1h1 + V0h2) + w0

´

4. compute ssssss [7M]
w0 ← t0 inv0 and w1 ← t1 inv1

s3 ← (inv0 + inv1)(t0 + t1) + w0 + (1 + U1)w1

s1 ← s3Z and s0 ← w0 + ZU0w1

5. precomputations [6M + 2S]
R ← Z2r, eR ← Rs1, S1 ← s2

1, S0 ← s2
0 and w2 ← h2s0

s1 ← s1s3, s0 ← s0s3, S ← s0Z and bR ← eRs1

6. compute llllll [3M]
l2 ← U1s1, l0 ← U0s0 and l1 ← (s1 + s0)(U1 + U0) + l2 + l0
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7. compute U ′U ′U ′U ′U ′U ′ [2M + S]
U ′

0 ← S0 + R
`
s3(h2U1 + h̃1) + w2 + f4R

´
and U ′

1 ← h2
eR + R2

8. precomputations [4M]
l2 ← l2 + S + U ′

1, w0 ← U ′
0l2 + S1l0 and w1 ← U ′

1l2 + S1(U
′
0 + l1)

9. adjust [3M]
Z′ ← S1

eR, U ′
1 ← eRU ′

1 and U ′
0 ← eRU ′

0

10. compute V ′V ′V ′V ′V ′V ′ [2M]

V ′
0 ← w0 + h2U

′
0 + bR(V0 + h̃0) and V ′

1 ← w1 + h2U
′
1 + bR(V1 + h̃1)

11. return [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′] [total complexity: 38M + 7S]

Remark 14.46 In fact if f4 = f3 = f2 = 0 one computes t0 differently as t0 = U1t1 + Z2(h2V0 +
h1V1) + Zw0 using t1 = w1 + h2ZV1 as precomputation.

14.5.4.a New coordinates in even characteristic (N )(N )(N )(N )(N )(N )

To achieve better performance in inversion-free coordinates one can introduce weighted coordinates.
In the following we present Lange’s [LAN 2002d, LAN 2005b] new coordinates. For the general
case in even characteristic it is most useful to use the set of coordinates extended by some precompu-
tations and let N denote [U1, U0, V1, V0, Z1, Z2, z1, z2, z3, z4] with ui = Ui/Z

2
1 , vi = Vi/(Z3

1Z2)
and the precomputations z1 = Z2

1 , z2 = Z2
2 , z3 = Z1Z2 and z4 = z1z3. The latter is useful for

additions only and leaves the costs for doublings unchanged. The formulas show that Z1 and Z2 are
no longer used separately. Therefore they can be left out leading again to 6 coordinates only.

As p = 2 and h2 �= 0, we assume f3 = f2 = 0, h2 = 1 and include them in the algorithm (but
not in the counting) only for the sake of completeness; f4 is left out completely.

For the addition we assume that both classes are in N . If one is in A the costs are given in brack-
ets. A dedicated algorithm for N + A = N needs 37M + 5S (see [LAN 2002d]).

Algorithm 14.47 Addition in new coordinates (g = 2, h2 �= 0, and q even)

INPUT: Two divisor classes
__
D1 and

__
D2 represented by

__
D1 = [U11, U10, V11, V10, Z11, Z12, z11,

z12, z13, z14] and
__
D2 = [U21, U20, V21, V20, Z21, Z22, z21, z22, z23, z24].

OUTPUT: The divisor class
__
D′ = [U ′

1, U
′
0, V

′
1 , V ′

0 , Z′
1, Z

′
2, z

′
1, z

′
2, z

′
3, z

′
4] =

__
D1 ⊕

__
D2.

1. precomputations [6M (none)]
eU21 ← U21z11, eU20 ← U20z11, eV 21 ← V21z14 and eV 20 ← V20z14

Z1 ← z11z21 and Z3 ← z13z23

2. compute resultant r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2) [8M + S (7M + S)]
y1 ← U11z21 + eU21, y2 ← U10z21 + eU20 and y3 ← U11y1 + y2z11

r ← y2y3 + y2
1U10, eZ2 ← rZ3 and Z′

2 ← eZ2Z1

3. compute almost inverse of u2u2u2u2u2u2 modulo u1u1u1u1u1u1

inv1 ← y1 and inv0 ← y3

4. compute ssssss [8M (7M)]
w0 ← V10z24 + eV 20, w1 ← V11z24 + eV 21, w2 ← inv0w0 and w3 ← inv1w1

s1 ← (inv0 + z11inv1)(w0 + w1) + w2 + w3(z11 + U11)
s0 ← w2 + U10w3

5. precomputations [10M + 3S]
s̃0 ← s0Z1, S0 ← s̃2

0, Z′
1 ← s1Z1 and R ← rZ′

1
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y4 ← s1(y1 + Ũ21), U ′
1 ← y1s1, s1 ← s1Z

′
1 and s0 ← s0Z

′
1

z′
1 ← Z′2

1 , z′
2 ← Z′2

2 , z′
3 ← Z′

1Z
′
2, z′

4 ← z′
1z

′
3 and h̃1 ← h1z

′
3

6. compute llllll [3M]
l2 ← s1

eU21, l0 ← s0
eU20 and l1 ← (s0 + s1)(eU20 + eU21) + l0 + l2

7. compute U ′U ′U ′U ′U ′U ′ [5M]
U ′

0 ← S0 + y4U
′
1 + y2s1 + Z′

2

`
h2(s̃0 + y4) + y1

eZ2

´
+ h̃1

U ′
1 ← U ′

1Z
′
1 + h2z

′
3 + z′

2

8. precomputations [3M]
l2 ← l2 + Z′

1s̃0 + h2z
′
3 + U ′

1, w0 ← l2U
′
0 and w1 ← l2U

′
1

9. compute V ′V ′V ′V ′V ′V ′ [5M]
V ′

1 ← w1 + z′
1(l1 + ReV 21 + U ′

0 + h̃1) and V ′
0 ← w0 + z′

1(l0 + ReV 20) + h0z
′
4

__
D′ ← [U ′

1, U
′
0, V

′
1 , V ′

0 , Z′
1, Z

′
2, z

′
1, z

′
2, z

′
3, z

′
4]

10. return
__
D′ [total complexity: 48M + 4S (40M + 4S)]

Now we consider doublings.

Algorithm 14.48 Doubling in new coordinates (g = 2, h2 �= 0, and q even)

INPUT: A divisor class represented by
__
D = [U1, U0, V1, V0, Z1, Z2, z1, z2, z3, z4].

OUTPUT: The divisor class [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′
1, Z

′
2, z

′
1, z

′
2, z

′
3, z

′
4] = [2]

__
D.

1. compute resultant and precomputations [8M + 3S]

h̃1 ← z1h1 and h̃0 ← z1h0

eV 1 ← h̃1 + h2U1 and eV 0 ← h̃0 + h2U0

w0 ← V 2
1 , w1 ← U2

1 and w2 ← h̃2
1 + h2

2w1

w3 ← z1(h1U1 + h2U0 + h̃0) + h2w1

r ← w2U0 + eV 0w3, eZ2 ← z3r and Z′
2 ← eZ2z4

2. compute almost inverse
inv1 ← eV 1 and inv0 ← w3

3. compute tttttt [5M]

w3 ← f3z
2
1 + w1 and t1 ← w3z2 + V1h2z3

t0 ← U1t1 + w0 + z4(V1h1 + V0h2 + f2z4)

4. compute s = (t inv) mod us = (t inv) mod us = (t inv) mod us = (t inv) mod us = (t inv) mod us = (t inv) mod u [6M]

w0 ← t0 inv0 and w1 ← t1 inv1

s1 ← (inv0 + inv1)(t0 + t1) + w0 + w1(1 + U1)

s0 ← w0 + U0w1z1

5. precomputations [8M + 3S]

y ← h2s0 + s1(h2U1 + h̃1), Z′
1 ← s1z1, S0 ← s2

0 and z′
1 ← Z′

1
2

S ← s0Z
′
1, R ← eZ2Z

′
1, s0 ← s0s1 and s1 ← Z′

1s1

z′
2 ← Z′

2
2
, z′

3 ← Z′
1Z

′
2 and z′

4 ← z′
1z

′
3

6. compute llllll [3M]
l2 ← s1U1, l0 ← s0U0 and l1 ← (s1 + s0)(U1 + U0) + l0 + l2
l2 ← l2 + S + h2z

′
3

7. compute U ′U ′U ′U ′U ′U ′ [M]
U ′

0 ← S0 + Z′
2y and U ′

1 ← z′
2 + h2z

′
3
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8. precomputations [2M]
l2 ← l2 + U ′

1, w0 ← l2U
′
0 and w1 ← l2U

′
1

9. compute V ′V ′V ′V ′V ′V ′ [6M]

V ′
1 ← w1 + z′

1(l1 + RV1 + U ′
0) + z′

4h1

V ′
0 ← w0 + z′

1(l0 + RV0) + z′
4h0

10. return [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′
1, Z

′
2, z

′
1, z

′
2, z

′
3, z

′
4] [total complexity: 39M + 6S]

14.5.4.b Different sets of coordinates

Using the same abbreviations as in odd characteristic, we state the costs for the operations in differ-
ent coordinate systems in Table 14.9. Note that contrary to the odd characteristic case the advantage
of using the new coordinates is smaller. We state the operation count for curves of Type Ia. If in
fact h has a root it is possible to design faster algorithms.

Table 14.9 Addition and doubling in different systems and in even characteristic with h2 �= 0.

Doubling Addition

Operation Costs Operation Costs

2N = P 39M + 6S N + P = P 51M + 4S
2P = P 38M + 7S N + N = P 50M + 4S
2N = N 37M + 6S N + P = N 49M + 4S
2P = N 36M + 7S P + P = P 49M + 4S

— — N + N = N 48M + 4S
— — P + P = N 47M + 4S
— — A + N = P 39M + 5S
— — A + P = P 39M + 4S
— — A + P = N 37M + 4S
— — A + N = N 37M + 5S

2A = A I + 20M + 6S A + A = A I + 22M + 3S

14.5.4.c Computation of scalar multiples

We follow the same lines as in the odd characteristic and distinguish between precomputations and
no precomputations.

No precomputation

For cheap inversions one again uses the affine system alone. If one wants to avoid inversions and
has an affine input (or can allow one I to achieve this) we perform the doublings as 2N = N and
the addition as A + N = N . For non-normalized input we use the new coordinates for doublings
and as non-normalized input system if necessary.
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Table 14.10 Without precomputations in even characteristic with h2 �= 0.

Systems Cost

2A = A, A + A = A l
3 (4I + 82M + 21S)

2N = N , A + N = N l
3 (148M + 23S)

2N = N , N + N = N l
3 (159M + 22S)

Windowing methods

To obtain the table of precomputed values we need one doubling and 2w−2 − 1 additions. Here it is
advantageous to choose either C3 = A or C3 = N .

Table 14.11 Precomputations in even characteristic with h2 �= 0.

System I M S

A 2w−2 22 × 2w−2 − 2 3 × 2w−2 + 3

A w − 1 25 × 2w−2 + 20w − 68 3 × 2w−2 + 6w − 15

A 1 51 × 2w−2 − 17 4 × 2w−2 + 2

P 48 × 2w−2 − 11 4 × 2w−2 + 2

The costs of computing scalar multiples are listed in Table 14.12 for the most useful matches of sets
of coordinates. We use the same abbreviations as in the odd characteristic case. Again we leave out
the costs for the initial conversions and mention that some constant number of operations can be
saved if one considers in more detail the first doubling and the final addition/doubling.

Table 14.12 Windowing method in even characteristic with h2 �= 0.

Systems I M S

2A = A, A + A = A l1 + K + l1−K
w+1 20(l1 + K) + 22 l1−K

w+1 6(l1 + K) + 3 l1−K
w+1

2N = N , A + N = N 37
(
(l1 + K) + l1−K

w+1

)
6(l1 + K) + 5 l1−K

w+1

2N = N , N + N = N 37(l1 + K) + 48 l1−K
w+1 6(l1 + K) + 4 l1−K

w+1

Compared to the results in odd characteristic this case is a bit more expensive. On the other hand
the arithmetic in binary fields is easier to implement and usually faster and there is space for im-
provements taking into account the different types of curves.

14.5.5 Inversion-free systems for even characteristic when h2 = 0h2 = 0h2 = 0h2 = 0h2 = 0h2 = 0

Obviously this case can be considered as a special case of the previous section, but as in affine
coordinates specialized doubling algorithms are much faster. For the whole section we assume that
the curve is given by an affine equation of the form (14.19).
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14.5.5.a Doubling in projective coordinates

For the additions the changes are quite obvious and are simply obtained by fixing the respective
curve parameters to be zero. Hence, we only treat doublings in the following.

Algorithm 14.49 Doubling in projective coordinates (g = 2, h2 = 0, and q even)

INPUT: A divisor class represented by
__
D = [U1, U0, V1, V0, Z] and the precomputed values h2

1

and h−1
1 .

OUTPUT: The divisor class [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′] = [2][U1, U0, V1, V0, Z].

1. precomputations [9M + 4S]
Z2 ← Z2 , z0 ← U2

0 , t1 ← U2
1 + f3Z2, w0 ← f0Z2 + V 2

0 and w1 ← z0Z2

z1 ← t1z0, w2 ← h2
1w1, w3 ← w2 + t1w0 and w4 ← w0Z

s0 ← z1 + U1w4 and w4 ← w4Z

2. compute U ′U ′U ′U ′U ′U ′ [2M + S]
U ′

1 ← w1w2 and U ′
0 ← s2

0 + w2w4

3. compute V ′V ′V ′V ′V ′V ′ [11M + S]
w5 ← w0w4 and V ′

1 ← h−1
1

`
w2U

′
1 +

`
w3z1 + (f2Z2 + V 2

1 )w5

´
w4

´

w5 ← w5w4 and V ′
0 ← h−1

1 (w3U
′
0 + z0w5)

4. adjust [3M]
Z′ ← w5Z2, U ′

1 ← U ′
1w4 and U ′

0 ← U ′
0w4

5. return [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′] [total complexity: 25M + 6S]

If h−1
1 is small one saves 2M, and if h1 = 1 — as one can always achieve for odd extension degrees

— 22M + 6S are used in total.

14.5.5.b Recent coordinates in even characteristic (R)(R)(R)(R)(R)(R)

For h2 = 0 we follow [LAN 2005a] and use [U1, U0, V1, V0, Z, z] with ui = Ui/Z, vi = Vi/Z
2

and the precomputation z = Z2. These coordinates have the advantage of allowing faster doublings
while the additions are more expensive. However, usually mixed additions are chosen for imple-
mentations. They are not too much slower, and furthermore, in windowing methods the number of
additions is reduced considerably.

The formulas for new coordinates (in the sense of section 14.5.4.a) can be found in [LAN 2005b].
An addition N + N takes 44M + 6S and in mixed coordinates A + N = N one needs 36M + 4S.
Using the conditions on the curve parameters given in (14.19) for extension of odd degrees the costs
for a doubling reduce to 28M + 7S.

The results in brackets refer to the case in which the second input is in affine coordinates.

Algorithm 14.50 Addition in recent coordinates (g = 2, h2 = 0, and q even)

INPUT: Two divisor classes
__
D1 and

__
D2 represented by

__
D1 = [U11, U10, V11, V10, Z1, z1] and__

D2 = [U21, U20, V21, V20, Z2, z2].

OUTPUT: The divisor class [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′, z′] =
__
D1 ⊕

__
D2.

1. precomputations [5M + S (none)]
Z ← Z1Z2, z ← Z2, eU21 ← U21Z1 and eU20 ← U20Z1

eV 21 ← V21z1 and eV 20 ← V20z1

2. compute resultant r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2)r = Res(U1, U2) [6M + S (5M + S)]
y1 ← U11Z2 + eU21 and y2 ← U10Z2 + eU20

y3 ← U11y1 + y2Z1 and r ← y2y3 + y2
1U10
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3. compute almost inverse of u2u2u2u2u2u2 modulo u1u1u1u1u1u1

inv1 ← y1 and inv0 ← y3

4. compute ssssss [8M (7M)]
w0 ← V10z2 + eV 20 and w1 ← V11z2 + eV 21

w2 ← inv0w0 and w3 ← inv1w1

s1 ← (inv0 + inv1Z1)(w0 + w1) + w2 + w3(Z1 + U11)
s0 ← w2 + U10w3

5. precomputations [7M + S]__
Z ← s1r, w4 ← rZ, w5 ← w2

4 , S ← s0Z and Z′ ← Z
__
Z

s̃0 ← s0Z
′, s̄1 ← s1

__
Z and s̃1 ← s̄1Z

6. compute llllll [5M]
L2 ← s̄1

eU21, l2 ← L2Z and l0 ← s̃0
eU20

l1 ← (eU21 + eU20)(s̃0 + s̃1) + l2 + l0, l2 ← L2 + s̃0 and h̃1 ← h1z

7. compute U ′U ′U ′U ′U ′U ′ [8M + 2S]
U ′

0 ← r(S2 + y1(s
2
1(y1 + eU21) + Zw5) + h̃1Z

′) + y2s̃1

U ′
1 ← y1s̄1 + w4w5

8. precomputations [5M + S]
w1 ← l2 + U ′

1, U ′
1 ← U ′

1w4,
__
Z ← Z′ __

Z and l0 ← l0
__
Z

w2 ← U ′
1w1 + (U ′

0 + l1)
__
Z and

__
Z ←

__
Z2

9. compute V ′V ′V ′V ′V ′V ′ [6M + 2S]
V ′

1 ← w2s1 + (eV 21 + h̃1)
__
Z , U ′

0 ← U ′
0r and w2 ← U ′

0w1 + l0
V ′

0 ← w2s1 + eV 20

__
Z , Z′ ← Z′2 and z′ ← Z′2

10. return [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′, z′] [total complexity: 50M + 8S (43M + 7S)]

If h1 = 1 as we can always assume for d odd one more multiplication is saved in Line 6.

Algorithm 14.51 Doubling in recent coordinates (g = 2, h2 = 0, and q even)

INPUT: A divisor class [U1, U0, V1, V0, Z, z] and the precomputed values h2
1 and h−1

1 .

OUTPUT: The divisor class [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′, z′] = [2][U1, U0, V1, V0, Z, z].

1. precomputations [10M + 4S]
Z4 ← z2, y0 ← U2

0 , t1 ← U2
1 + f3z and w0 ← Z4f0 + V 2

0

Z̄ ← zw0, w1 ← y0Z4, y1 ← t1y0z and s0 ← y1 + U1w0Z
w2 ← h2

1w1 and w3 ← w2 + t1w0

2. compute U ′U ′U ′U ′U ′U ′ [2M + S]
U ′

1 ← w2w1, w2 ← w2Z̄ and U ′
0 ← s2

0 + w2

3. compute V ′V ′V ′V ′V ′V ′ [11M + 3S]
Z′ ← Z̄2 and V ′

1 ← h−1
1

`
w2U

′
1 + (w3y1 + f2Z

′ + (V1w0)
2)Z′´

V ′
0 ← h−1

1

`
Z̄(w3U

′
0 + y0w0Z

′)
´
, z′ ← Z′2

4. return [U ′
1, U

′
0, V

′
1 , V ′

0 , Z′, z′] [total complexity: 23M + 8S]

For small h−1
1 we save 2M, if even h1 = 1 a total of only 20M + 8S is needed.

A comparison of different sets of coordinates is given in [LAN 2005a]. It also contains formulas
for operations in [U1, U0, V1, V0, Z, Z2Z3] in which the doublings are less efficient than in R but
the additions do not introduce such a big overhead. In general, for curves of form (14.19) inversion-
free systems will be useful only for very expensive inversions and when combined with windowing
methods.
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14.6 Arithmetic on genus 33333333 curves

Cantor’s algorithm applies to hyperelliptic curves of arbitrary genus. In this section we study arith-
metic on curves of genus 3. Again the most frequent input for addition consists of two divisor
classes represented by [u1, v1], [u2, v2], where deg(u1) = deg(u2) = 3 and gcd(u1, u2) = 1.
These conditions guarantee that the associated reduced divisors D1, D2 do not have any point or its
opposite in common and both divisors have 3 affine points in the support. For the doubling we may
assume that the class is represented by [u1, v1] with deg(u1) = 3 and that gcd(h + 2v1, u1) = 1.
This means that the support of D1 contains no Weierstraß point and there are 3 affine points.

We omit the complete case study here. It can be found in [PEL 2002, WOL 2004]. There exists
a generalization of projective coordinates to genus 3 curves [FAWA 2004] such that one does not
need inversions for the group operations, but we only state arithmetic in affine coordinates. For
smaller fields an inversion is less expensive in terms of multiplications and on the other hand more
multiplications are needed to save the one remaining inversion.

The following sections give algorithms for addition of general divisor classes and for doubling
of a general class. For these we allow arbitrary equations of the curve and arbitrary finite ground
fields. Note that the number of operations might still depend on this. For even characteristic we
additionally state doubling formulas for one special curve. As for genus 2, the addition formulas do
barely change with the equation of the curve but the doubling needs far fewer field operations for
special equations.

These formulas were taken from [WOL 2004]. Formulas for genus 3 curves can also be found in
[GOMA+ 2005, KUGO+ 2002] and [GUKA+ 2004].

14.6.1 Addition in most common case

This section treats the addition of two different divisor classes. In odd characteristic we can trans-
form to an isomorphic curve y2 = f(x). In even characteristic we assume for simplicity that
h(x) ∈ F2[x]. For other values of the hi some operations should be performed differently.

Algorithm 14.52 Addition on curves of genus 3 in the general case

INPUT: Two divisor classes [u1, v1] and [u2, v2] with ui = x3 + ui2x
2 + ui1x + ui0, vi =

vi2x
2 + vi1x + vi0.

OUTPUT: The divisor class [u′′, v′′] = [u1, v1]⊕[u2, v2] with u′′ = x3+u′′
2x2+u′′

1x+u′′
0 , v′′ =

v′′
2 x2 + v′′

1 x + v′′
0 .

1. compute resultant r = Res(u1, u2)r = Res(u1, u2)r = Res(u1, u2)r = Res(u1, u2)r = Res(u1, u2)r = Res(u1, u2) (Bezout) [12M + 2S]

t1 ← u12u21, t2 ← u11u22, t3 ← u11u20 , t4 ← u10u21 and t5 ← u12u20

t6 ← u10u22, t7 ← (u20 −u10)
2, t8 ← (u21 −u11)

2 and t9 ← (u22 − u12)(t3 − t4)

t10 ← (u22 − u12)(t5 − t6) and t11 ← (u21 − u11)(u20 − u10)

r ← (u20 − u10 + t1 − t2)(t7 − t9) + (t5 − t6)(t10 − 2t11) + t8(t3 − t4)

If r ← 0 perform Cantor’s Algorithm 14.7

2. compute almost inverse inv = r/u1 mod u2inv = r/u1 mod u2inv = r/u1 mod u2inv = r/u1 mod u2inv = r/u1 mod u2inv = r/u1 mod u2 [4M]

inv2 ← (t1 − t2 − u10 + u20)(u22 − u12) − t8 and inv1 ← inv2u22 − t10 + t11

inv0 ← inv2u21 − u22(t10 − t11) + t9 − t7

3. compute s′ = rs ≡ (v2 − v1)inv (mod u2)s′ = rs ≡ (v2 − v1)inv (mod u2)s′ = rs ≡ (v2 − v1)inv (mod u2)s′ = rs ≡ (v2 − v1)inv (mod u2)s′ = rs ≡ (v2 − v1)inv (mod u2)s′ = rs ≡ (v2 − v1)inv (mod u2) (Karatsuba) [11M]

t12 ← (inv1 + inv2)(v22 − v12 + v21 − v11) and t13 ← (v21 − v11)inv1



§ 14.6 Arithmetic on genus 3 curves 349

t14 ← (inv0 + inv2)(v22 − v12 + v20 − v10) and t15 ← (v20 − v10)inv0

t16 ← (inv0 + inv1)(v21 − v11 + v20 − v10) and t17 ← (v22 − v12)inv2

r′0 ← t15, r′1 ← t16 − t13 − t15 and r′2 ← t13 + t14 − t15 − t17

r′3 ← t12 − t13 − t17, r′4 ← t17 and t18 ← u22r
′
4 − r′3

t15 ← u20t18, t16 ← u21r
′
4 and s′0 ← r′0 + t15

s′1 ← r′1 − (u21 + u20)(r
′
4 − t18) + t16 − t15

s′2 ← r′2 − t16 + u22t18

If s′2 = 0 perform Cantor’s Algorithm 14.7

4. compute s = (s′/r)s = (s′/r)s = (s′/r)s = (s′/r)s = (s′/r)s = (s′/r) and make ssssss monic [I + 6M + 2S]

w1 ← (rs′2)
−1, w2 ← rw1, w3 ← w1s

′
2
2
, w4 ← rw2 and w5 ← w2

4

s0 ← w2s
′
0 and s1 ← w2s

′
1

5. compute z = su1z = su1z = su1z = su1z = su1z = su1 [6M]
z0 ← s0u10, z1 ← s1u10 + s0u11 and z2 ← s0u12 + s1u11 + u10

z3 ← s1u12 + s0 + u11 and z4 ← u12 + s1

6. compute u′ = [s(z + w4(h + 2v1)) − w5((u20 − v1h − v2
1)/u1)]/u2u′ = [s(z + w4(h + 2v1)) − w5((u20 − v1h − v2
1)/u1)]/u2u′ = [s(z + w4(h + 2v1)) − w5((u20 − v1h − v2
1)/u1)]/u2u′ = [s(z + w4(h + 2v1)) − w5((u20 − v1h − v2
1)/u1)]/u2u′ = [s(z + w4(h + 2v1)) − w5((u20 − v1h − v2
1)/u1)]/u2u′ = [s(z + w4(h + 2v1)) − w5((u20 − v1h − v2
1)/u1)]/u2 [15M]

u′
3 ← z4 + s1 − u22 and u′

2 ← −u22u
′
3 − u21 + z3 + s0 + w4h3 + s1z4

u′
1 ← w4(h2 + 2v12 + s1h3) + s1z3 + s0z4 + z2 − w5 − u22u

′
2 − u21u

′
3 − u20

u′
0 ← w4(s1h2 + h1 + 2v11 + 2s1v12 + s0h3) + s1z2 + z1 + s0z3 + w5(u12 − f6)−

u22u
′
1 − u21u

′
2 − u20u

′
3

7. compute v′ = −(w3z + h + v1) mod u′v′ = −(w3z + h + v1) mod u′v′ = −(w3z + h + v1) mod u′v′ = −(w3z + h + v1) mod u′v′ = −(w3z + h + v1) mod u′v′ = −(w3z + h + v1) mod u′ [8M]

t1 ← u′
3 − z4 and v′

0 ← −w3(u
′
0t1 + z0) − h0 − v0

v′
1 ← −w3(u

′
1t1 − u′

0 + z1) − h1 − v11

v′
2 ← −w3(u

′
2t1 − u′

1 + z2) − h2 − v12

v′
3 ← −w3(u

′
3t1 − u′

2 + z3) − h3

8. reduce u′u′u′u′u′u′, i.e., u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′ [5M + 2S]

u′′
2 ← f6 − u′

3 − v′
3
2 − v′

3h3

u′′
1 ← −u′

2 − u′′
2u′

3 + f5 − 2v′
2v

′
3 − v′

3h2 − v′
2h3

u′′
0 ← −u′

1 − u′′
2u′

2 − u′′
1u′

3 + f4 − 2v′
1v

′
3 − v′

2
2 − v′

2h2 − v′
3h1 − v′

1h3

9. compute v′′ = −(v′ + h) mod u3v′′ = −(v′ + h) mod u3v′′ = −(v′ + h) mod u3v′′ = −(v′ + h) mod u3v′′ = −(v′ + h) mod u3v′′ = −(v′ + h) mod u3 [3M]

v′′
2 ← −v′

2 + (v′
3 + h3)u

′′
2 − h2

v′′
1 ← −v′

1 + (v′
3 + h3)u

′′
1 − h1

v′′
0 ← −v′

0 + (v′
3 + h3)u

′′
0 − h0

10. return [u′′, v′′] [total complexity: I + 70M + 6S]

If char(Fq) is even, h(x) ∈ F2[x], and f6 = 0 then the total complexity reduces to I + 65M + 6S.

14.6.2 Doubling in most common case

We now state the formulas to double on general curves. Compared to the addition the formulas
depend much more on the equation of the curve. We give the number of operations for arbitrary
characteristic including characteristic 2. For the counting we assume for simplicity that h(x) ∈
F2[x] and f6 = 0.

For other values of the hi some operations should be performed differently. The special case of
h(x) = 1 will be discussed in more detail in the next section.
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Algorithm 14.53 Doubling on curves of genus 3 in the general case

INPUT: A divisor class [u, v] with u = x3 + u2x
2 + u1x + u0 and v = v2x

2 + v1x + v0.

OUTPUT: The divisor class [u′′, v′′] = [2][u, v].

1. compute resultant r = Res(u, h̃)r = Res(u, h̃)r = Res(u, h̃)r = Res(u, h̃)r = Res(u, h̃)r = Res(u, h̃) where h̃ = h + 2vh̃ = h + 2vh̃ = h + 2vh̃ = h + 2vh̃ = h + 2vh̃ = h + 2v (Bezout) [12M + 2S]

t1 ← u2h̃1, t2 ← u1h̃2, t3 ← u1h̃0, t4 ← u0h̃1, t5 ← u2h̃0 and t6 ← u0h̃2

t7 ← (h̃0 − h3u0)
2, t8 ← (h̃1 − h3u1)

2 and t9 ← (h̃2 − h3u2)(t3 − t4)

t10 ← (h̃2 − h3u2)(t5 − t6) and t11 ← (h̃1 − h3u1)(h̃0 − h3u0)

r ← (h̃0 − h3u0 + t1 − t2)(t7 − t9) + (t5 − t6)(t10 − 2t11) + t8(t3 − t4)

If r = 0 perform Cantor’s Algorithm 14.7

2. compute almost inverse inv = r/(h + 2v) mod uinv = r/(h + 2v) mod uinv = r/(h + 2v) mod uinv = r/(h + 2v) mod uinv = r/(h + 2v) mod uinv = r/(h + 2v) mod u [4M]
inv2 ← −(t1 − t2 − h3u0 + h̃0)(h̃2 − h3u2) + t8
inv1 ← inv2u2 + t10 − t11
inv0 ← inv2u1 + u2(t10 − t11) − t9 + t7

3. compute z =
`
(f − hv − v2)/u

´
mod uz =

`
(f − hv − v2)/u

´
mod uz =

`
(f − hv − v2)/u

´
mod uz =

`
(f − hv − v2)/u

´
mod uz =

`
(f − hv − v2)/u

´
mod uz =

`
(f − hv − v2)/u

´
mod u [8M + 2S]

t12 ← v2
2 , z′

3 ← f6 − u2, t13 ← z′
3u1 and z′

2 ← f5 − h3v2 − u1 − u2f6 + u2
2

z′
1 ← f4 − h2v2 − h3v1 − t12 − u0 − t13 − z′

2u2

z2 ← f5 − h3v2 − 2u1 + u2(u2 − 2z′
3) and z1 ← z′

1 − t13 + u2u1 − u0

z0 ← f3 − h2v1 − h1v2 − 2v2v1 − h3v0 + u0(u2 − 2z′
3) − z′

2u1 − z′
1u2

4. compute s′ = (z inv) mod us′ = (z inv) mod us′ = (z inv) mod us′ = (z inv) mod us′ = (z inv) mod us′ = (z inv) mod u (Karatsuba) [11M]

t12 ← (inv1 + inv2)(z1 + z2) and t13 ← z1inv1

t14 ← (inv0 + inv2)(z0 + z2) and t15 ← z0inv0

t16 ← (inv0 + inv1)(z0 + z1) and t17 ← z2inv2

r′0 ← t15, r′1 ← t16 − t13 − t15 and r′2 ← t13 + t14 − t15 − t17

r′3 ← t12 − t13 − t17, r′4 ← t17 and t18 ← u2r
′
4 − r′3

t15 ← u0t18, t16 ← u1r
′
4, s′0 ← r′0+t15 and s′1 ← r′1−(u1+u0)(r

′
4−t18)+t16−t15

s′2 ← r′2 − t16 + u2t18

If s′2 = 0 perform Cantor’s Algorithm 14.7

5. compute s = (s′/r)s = (s′/r)s = (s′/r)s = (s′/r)s = (s′/r)s = (s′/r) and make ssssss monic [I + 6M + 2S]

w1 ← (rs′2)
−1, w2 ← w1r, w3 ← w1(s

′
2)

2, and w4 ← w2r note that w4 = r/s′2
w5 ← w2

4 , s0 ← w2s
′
0 and s1 ← w2s

′
1

6. compute G = suG = suG = suG = suG = suG = su [6M]

g0 ← s0u0, g1 ← s1u0 + s0u1 and g2 ← s0u2 + s1u1 + u0

g3 ← s1u2 + s0 + u1 and g4 ← u2 + s1

7. compute u′ = u−2[(G + w4v)2 + w4hG + w5(hv − f)]u′ = u−2[(G + w4v)2 + w4hG + w5(hv − f)]u′ = u−2[(G + w4v)2 + w4hG + w5(hv − f)]u′ = u−2[(G + w4v)2 + w4hG + w5(hv − f)]u′ = u−2[(G + w4v)2 + w4hG + w5(hv − f)]u′ = u−2[(G + w4v)2 + w4hG + w5(hv − f)] [6M + 2S]

u′
3 ← 2s1, u′

2 ← s2
1 + 2s0 + w4h3

u′
1 ← 2s0s1 + w4(2v2 + h3s1 + h2 − h3u2) − w5

u′
0 ← w4

`
2v1 + h1 + h3s0 − h3u1 + 2v2s1 + u2(u2h3 − 2v2 − h2 − s1h3) + h2s1

´

u′
0 ← u′

0 + w5(−f6 + 2u2) + s2
0

8. compute v′ = −(Gw3 + h + v) mod u′v′ = −(Gw3 + h + v) mod u′v′ = −(Gw3 + h + v) mod u′v′ = −(Gw3 + h + v) mod u′v′ = −(Gw3 + h + v) mod u′v′ = −(Gw3 + h + v) mod u′ [8M]

t1 ← u′
3 − g4

v′
3 ← −(t1u

′
3 − u′

2 + g3)w3 − h3 and v′
2 ← −(t1u

′
2 − u′

1 + g2)w3 − h2 − v2

v′
1 ← −(t1u

′
1 − u′

0 + g1)w3 − h1 − v1 and v′
0 ← −(t1u

′
0 + g0)w3 − h0 − v0

9. reduce u′u′u′u′u′u′ i.e., u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′ [5M + 2S]
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u′′
2 ← f6 − u′

3 − v′
3
2 − v′

3h3

u′′
1 ← −u′

2 − u′′
2u′

3 + f5 − 2v′
2v

′
3 − v′

3h2 − v′
2h3

u′′
0 ← −u′

1 − u′′
2u′

2 − u′′
1u′

3 + f4 − 2v′
1v

′
3 − v′

2
2 − v′

2h2 − v′
3h1 − v′

1h3

10. compute v2 = −(v′ + h) mod u2v2 = −(v′ + h) mod u2v2 = −(v′ + h) mod u2v2 = −(v′ + h) mod u2v2 = −(v′ + h) mod u2v2 = −(v′ + h) mod u2 [3M]

v′′
2 ← −v′

2 + (v′
3 + h3)u

′′
2 − h2

v′′
1 ← −v′

1 + (v′
3 + h3)u

′′
1 − h1

v′′
0 ← −v′

0 + (v′
3 + h3)u

′′
0 − h0

11. return [u′′, v′′] [total complexity: I + 69M + 10S]

For characteristic 2 fields, the costs drop down to I + 53M + 10S if we assume in addition that
hi ∈ F2 and to I + 22M + 7S when h(x) = 1. Note that in the latter case the following section
gives a much better result.

14.6.3 Doubling on genus 333333 curves for even characteristic when h(x) = 1h(x) = 1h(x) = 1h(x) = 1h(x) = 1h(x) = 1

For genus 2 curves we gave a complete characterization of all types of curves (cf. Section 14.5).
There the fastest doubling occurred for constant h ∈ F∗2d but we did not further investigate these
curves as they are supersingular.

For genus 3 the situation is different: constant polynomials h again lead to a minimal number of
field operations, but these curves are not supersingular. They have 2-rank zero (cf. Definition 14.12)
but so far there is no method known making the computation of discrete logarithms on such curves
easier than on arbitrary curves.

Here, we detail the doubling on

C : y2 + y = x7 + f5x
5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0, fi ∈ F2d .

Algorithm 14.54 Doubling on curves of genus 3 with h(x) = 1

INPUT: A divisor class [u, v] with u = x3 + u2x
2 + u1x + u0 and v = v2x

2 + v1x + v0.

OUTPUT: The divisor class [u′, v′] = [2][u, v].

1. compute d = gcd(u1, 1) = 1 = s1a + s3hd = gcd(u1, 1) = 1 = s1a + s3hd = gcd(u1, 1) = 1 = s1a + s3hd = gcd(u1, 1) = 1 = s1a + s3hd = gcd(u1, 1) = 1 = s1a + s3hd = gcd(u1, 1) = 1 = s1a + s3h
s3 ← 1 and s1 ← 0

2. compute u2u2u2u2u2u2 [3S]
t1 ← u2

2, t2 ← u2
1 and t3 ← u2

0

3. compute w = v2 + f mod u′w = v2 + f mod u′w = v2 + f mod u′w = v2 + f mod u′w = v2 + f mod u′w = v2 + f mod u′ [3S]
t4 ← v2

2 , t5 ← v2
1 , t6 ← v2

0 , w5 ← f5 + t1 and w4 ← f4 + t4
w3 ← f3 + t2, w2 ← f2 + t5, w1 ← f1 + t3 and w0 ← f0 + t6

4. compute u′ =
`
(f − hw − w2)/u2

´
u′ =

`
(f − hw − w2)/u2

´
u′ =

`
(f − hw − w2)/u2

´
u′ =

`
(f − hw − w2)/u2

´
u′ =

`
(f − hw − w2)/u2

´
u′ =

`
(f − hw − w2)/u2

´
[3M + 3S]

u′
4 ← w5

2, u′
3 ← 0, u′

2 ← w4
2 + t1u

′
4, u′

1 ← 1 and u′
0 ← w3 + t2u

′
4 + t1u

′
2

5. compute u2 = u′′u2 = u′′u2 = u′′u2 = u′′u2 = u′′u2 = u′′ made monic, i.e., u′ ← u′u′ ← u′u′ ← u′u′ ← u′u′ ← u′u′ ← u′ made monic [I + 2M]
u′

1 ← u′
4
−1

, u′
2 ← u′

2u
′
1 and u′

0 ← u′
0u

′
1

6. compute v′ = −(w + h) mod u′v′ = −(w + h) mod u′v′ = −(w + h) mod u′v′ = −(w + h) mod u′v′ = −(w + h) mod u′v′ = −(w + h) mod u′ [5M]
t1 ← w5u

′
2, t2 ← w4u

′
1, t3 ← (w5 + w4)(u

′
2 + u′

1) and v′
3 ← w3 + t1

v′
2 ← t3 + t1 + t2 + w2, v′

1 ← t2 + w5u
′
0 + w1 and v′

0 ← w4u
′
0 + w0 + 1

7. compute u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′u′′ = (f − v′h − v′2)/u′ [M + 2S]
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u′′
2 ← v′2

3, u′′
1 ← u′

2 + f5 and u′′
0 ← u′

2u
′′
2 + f4 + v′2

2 + u′
1

8. compute v′′ :← −(v′ + h) mod u′′v′′ :← −(v′ + h) mod u′′v′′ :← −(v′ + h) mod u′′v′′ :← −(v′ + h) mod u′′v′′ :← −(v′ + h) mod u′′v′′ :← −(v′ + h) mod u′′ [3M]
v′′
2 ← v′

2 + v′
3u

′′
2 , v′′

1 ← v′
1 + v′

3u
′′
1 and v′′

0 ← v′
0 + v′

3u
′′
0 + 1

9. return [u′′, v′′] [total complexity: I + 14M + 11S]

14.7 Other curves and comparison

In principle such explicit formulas can be derived for arbitrarily large genus and also for nonhy-
perelliptic curves. Picard curves and more generally C3,4 curves are nonhyperelliptic curves of
genus 3 (cf. Section 4.4.6.a). Starting from a generalization of Cantor’s algorithm or a geomet-
rical description of the steps, respectively, [BAEN+ 2002, FLOY 2004] deal with the arithmetic
of Picard curves. These curves are a special class of C3,4; the general curves are studied in
[BAEN+ 2004, FLOY+ 2004].

Also, hyperelliptic curves of genus 4 received some attention and explicit formulas are given for
the most frequent cases. For this we refer to [WOL 2004] and the references given therein. His
thesis also provides timings for hyperelliptic curves over binary fields for group sizes of use for
cryptographic applications. Depending on the processor, genus 2 curves can outperform elliptic
curves for the same group size. We remark that the genus 2 curves were chosen of the special Type
II (cf. Section 14.5) but more field operations than proposed here were used. Thus, the results have
to be taken with a grain of salt.

In [LAST 2005] implementations of binary elliptic curves and curves of genus 2 are reported.
Their study considers all different choices detailed above. Curves of Type II lead to faster scalar
multiplication than elliptic curves with the same number of precomputations. Scalar multiplication
on general curves of Type I is a bit slower than on elliptic curves.

Avanzi [AVA 2004a] gives a thorough comparison in implementing the explicit formulas in prime
fields of cryptographically relevant size. His results show that computing scalar multiples in the
Jacobian of hyperelliptic curves of genus 2 is only 10% slower than on elliptic curves of the same
group size. The chosen curves were general using no special properties. For all field sizes the basic
arithmetic was optimized to the same extent.

To conclude, we present the timings from [AVA 2004a] for all coordinate systems presented above
and in Chapter 13 for odd characteristic. To compute scalar multiples on the curves signed window-
ing methods were used (cf. Chapter 9). The parameter w states the width of the window.
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Table 14.13 Comparison of running times, in msec (1 GHz AMD Athlon PC).

scalar Bit length of group order (approximate)
curve coord.

mult. 128 144 160 192 224 256 320 512

binary 1.671 2.521 3.074 5.385 8.536 12.619

A NAF 1.488 2.252 2.701 4.809 7.596 11.315

NAFw 1.363 2.205 2.489 4.335 6.841 10.099

(w = 4) (w = 3) (w = 4) (w = 4) (w = 4) (w = 4)

binary 0.643 0.94 1.152 1.879 3.22 4.243

P NAF 0.575 0.841 1.017 1.685 2.881 3.747

NAFw 0.551 0.808 0.982 1.591 2.711 3.523
(w = 3) (w = 3) (w = 3) (w = 3) (w = 4) (w = 4)

binary 0.584 0.856 1.05 1.702 2.912 3.876

ec J NAF 0.517 0.776 0.907 1.499 2.558 3.325

NAFw 0.492 0.713 0.864 1.397 2.357 3.086
(w = 3) (w = 3) (w = 3) (w = 3) (w = 3) (w = 4)

binary 0.614 0.901 1.109 1.812 3.081 3.995

J c NAF 0.546 0.802 0.965 1.6 2.727 3.583

NAFw 0.517 0.756 0.922 1.499 2.527 3.275

(w = 3) (w = 3) (w = 3) (w = 3) (w = 3) (w = 3)

binary 0.607 0.872 1.076 1.782 3.005 3.945

J m NAF 0.512 0.748 0.906 1.515 2.592 3.35

NAFw 0.474 0.684 0.838 1.395 2.296 3.048
(w = 3) (w = 3) (w = 3) (w = 3) (w = 3) (w = 3)

binary 0.888 1.614 1.899 2.546 4.612 5.514 10.409 39.673

A NAF 0.797 1.449 1.706 2.265 4.139 4.952 9.298 35.430

NAFw 0.73 1.421 1.558 2.053 3.73 4.464 8.343 31.246

(w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 5)

binary 0.839 1.473 1.642 2.102 3.996 4.712 8.653 30.564

hec P NAF 0.755 1.325 1.48 1.901 3.588 4.203 7.758 27.359
g=2 NAFw 0.703 1.211 1.352 1.742 3.256 3.842 6.998 24.451

(w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 5)

binary 0.844 1.395 1.564 2.038 3.777 4.413 8.265 29.11

N NAF 0.746 1.247 1.391 1.778 3.357 4.002 7.329 25.816

NAFw 0.675 1.14 1.262 1.623 3.02 3.575 6.53 22.73

(w = 4) (w = 4) (w = 4) (w = 3) (w = 4) (w = 4) (w = 4) (w = 5)

binary 1.896 1.984 2.992 3.597 5.39 6.001 12.66 42.907

hec A NAF 1.64 1.744 2.538 3.085 4.82 5.39 11.24 38.326
g=3 NAFw 1.424 1.528 2.077 2.584 4.33 4.86 9.92 34.117

(w = 4) (w = 4) (w = 5) (w = 5) (w = 4) (w = 5) (w = 4) (w = 4)
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In this chapter we present the arithmetic for special choices of curves that offer advantages in the
computation of scalar multiples.

The first example is given by Koblitz curves. There the improvement results from a clever use of
the Frobenius endomorphism. The use of endomorphisms on special curves over prime fields is the
topic of the following section. An approach similar to Koblitz curves but for large characteristic is
the key to trace zero varieties, which we present in the last section.

For a curve C defined over Fq, a common strategy in this chapter is to consider C over an
extension field Fqk , i.e., C · Fqk , and to study the divisor class group there. For C = E, an elliptic
curve, we use the fact that E is equal to its divisor class group and write E(Fqk) to denote the
set of points defined over Fqk . For a curve C of higher genus, we put Pic0

C(Fqd) as a shorthand
for Pic0

C·F
qk

to abbreviate notation and to highlight the field in which we are working. Finally we
assume an embedding Pic0

C(Fq) ⊂ Pic0
C(Fqk).

15.1 Koblitz curves

The notion of Koblitz curves is not clearly defined. In the scope of this book we associate a broad
meaning with this name and use it to denote subfield curves for which the Frobenius endomorphism
is used in the computation of scalar multiples.

We introduce Koblitz curves first in the special case initially proposed by Koblitz and then con-
tinue with the general case of arbitrary genus and arbitrary characteristic. Finally we present an
alternative approach that is better suited for applications.

355
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15.1.1 Elliptic binary Koblitz curves

We refer to [KOB 1992] and [SOL 1999b, SOL 2000] for this part and treat in detail elliptic curves
defined over F2 and considered over the extension field F2d .

The first attempt to use the Frobenius endomorphism in the computation of scalar multiples was
made by Menezes and Vanstone [MEVA 1990] using the curve

E : y2 + y = x3.

In this case, the characteristic polynomial of the Frobenius endomorphism denoted by φ2 (cf. Ex-
ample 4.87 and Section 13.1.8), which sends P∞ to itself and (x1, y1) to (x2

1, y
2
1), is

χE(T ) = T 2 + 2.

Thus doubling is replaced by a twofold application of the Frobenius endomorphism and taking the
negative as for all points P ∈ E(F2d), we have φ2

2(P ) = −[2]P . Since the computation of the
Frobenius map is almost free in normal basis representation and requires at most three squarings
using a polynomial basis and projective coordinates, this idea led to very efficient implementations.
However, the curve E is supersingular and should not be used in applications if one only needs a
DL system, (cf. Section 22.2).

As “the next best thing,” Koblitz [KOB 1992] suggested using the remaining two nonsupersingu-
lar curves defined over F2.

Definition 15.1 In the context of an elliptic curve defined over F2, a Koblitz curve is given by the
equation

Ea2 : y2 + xy = x3 + a2x
2 + 1, with a2 = 0 or 1. (15.1)

These curves are sometimes referred to as anomalous binary curves, ABC for short.

In this case, the characteristic polynomial of the Frobenius endomorphism is

χa2(T ) = T 2 − µT + 2 (15.2)

where µ = (−1)1−a2 . It follows that doublings can be replaced by computations involving the
Frobenius endomorphism as

[2]P = [µ]φ2(P ) � φ2
2(P ). (15.3)

The following shows that scalar multiplications by powers of 2 can be easily obtained using the
Frobenius endomorphism. For instance when a2 = 1, we have

[2]P = φ2(P ) � φ2
2(P ), [4]P = −φ2

2(P ) � φ3
2(P ),

[8]P = −φ3
2(P ) ⊕ φ5

2(P ), [16]P = φ4
2(P ) � φ8

2(P ),

as one can easily check from using (15.2). This idea gives an efficient general scalar multiplication
when combined with the 2k-ary or the sliding window method; see Section 9.1. But one can use it
even more efficiently in the computation of arbitrary scalar multiples, as we shall see in the sequel.
Let τ be a complex root of χa2(T ). As the Frobenius endomorphism operates on Ea2 , the curve has
complex multiplication by the ring Z[τ ].
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15.1.1.a Properties of the ring Z[τ ]Z[τ ]Z[τ ]Z[τ ]Z[τ ]Z[τ ]

First, fix τ = µ+
√
−7

2 as a root of χa2 . The other root is the complex conjugate of τ , namely
τ = µ−

√
−7

2 · Let us review some properties of the ring Z[τ ].
The field Q(τ) is an imaginary quadratic field with ring of integers Z[τ ]. Every element η ∈ Z[τ ]

can be written in the form η = n0 + n1τ with n0, n1 ∈ Z. To every element η = n0 + n1τ ∈ Z[τ ]
one associates the norm of η (cf. Proposition 2.77), given by

N(η) = (n0 + n1τ)(n0 + n1τ ) = n2
0 + µn0n1 + 2n2

1.

As a consequence, N(τ) = 2. As φd
2 operates on Ea2(F2d) as identity, one gets

N(1 − τd) = |Ea2(F2d)|.

In classical number theory one associates Lucas sequences to a quadratic polynomial using the
equation to define a recurrence relation. In our case, (15.2) gives rise to

Lk+1 = µLk − 2Lk−1, for k � 1. (15.4)

The first and second Lucas sequence differ by the initialization of the first two sequence elements
and use the same recurrence relation (15.4). Define (Uk)k�0 by

U0 = 0, U1 = 1, (15.5)

and (Vk)k�0 by
V0 = 2, V1 = µ. (15.6)

By using (15.4) one immediately sees

τk = −2Uk−1 + Ukτ (15.7)

and
τk + τk = −2Vk−1 + Vkτ. (15.8)

This second sequence gives a recurrence formula to compute the cardinality of Ea2(F2d). Indeed,
we have

|Ea2(F2d)| = (1 − τd)(1 − τd)
= 2d + 1 − (τd + τd) = 2d + 1 − Vd. (15.9)

As the number of points over the ground field always divides the group order over extension fields,
we have an inevitable factor c of the group order given by

|Ea2(F2d)| = cN with

{
c = 4, if a2 = 0
c = 2, if a2 = 1.

(15.10)

Here, c = |Ea2(F2)| = N(τ − 1) and N = N(δ) where δ =
τd − 1
τ − 1

·

Example 15.2 Take
E1 : y2 + xy = x3 + x2 + 1

over F211 . Then we have E1(F211) = 2 × 991 where 991 is prime.
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Further developments would be irrelevant if we were not able to find extension fields F2d with a
large prime order subgroup of E(F2d). Fortunately, the integer N in (15.10) is prime for many
extension degrees and in particular for the following ones of cryptographic interest

a2 Degree d

0 233, 239, 277, 283, 349, 409, 571
1 163, 283, 311, 331, 347, 359

For more information on point counting we refer to Chapter 17.

15.1.1.b Computation of ττττττ -adic expansions

We have seen how to use (15.3) to replace computations of [2k]P by operations involving the Frobe-
nius endomorphism. In the endomorphism ring of Ea2 we have the relation 2 = µτ − τ2 and we
can try to find a similar expansion for every integer.

Definition 15.3 In analogy to binary expansions, we define the τ -adic expansion of η ∈ Z[τ ] as

η =
l−1∑
i=0

riτ
i, (15.11)

where ri ∈ {0, 1}, for all i. Such an expansion is denoted by (rl−1 . . . r0)τ .

The key observation to compute the expansion (15.11) of η = n0+n1τ ∈ Z[τ ] is that the coefficients
can be obtained from the least significant one by repeatedly dividing n0 with remainder by 2 as in the
binary expansion and replacing 2 by µτ−τ2. The remainders constitute the sequence of coefficients
and the norm decreases. This shows that every η ∈ Z[τ ] has a τ -adic expansion.

Example 15.4 For instance, put µ = 1 and let us compute the τ -adic expansion of 7. We have the
following equalities

7 = 1 + 2 × 3
= 1 + τ(3 − 3τ)
= 1 + τ + τ2(−2 − τ)
= 1 + τ + τ3(−2 + τ)
= 1 + τ + τ4(τ)
= 1 + τ + τ5.

Once it is determined, the τ -adic expansion of an integer n gives a way to compute the scalar
multiplication by n using only the Frobenius endomorphism and additions. For example, if P is a
point of E1(F2d), we have

[7]P = P ⊕ φ2(P ) ⊕ φ5
2(P ).

The number of nonzero coefficients in the τ -adic expansion of n determines the number of additions
to perform in order to get [n]P and thus rules the complexity of the computation. To obtain a sparser
representation, Koblitz [KOB 1992] suggests using a signed τ -adic expansion. Solinas [SOL 1997]
generalizes the notion of binary non-adjacent forms NAFs.

Definition 15.5 An element η = n0 + n1τ ∈ Z[τ ] is written in τ -adic non-adjacent form, τNAF
for short, if

η =
l−1∑
i=0

riτ
i, (15.12)
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with the extra conditions ri ∈ {0, +− 1} and riri+1 = 0 for all i. Such an expansion is denoted by
(rl−1 . . . r0)τNAF.

In [SOL 1999b], an algorithm to compute the τNAF of every η ∈ Z[τ ] is proposed. In addition, it is
shown that the τNAF expansion is unique and Avanzi et al. show in [AVHE+ 2004] that its number
of nonzero coefficients is minimal among all the representations with coefficients in {0, +− 1}.

Algorithm 15.6 τNAF representation

INPUT: An element η = n0 + n1τ ∈ Z[τ ].

OUTPUT: The τ -adic expansion (rl−1 . . . r0)τNAF of η in non-adjacent form.

1. S ← ()

2. while |n0| + |n1| �= 0 do

3. if n0 ≡ 1 (mod 2) then

4. r ← 2 − `(n0 − 2n1) mod 4
´

5. n0 ← n0 − r

6. else r ← 0

7. S ← r ||S [r prepended to S]

8. (n0, n1) ← (n1 + µn0/2,−n0/2)

9. return S

Remark 15.7 The length l of the τ -adic NAF expansion of n ∈ Z obtained by Algorithm 15.6 is
approximately equal to 2 lg n while its density is 1/3 as with the ordinary NAF, cf. Section 9.1.4.
In order to obtain an expansion of size lg n, we shall introduce the notion of reduction (see Sec-
tion 15.1.1.c) and this will allow us to get expansions of the same density and length lg n.

Example 15.8 Take µ = 1 and let us compute the τNAF representation of n = 409 in Z[τ ]. Using
Algorithm 15.6, we obtain

409 = (1̄001̄0000101̄01001001)τNAF

whereas it is easily checked that the τ -adic expansion of 409 is (11000111101001001)τ. The length
is the same in both cases but the density of the τNAF expansion is less.

From the τ -adic or the τNAF expansion, it is possible to derive a left-to-right scalar multiplication
algorithm similar to the double and add method, where every doubling is replaced by the Frobenius
action. In Chapter 9, we have seen that some precomputations can reduce significantly the number
of additions involved in a scalar multiplication, and the same considerations hold here as well.

15.1.1.c Reducing the length

Let P be a point in Ea2(F2d). Since φd
2 is the identity map in the finite field F2d , we have, as pointed

out in [MEST 1993], that

[n]P = [η]P whenever n ≡ η (mod (τd − 1)).

Now recall that |Ea2(F2d)| = cN with c = 2 or 4. When there exists a point Q such that P = [c]Q,
then it is even possible to reduce n modulo δ = (τd − 1)/(τ − 1) to compute [n]P . Note that
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this condition means no restriction for cryptographic applications since the base point P is usually
chosen to have prime order. Furthermore, for an arbitrary P this property is also very easy to check
for. Indeed, if P = (x1, y1) there exists Q ∈ Ea2(F2d) such that P = [c]Q if and only if

• Tr(x1) = Tr(a2), when c = 2
• Tr(x1) = 0 and Tr(y1) = Tr(λx1) where λ satisfies λ2 + λ = x1, when c = 4.

Taking such a Q, we see that

[δ]P = [δ][c]Q
= [δ][τ − 1][τ − 1]Q
= [τ − 1]([τd − 1]Q)
= P∞,

where the second equality used N(τ − 1) = c. As a consequence, if n ≡ ρ (mod δ) we have
n = κδ + ρ and

[n]P = [κ][δ]P ⊕ [ρ]P
= [ρ]P.

This reduction is of great interest, since the length of a τ -adic expansion of ρ, computed with
Algorithm 15.6 or 15.17, will be shown to be approximately half the one of n and is now of the
same size as the binary expansion of n.

To actually compute the reduction, we first need to determine δ. For that, we use the Lucas
sequence (Uk)k�0 as defined in (15.5) and get τd = −2Ud−1 + Udτ . Then

δ = (τd − 1)/(τ − 1) = (−2Ud−1 + Udτ − 1)(τ − 1)/c (15.13)

=
(
(2 − 2µ)Ud−1 + 2Ud − µ + 1 + (2Ud−1 − Ud + 1)τ

)
/c

=: δ0 + δ1τ

using c = (τ − 1)(τ − 1) and µ = τ + τ .

To be able to compute a division with remainder as required in n = κδ + ρ we need a rounding
notion. For λ ∈ Q, the rounding is ambiguous for half integers. In the following, we use two
different rounding notions for λ ∈ Q, namely

�λ� = �λ + 1/2� and 	λ� =

{
	λ − 1/2� if λ > 0
�λ + 1/2� else.

The second definition ensures that in the ambiguous cases the integer with least absolute value is
chosen.

Similarly, for λ ∈ Q(τ), we need to find a closest neighbor of λ in Z[τ ]. As Q(τ) ⊂ C and Z[τ ]
forms a two-dimensional lattice, we use the complex absolute value as it captures the distance in
the complex plane. The complex absolute value equals the positive square root of the norm. The
element q0 + q1τ ∈ Z[τ ] is a closest lattice element of λ if

N
(
λ − q0 − q1τ

)
� N

(
λ − α

)
for all α ∈ Z[τ ].

Algorithm 15.9 provided in [MEST 1993, SOL 1999b] computes such an element denoted by �λ�τ .
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Algorithm 15.9 Rounding-off of an element of Q[τ ]

INPUT: Two rational numbers λ0 and λ1 specifying λ = λ0 + λ1τ ∈ Q(τ ).

OUTPUT: Two integers q0 and q1 such that q0 + q1τ = �λ�τ ∈ Z[τ ].

1. f0 ← �λ0� and f1 ← �λ1�
2. η0 ← λ0 − f0 and η1 ← λ1 − f1

3. h0 ← 0 and h1 ← 0

4. η ← 2η0 + µη1

5. if η � 1 then

6. if η0 − 3µη1 < −1 then h1 ← µ else h0 ← 1

7. else

8. if η0 + 4µη1 � 2 then h1 ← µ

9. if η < −1 then

10. if η0 − 3µη1 � 1 then h1 ← −µ else h0 ← −1

11. else

12. if η0 + 4µη1 < −2 then h1 ← −µ

13. q0 ← f0 + h0 and q1 ← f1 + h1

14. return (q0, q1)

Example 15.10 Let λ = 1.6 + 2.4τ then �λ�τ = 1 + 2τ and not 2 + 2τ as we might expect. We
can check that N

(
λ − (1 + 2τ)

)
= 0.44 whereas N

(
λ − (2 + 2τ)

)
= 0.64.

Building on this notion, one can now define a division with remainder in Z[τ ]. The idea behind
the following algorithm is to first compute η/δ ∈ Q(τ), which is done via η/δ = ηδ/ N(δ) =
((δ0 + µδ1)n0 + 2d1n2 + (d0n1 − δ1n0)τ)/ N(δ). After rounding the result, one determines the
remainder as

η − �η/δ�τ δ,

where τ2 is replaced by µτ − 2.

Algorithm 15.11 Division with remainder in Z[τ ]

INPUT: Two elements η = n0 + n1τ and δ = d0 + d1τ in Z[τ ].

OUTPUT: Two elements κ = q0+q1τ and ρ = r0+r1τ in Z[τ ] with η = κδ+ρ, N(ρ) < N(δ).

1. g0 ← n0d0 + µn0d1 + 2n1d1

2. g1 ← n1d0 − n0d1

3. N ← N(δ) = d2
0 + µd0d1 + 2d2

1

4. q0 + q1τ ←
j

g0

N
+

g1

N
τ
m

τ
[use Algorithm 15.9]

5. r0 ← n0 − d0q0 + 2d1q1

6. r1 ← n1 − d1q0 − d0q1 − µd1q1

7. κ ← q0 + q1τ and ρ ← r0 + r1τ

8. return κ and ρ
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Remark 15.12 The remainder ρ given by Algorithm 15.11 does not only satisfy N(ρ) < N(δ) but
due to the lattice structure one even has N(ρ) � 4

7 N(δ), cf. [MEST 1993].

This algorithm can be used to compute reductions of integers n modulo

δ = δ0 + δ1τ = (τd − 1)/(τ − 1).

Algorithm 15.13 Reduction of n modulo δ

INPUT: An integer n ∈ [1, N − 1] where N = N(δ) and δ0, δ1 as in (15.13).

OUTPUT: The element ρ = r0 + r1τ ≡ n (mod δ).

1. d0 ← δ0 + µδ1

2. λ0 ← d0n/N and λ1 ← −δ1n/N

3. q0 + q1τ ← �λ0 + λ1τ�τ [use Algorithm 15.9]

4. r0 ← n − δ0q0 + 2δ1q1

5. r1 ← −δ1q0 − d0q1

6. return r0 + r1τ

Remarks 15.14

(i) The length of the τ -adic expansion of ρ is at most d + a2 and grows with N(ρ).
(ii) To avoid the multiprecision division by N in Line 2, a partial reduction algorithm has

been proposed [SOL 1999b]. Let C be a constant greater than 1, K = (d + 5)/2 + C,
n′ =

⌊
n/(2d−K−2+a2)� and Vd as in (15.6). Then perform the following operations to

obtain an approximation λ′
i of λi, for i = 0 and 1.

2’. g′i ← sin
′, h′

i ← �g′i/2d�, j′i ← Vdh
′
i and λ′

i ← �(g′i + j′i)/2K−C + 1/2�/2C

In any case, ρ′ = r′0 +r′1τ obtained in that way is equivalent to n modulo δ. However, ρ′

can be different from ρ computed exactly. This occurs with probability less than 1/2C−5

and the length of the τ -adic expansion of ρ′ is always at most d + a2 + 3.

(iii) After the reduced element ρ has been computed, we can compute its τNAF. To obtain
sparser representations, windowing methods can be used (cf. Section 15.1.1.d).

Example 15.15 Take
E1 : y2 + xy = x3 + x2 + 1

over F211 , realized as F2[θ] with θ such that θ11 + θ2 + 1 = 0. We know from Example 15.2 that
E1(F211) = 2 × 991. Let us take P = (0x34A, 0x69B) a random point in E1(F211), expressed in
hexadecimal notation, and let us compute [409]P . We remark that Tr(0x34A) = 1. So there is Q
such that [2]Q = P and we can reduce 409 modulo δ, where δ = (τ11−1)/(τ−1). Algorithm 15.13
shows that 409 ≡ 13 − 9τ (mod δ) and Algorithm 15.6 gives

13 − 9τ = (1̄0101001̄)τNAF

having only 8 digits instead of 17.
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15.1.1.d Windowing methods

It is possible to generalize windowing methods to τ -adic windowing methods. We present a gener-
alization of the notion of width-w NAF expansion, cf. Definition 9.19.

Definition 15.16 Let w be a parameter greater than 1. Then every element η ∈ Z[τ ] can be written
as

η =
l−1∑
i=0

riτ
i

where

• each ri is zero or ri = +−αu where αu ≡ u (mod τw) for some odd u ∈ [1, 2w−1 − 1]
• rl−1 �= 0
• among any w consecutive coefficients, at most one is nonzero.

Such a representation is called a width-w τ -adic expansion in non-adjacent form, τNAFw for short,
and is denoted by (rl−1 . . . r0)τNAFw .

Mimicking Algorithm 9.20, we derive a method to compute the τNAFw, which we shall describe
now. More explanations can be found in [SOL 2000].

Let (hk)k�1 be the sequence of integers defined by

hk = 2Uk−1U
−1
k mod 2k, for all k � 1,

where (Uk)k�0 is the Lucas sequence given by (15.5). We can check that

h2
k − µhk + 2 ≡ 0 (mod 2k), for all k � 1.

The next step is to precompute the elements αu ∈ Z[τ ] such that αu ≡ u (mod τw) for u odd in
[1, 2w−1−1]. With Algorithm 15.9, we obtain the remainder βu+γuτ of u divided by τw expressed
as a linear term in τ using (15.7). Then, when it is possible, a simpler expression for αu is computed
using, for instance, the τNAF or previous precomputations. As a result, at most two additions are
needed to determine αuP in each case.

w u βu + γuτ αu

3 3 1 − µτ —

4 3 −3 + µτ −1 + τ2

5 −1 + µτ —

7 1 + µτ —

5 3 −3 + µτ −1 + τ2

5 −1 + µτ 1 + τ2

7 1 + µτ —

9 −3 + 2µτ 1 − µτ3α5

11 −1 + 2µτ α5 + µτ

13 1 + 2µτ α7 + µτ

15 1 − 3µτ −α11 − µτ

Now we can give the algorithm to compute the τNAFw. It was first proposed in [SOL 1999b] but
the given routine fails in some situations. We present here the corrected version [SOL 2000].
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Algorithm 15.17 τNAFw representation

INPUT: An element η = n0+n1τ ∈ Z[τ ], a parameter w > 1 and hw , βu, γu and αu as above.

OUTPUT: The width-w τ -adic expansion (rl−1 . . . r0)τNAFw of η in non-adjacent form.

1. S ← ()

2. while |n0| + |n1| �= 0 do

3. if n0 is odd then

4. u ← (n0 + n1hw) mods 2w [see Remark (i)]

5. if u > 0 then ξ ← 1

6. else ξ ← −1 and u ← −u

7. n0 ← n0 − ξβu, n1 ← n1 − ξγu and r ← ξαu

8. else r ← 0

9. S ← r ||S
10. (n0, n1) ← (n1 + µn0/2,−n0/2)

11. return S

Remarks 15.18

(i) The integer (n0 + n1hw) mods 2w is the unique integer in [−2w−1, 2w−1] which is
congruent to n0 + n1hw modulo 2w.

(ii) When w = 2 the width-w τ -adic NAF coincides with the classical τ -adic NAF, in other
words τNAF2 = τNAF.

(iii) The length l of the τNAFw expansion of η = n0 + n1τ is approximately equal to the
binary length of the norm of η. If η = n ∈ Z then l ≈ 2 lgn.

(iv) Since Pα1 simply equals P , we need to precompute only 2w−2 − 1 points.

(v) The average density of the τNAFw expansion of η is equal to 1/(w + 1). As for the
ordinary windowing methods, the expansions do not get longer. Hence, on average
2w−2 − 1 + d

w+1 elliptic curve additions are sufficient to compute the scalar multiplica-
tion [n]P , including the cost of the precomputations and assuming a reduced represen-
tation of n as input of Algorithm 15.17.

Example 15.19 We continue with the setting of Example 15.15, where we have already obtained
that [409]P = [13]P � [9]φ2(P ). Now it is possible to start with the τNAF4 of 13 − 9τ instead,
and Algorithm 15.17 returns

13 − 9τ = (α5 000 α7 000 α7)τNAFw .

For instance, using this last expansion, we see that

[409]P = φ8
2(Pα5) � φ4

2(Pα7 ) ⊕ Pα7 ,

where

Pα5 = [α5]P = φ2(P ) � P = (0x256, 0x61B)
Pα7 = [α7]P = φ2(P ) ⊕ P = (0x2F2, 0x11A)
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have been precomputed, following the table given on page 363. We get [409]P = (0x606, 0x55A)
with only two extra additions.

To obtain expansions of lower density, it is possible to mix point halving (cf. Section 13.3.5)
and τ -adic NAF recoding to form a double expansion (cf. Section 9.1.5) with joint weight 1/4
[AVCI+ 2004, AVHE+ 2004], which allows faster scalar multiplication if a normal basis is chosen
and some precomputations can be made.

15.1.1.e Computation of the ττττττ -adic joint sparse form

By analogy with the joint sparse form (see Section 9.1.5) a τ -adic joint sparse form is developed
in [CILA+ 2003]. It can be applied to Koblitz curves for faster signature verification, but also for
faster scalar multiplication if one long-term precomputation, namely that of φ

�d/2�
2 , is possible.

Definition 15.20 Let

η0 =
l−1∑
j=0

n0,jτ
j and η1 =

l−1∑
j=0

n1,jτ
j

be two elements of Z[τ ] with ni,j ∈ {0, +− 1}. The τ -adic joint sparse form, τJSF for short, of η0

and η1 is a signed representation of the form

(
η0

η1

)
=

(
r0,l+2 . . . r0,0

r1,l+2 . . . r1,0

)
τ JSF

where ri,j ∈ {0, +− 1}, and such that

• of any three consecutive positions, at least one is a zero column, that is for all i and all
positive j one has ri,j+k = r1−i,j+k = 0, for at least one k in {0, +− 1}

• it is never the case that ri,jri,j+1 = µ

• if ri,j+1ri,j �= 0 then one has r1−i,j+1 = +− 1 and r1−i,j = 0.

Next, we give an algorithm to actually compute such a form.

Algorithm 15.21 Recoding in τ -adic joint sparse form

INPUT: Two τ -adic expansions ηi =
Pl−1

j=0 ni,jτ
j , with ni,j ∈ {0, +− 1}, for i = 0 and 1.

OUTPUT: The τ -adic joint sparse form of η0 and η1.

1. j ← 0, S0 = () and S1 = ()

2. for i = 0 to 1 do

3. di,0 ← 0 and di,1 ← 0

4. ai ← ni,0, bi ← ni,1 and ci ← ni,2

5. while l − j > 0 or |d0,0| + |d0,1| + |d1,0| + |d1,1| > 0 do

6. for i = 0 to 1 do

7. if di,0 ≡ ai (mod 2) then ri ← 0

8. else ri ←
`
di,0 + ai + 2µ(di,1 + bi)

´
mods 4

9. ti,0 ← di,0 + ai − 2µ(di,1 + bi) − 4ci

10. if ti,0 ≡ +− 3 (mod 8) then ti,1 ← d1−i,0+a1−i+2(d1−i,1+b1−i)

11. if ti,1 ≡ 2 (mod 4) then ri ← −ri
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12. Si ← ri ||Si

13. for i = 0 to 1 do

14. di,0 ← µ(di,0 + ai − ri)/2 + di,1 and di,1 ← µ(di,1 − di,0)

15. ai ← bi, bi ← ci and ci ← ηi,j+3

16. j ← j + 1

17. return S0 and S1

Remarks 15.22

(i) Algorithm 15.21 works for every signed τ -adic expansions; however, in signature ver-
ification it is usually applied to two integers η1, η2 after reducing them modulo δ. In
this case one saves the time to compute the τ -adic expansion and just computes the re-
duction. To use it for single scalar multiplication, one starts with a τ -adic expansion of
length d + a2 and splits it as

η0 =
�d/2�−1∑

i=0

riτ
i and η1 =

d−1+a2∑
i=�d/2�

riτ
i

such that n = η0 + τ�d/2�η1.

(ii) Although Algorithm 15.21 is inspired from Algorithm 9.27, there are two main differ-
ences. First, two carries di,0 and di,1 are used for each i. Second, the conditions modulo
2, 4, and 8 are translated to conditions modulo τ , τ2 and τ3.

(iii) Like the JSF, the τJSF exists for any two elements η0, η1 ∈ Z[τ ] and is unique. However,
the τJSF of −3 + µτ = (101̄)τNAF and of µτ = (0µ0)τNAF is

(
−3 + µτ

µτ

)
=

(
µ̄0µ̄0µ̄1
0 0 0 0µ0

)
τ JSF

showing that the optimality of the JSF, cf. Remark 9.28 (i), does not carry over to the
τJSF.

Example 15.23 Let P and Q be two elements of E1(F211) and let us compute [409]P ⊕ [457]Q.
We have already seen that 409 ≡ 13 − 9τ (mod δ). In the same way, 457 ≡ 17 − 10τ (mod δ).
Their τNAF expansions are

13 − 9τ = (0001̄0101001̄)τNAF

17 − 10τ = (1010001̄0101)τNAF

which allows to compute [409]P ⊕ [457]Q with essentially 7 additions, if P ⊕ Q and P � Q are
precomputed. In contrast, Algorithm 15.21 returns

(
13 − 9τ

17 − 10τ

)
=

(
1̄0101001̄
1̄01011̄01

)
τ JSF

giving the same result with only 4 additions.
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Remark 15.24 For larger ground fields, similar subfield curves have been studied by Müller in
characteristic 2 [MÜL 1998] and by Smart in characteristic p [SMA 1999b]. In both cases, the field
of definition is small so that χ(T ) can be computed easily. The process of expanding is as described
above; however, the study is not as detailed as Solinas’.

In [GÜLA+ 2000], Günther, Lange, and Stein generalized the concept of Koblitz curves to
larger genus curves and studied two curves of genus two over F2. In [LAN 2001b] it has been
shown that this approach works for any genus and characteristic and this study has been detailed in
[LAN 2001a]. The following section deals with Koblitz curves of arbitrary characteristic and curves
of larger genera.

15.1.2 Generalized Koblitz curves

In the previous section, we introduced the main strategies one applies to use the Frobenius endo-
morphism for scalar multiplication. Here we consider generalized Koblitz curves of arbitrary genus
over finite fields Fq of arbitrary characteristic p. In spite of the generality, the reader should keep
in mind that for use as DL systems only the Jacobians of small genus g � 3 curves are useful and
that this approach should be applied only to small characteristic as the number of precomputations
grows exponentially with the characteristic. Usually we assume prime fields as ground fields to
reduce the risks of Weil descent attacks (cf. Section 22.3).

We sometimes require that the characteristic polynomial of the Frobenius endomorphism is irre-
ducible. In our case, this means no restriction as one always chooses curves with irreducible χ to
avoid cofactors in the group order. We additionally require that the degree k of extension should be
prime to get an almost prime group order. Let τ be a complex root of the characteristic polynomial
of the Frobenius endomorphism.

Then

|Pic0
C(Fqk)| =

2g∏
i=1

(1 − τk
i )

=
2g∏

i=1

(1 − τi)
(
1 + τi + · · · + τk−1

i

)
= |Pic0

C(Fq)|
2g∏

i=1

(
1 + τi + · · · + τk−1

i

)
where the τi’s are the conjugates of τ . Thus we cannot avoid having a cofactor of size about qg ,
and any divisor of k will lead to additional factors. Likewise a composite χ gives rise to cofactors
for any degree of extension. Hence, the condition that χ should be irreducible means no restriction.
Furthermore, for composite or medium degree extensions, Weil descent attacks have to be taken
seriously.

Formally, we have
|Pic0

C(Fqk)| = cN where c = |Pic0
C(Fq)|.

For cryptographic applications, we work in the cyclic subgroup of prime order � | N of Pic0
C(Fqk)

generated by some divisor class
__
D. As our aim is to find groups with fast scalar multiplication and

hard DLP we avoid supersingular curves here.
We follow the same approach as in Section 15.1.1 in showing how to expand integers to the base

of τ . As before, we need to show how to reduce the length of the expansions by using a fixed degree
of the extension field.

Throughout this section we let C/Fq be a hyperelliptic curve of genus g given by an equation

C : y2 + h(x)y = f(x), f, h ∈ Fq[x], deg f = 2g + 1, deg h � g, f monic, (15.14)

and we consider the curve over the extension field Fqk . Our aim is to compute the scalar multipli-
cation [n]

__
D for a divisor class

__
D ∈ Pic0

C(Fqk). For full details we refer to Lange [LAN 2005c].
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15.1.2.a Computation of χC(T )χC(T )χC(T )χC(T )χC(T )χC(T )

To make use of the Frobenius endomorphism we need to know the way it operates. By Theo-
rem 14.17, it is enough to count the number of points on C over Fq,Fq2 , . . . ,Fqg to compute the
characteristic polynomial. This is very feasible as the ground field and the genus are small enough
to perform this by brute force computation.

We repeat that for a curve of genus g defined over Fq, the characteristic polynomial χC(T ) is of
the following form:

χC(T ) = T 2g + a1T
2g−1 + · · · + agT

g + · · · + a1q
g−1T + qg,

where ai ∈ Z.

Example 15.25 Over F2, we can classify up to isogeny the nine classes of hyperelliptic curves
of genus 2 given by an equation of the form (15.14) with irreducible χC(T ), which are given in
Table 15.1.

Table 15.1 Binary curves of genus 2.

Equation of C Characteristic polynomial χC(T )

y2 + y = x5 + x3 T 4 + 2T 3 + 2T 2 + 4T + 4

y2 + y = x5 + x3 + 1 T 4 − 2T 3 + 2T 2 − 4T + 4

y2 + y = x5 + x3 + x T 4 + 2T 2 + 4

y2 + xy = x5 + 1 T 4 + T 3 + 2T + 4

y2 + xy = x5 + x2 + 1 T 4 − T 3 − 2T + 4

y2 + (x2 + x)y = x5 + 1 T 4 − T 2 + 4

y2 + (x2 + x + 1)y = x5 + 1 T 4 + T 2 + 4

y2 + (x2 + x + 1)y = x5 + x T 4 + 2T 3 + 3T 2 + 4T + 4

y2 + (x2 + x + 1)y = x5 + x + 1 T 4 − 2T 3 + 3T 2 − 4T + 4

The first five examples were given in Koblitz [KOB 1989]. Besides the first three classes these
curves are nonsupersingular. The fourth and fifth case were studied by Günter, Lange, and Stein in
[GÜLA+ 2000].

Group orders and characteristic polynomials χC(T ) for all Koblitz curves of genus g � 4 over
Fq with q � 7 can be found at [LAN 2001c]. More details on how to obtain the characteristic
polynomial and the number of points over extension fields can be found in Section 17.1.1.

15.1.2.b Computation of ττττττ -adic expansions

As before, let χC(T ) denote the characteristic polynomial of the Frobenius endomorphism and let
τ be one of its complex roots. To make use of the Frobenius endomorphism, we need to be able to
represent [n]

__
D as a linear combination of the φi

q(
__
D) with bounded coefficients. This is equivalent

to expanding n to the base of τ as

n =
l−1∑
i=0

riτ
i
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where the ri ∈ R are elements of a set of coefficients R to be defined later. If one precomputes [r]
__
D

for all occurring coefficients r ∈ R, then the computation of [n]
__
D is realized by applications of the

Frobenius endomorphism, table lookups, and additions of divisor classes whenever the coefficient
is nonzero. The elements of Z[τ ] are of the form η = n0 + n1τ + · · · + n2g−1τ

2g−1 with ni ∈ Z.
By definition, τ satisfies a polynomial of degree 2g with constant term qg. Thus one can replace the
computation of [qg]

__
D with

−
(
[qg−1a1]φq(

__
D) ⊕ [qg−2a2]φ2

q(
__
D) ⊕ · · · ⊕ [ag]φg

q(
__
D) ⊕ · · · ⊕ [a1]φ2g−1

q (
__
D) ⊕ φ2g

q (
__
D)

)
.

But this need not be faster than computing [qg]
__
D by the usual method of double and add. Still it is

the key observation used in expanding an integer. To compute the expansion we need a division by τ
with remainder. We give the following result with proof to explain the details behind the expansion
mechanism.

Lemma 15.26 The element η = n0 + n1τ + · · ·+ n2g−1τ
2g−1 ∈ Z[τ ] is divisible by τ if and only

if qg | n0.

Indeed, let us suppose that τ | η. This is equivalent to

η = τη′ = τ(n′
0 + n′

1τ + · · · + n′
2g−1τ

2g−1)

= n′
0τ + n′

1τ
2 + · · · + n′

2g−2τ
2g−2 − n′

2g−1(q
g + a1q

g−1τ + · · · + a1τ
2g−1)

= −n′
2g−1q

g + n1τ + · · · + n2g−1τ
2g−1

which is in turn equivalent to qg | n0.

To allow computing an expansion by dividing with remainder by τ , the set R needs to contain at
least a complete set of remainders modulo qg . Since taking the negative of a class is essentially for
free, we will use

R =
{

0, +− 1, +− 2, . . . , +−
⌈

qg − 1

2

⌉}
as a minimal set of remainders. Note that we would not need to include −qg/2 in the case of even
characteristic. But as we get it for free we will make use of it.

To derive a τ -adic expansion of n ∈ Z, we apply Lemma 15.26 repeatedly. Put r0 = n mod qg

for r0 ∈ R, s1 = (n−r0)/qg , r1 = −s1a1q
g−1 mod qg for r1 ∈ R and s2 = (−s1a1q

g−1−r1)/qg .

Then

n = r0 + n − r0 = r0 + s1q
g

= r0 − s1(a1q
g−1τ + a2q

g−2τ2 + · · · + agτ
g + · · · + a1τ

2g−1 + τ2g)
= r0 + τ(−s1a1q

g−1 − s1a2q
g−2τ − · · · − s1agτ

g−1 − · · · − s1a1τ
2g−2 − s1τ

2g−1)
= r0 + r1τ + τ(s2q

g − s1a2q
g−2τ − · · · − s1agτ

g−1 − · · · − s1a1τ
2g−2 − s1τ

2g−1)
= r0 + r1τ + τ2(. . . ).

For a concrete application of this idea in the context of elliptic curves, see Example 15.4.

The expansions derived by repeatedly applying this process with minimal remainders |ri| �⌈
qg−1

2

⌉
might become periodic in some rare cases.
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Remarks 15.27

(i) For elliptic curves in even characteristic, these expansions are finite for every input (cf.
Müller [MÜL 1998]), whereas in odd characteristic, Smart [SMA 1999b] shows that
only for small field sizes they can turn out to be periodic and that this can only happen
for q = 5, a1 = +− 4 and q = 7, a1 = +− 5. To surround this problem these numbers are
included in the set of allowed coefficients. Therefore, these “bad” values are no longer
expanded and each integer has a finite expansion.

(ii) In general, let C be a hyperelliptic curve over Fq of genus g. An expansion using the set
of remainders R with maximal coefficient rmax can be periodic of period length 1 up to
change of sign only if

rmax � |Pic0
eC
(Fq)|,

where C̃ is either the curve or its quadratic twist. If in this case the period starts at
some η ∈ Z[τ ], then η is small and one can adjoin +− r

(
qg − |Pic0

eC
(Fq)|

)
to R for all

integers 1 � r � rmax/|Pic0
eC
(Fq)| to guarantee finite expansions, cf. [LAN 2005c] for

full details and for considerations of larger periods.

In the following, we assume that R has been chosen to contain a complete set of remainders and
some further coefficients if necessary. Later in the text we shall impose conditions to achieve a
sparse representation, and therefore we will use different choices of the set of coefficients R de-
pending on the structure of χC(T ).

Now we state the algorithm for expanding an element of Z[τ ] to the base of τ . Note that at the
moment we would only need to represent integers, but in the further sections we will reduce the
length of the representation. Thereby we stumble over this more general problem.

Algorithm 15.28 Expansion in τ -adic form

INPUT: The element η = n0 + n1τ + · · · + n2g−1τ
2g−1, χC(T ) given by the coefficients ai

and a suitable set R.

OUTPUT: The τ -adic expansion (rl−1 . . . r0)τ of η.

1. S ← ()

2. while
P2g−1

j=0 |nj | > 0 do

3. if qg | n0 then r ← 0

4. else r ← n0 mod qg with r ∈ R [see Remark 15.29]

5. S ← r ||S
6. s ← (n0 − r)/qg

7. for i = 0 to g − 1 do

8. ni ← ni+1 − ai+1q
g−i−1s

9. for i = 0 to g − 2 do

10. ng+i ← ng+i+1 − ag−i−1s

11. n2g−1 ← −s

12. return S

Remark 15.29 Further requirements may be taken into account in Line 4, for instance, in even
characteristic set r ← n0 if |n0| = qg/2.
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As in the binary elliptic case, the expansions are longer than desired but as there, we can use a
reduction technique.

15.1.2.c Reducing the length

The strategy explained so far would lead to expansions of length 2 logq n ≈ 2gk — thus expansions
that are 2g times as long as a qg-adic expansion, which mitigates the advantage of using the Frobe-
nius endomorphism. Thus, actually one does not expand n itself but looks for an element η ∈ Z[τ ]
having a short expansion and satisfying [n]

__
D = [η]

__
D for all

__
D ∈ Pic0

C(Fqk). Once we decide to
use such a curve we need to fix the field Fqk , i.e., the degree of extension. This gives us the addi-
tional equation φk

q = Id. Therefore, if n ≡ η mod (τk − 1) then [n]
__
D = [η]

__
D for

__
D ∈ Pic0

C(Fqk)
and we can choose an equivalent η with a short expansion.

Remark 15.30 Note that for a fixed extension field, τ satisfies two equations. Since we consider
only irreducible polynomials χC and since the constant term of χC is qg �= +− 1, the polynomials
χC(T ) and T k − 1 are coprime. Thus their gcd overQ[T ] is one. But we are working in Z[T ]. The
ideal generated by these polynomials is a principal ideal generated by an integer (since the gcd over
Q[T ] is one). In fact this number is equal to the cardinality of the divisor class group over Fqk . To
rephrase this, modulo |Pic0

C(Fqk)| these polynomials have a common linear factor. Now recall that
we work in the subgroup of prime order � | N of |Pic0

C(Fqk)|. Hence, if we consider only this cyclic
group, the polynomials have a common factor T − s in F�[T ]. This means that the operation of the
Frobenius endomorphism on a divisor class corresponds to the multiplication of the ideal class by
the integer s modulo �, i.e., φq(

__
D) = [s]

__
D for

__
D in the subgroup of order �.

Example 15.31 Here, we present one example; however, further good instances are easy to get
[LAN 2001c]. Consider the binary curve of genus 2 given by

C : y2 + (x2 + x + 1)y = x5 + x + 1

with characteristic polynomial of the Frobenius endomorphism χC(T ) = T 4−2T 3+3T 2−4T +4.
For the extension of degree 89 the class number is almost prime, namely

|Pic0
C(F289)| = 2 × 191561942608242456073498418252108663615312031512914969.

Let � be the large prime number. The operation of φq on the group of order � corresponds to the
multiplication by

s ≡ 82467179009623045188999864044344866954789403836113928 (mod �).

Now let us suppose that �2 � |Pic0
C(Fqk)|, which is not a restriction in practice. Then we can even

reduce n modulo δ = (τk − 1)/(τ − 1) = τk−1 + τk−2 + · · · + τ + 1 to compute [n]
__
D, as the

Frobenius endomorphism cannot correspond to the identity.
In summary, the following theorem holds.

Theorem 15.32 Let τ be a complex root of the characteristic polynomial χC(T ) of the Frobenius
endomorphism φq of the hyperelliptic curve C of genus g defined over Fq. Consider the curve over
Fqk and let n ∈ Z. Using a set of remainders R for the expansion such that no periodic expansions
occur, there is an element η ∈ Z[τ ] such that

• η ≡ n (mod δ)
• η has a τ -adic expansion with coefficients in R of length at most k + 4g.



372 Ch. 15 Arithmetic of Special Curves

For an element λ ∈ Q, let us recall that z = 	λ� is the nearest integer to λ with the least abso-
lute value; see p. 360 for a computational realization. We will also use 	 · � for elements of Q(τ)
represented as Q[T ]/

(
χC(T )

)
, where it is understood coefficient-wise.

The idea for reduction uses the fact that one can invert elements in the field Q(τ). Thus, put

λ = n/δ ∈ Q(τ),

so λ =
2g−1∑
i=0

λiτ
i, where λi ∈ Q. For 0 � i � 2g − 1, put zi = 	λi� and put

z :=
2g−1∑
i=0

ziτ
i and η := n − zδ.

Thus it is easy to see that η ≡ n (mod δ) and we use this equivalent multiplier.

Remark 15.33 The usage of 	 · � might not be the best choice, but nevertheless it provides an ef-
ficient way to compute a length-reduced representation that works for every genus g, ground field
Fq, and degree of extension k. For example, for the two binary elliptic curves, Algorithm 15.9
investigates in more detail an optimal way of reduction. Considering the lattice spanned by {1, τ},
the algorithm uses that for each element of Q(τ) there is a unique lattice point within distance less
than 4/7. For larger genera the computation of the nearest point is computationally hard to realize
and we do not lose much choosing the “rounded” elements the way it is presented here.

The remainder of this section is devoted to computational aspects. One first needs to compute δ and
its inverse in Q(τ), which is done only once for C and k. The computations are performed using
recurrence sequences. This corresponds to the use of Lucas sequences in the case of elliptic curves
(15.13). To derive the inverse in Q(τ) one uses the extended Euclidean algorithm. If C and k are
system parameters, these elements can be computed externally and stored on the device, as they are
independent of the chosen divisor classes. In Section 15.1.3 we state a way to circumvent this; see
also Remark 15.36 (iii).

First of all one needs the representation of δ in Z[τ ].

Algorithm 15.34 Representation of δ = (τk − 1)/(τ − 1) in Z[τ ]

INPUT: An extension degree k � 1 and χC(T ).

OUTPUT: The τ -adic expansion (d2g−1d2g−2 . . . d0)τ of δ.

1. c0 ← 1 and d0 ← 1

2. for i = 1 to 2g − 1 do

3. ci ← 0 and di ← 0

4. for j = 1 to k − 1 do

5. c′ ← c2g−1

6. for i = 2g − 1 down to g do

7. ci ← ci−1 − a2g−ic
′ and di ← di + ci

8. for i = g − 1 down to 1 do

9. ci ← ci−1 − aiq
g−ic′ and di ← di + ci

10. c0 ← −qgc′
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11. d0 ← d0 + c0

12. return (d2g−1d2g−2 . . . d0)τ

To find the inverse δ1 of δ in Q(τ), we consider δ(T ) =
∑

diT
i and compute the inverse of δ(T )

modulo χC(T ) in Q[T ] by the extended Euclidean algorithm; as for

gcd
(
δ(T ), χC(T )

)
= δ(T )δ1(T ) + χC(T )V (T )

one has δ−1(T ) ≡ δ1(T ) (mod χC(T )), which gives δ−1 = δ1, by abuse of notation. For fixed
genus, and hence degree of the involved polynomials, this can be made explicit.

We now present the algorithm for computing scalar multiples as a whole.

Algorithm 15.35 Computation of n-folds using τ -adic expansions

INPUT: An integer n,
__
D = [u, v], u, v ∈ Fqk [x], χC(T ), the set R, δ and δ1 as above.

OUTPUT: The divisor class [n]
__
D represented by H = [s, t] with s, t ∈ Fqk [x].

1. for i ∈ R, i > 0 do [precomputation]

2.
__
D(i) ← [i]

__
D and

__
D(−i) ← −

__
D(i)

3. z(T ) ← �nδ1(T )�
4.

P2g−1
i=0 niT

i ← n − δ(T )z(T ) mod χC(T )

5. η ←P2g−1
i=0 niτ

i

6. compute the τ -adic expansion (rl−1 . . . r0)τ of η [use Algorithm 15.28]

7.
__
H ←

__
D(rl−1)

8. for i = l − 2 down to 0 do

9.
__
H ← φq(

__
H)

10. if ri �= 0 then

11.
__
H ←

__
H ⊕

__
D(ri)

12. return
__
H

Remarks 15.36

(i) The first two lines are precomputations and need to be performed only once per curve
and base

__
D, so in some applications one saves the precomputed points on the device

and skips this step. In this case or if space is more restricted it is probably better to
precompute only the

__
D(i)’s and compute −

__
D(i) on the fly when necessary.

(ii) Lines 3 to 6 compute the τ -adic expansion of η ≡ n (mod δ). The computations are in
fact performed in Q[T ] modulo χC(T ).

(iii) Arithmetic in Q has high system requirements. Therefore, for binary elliptic curves,
Solinas [SOL 2000] proposes a partial modular reduction, cf. Remark 15.14 (ii). Instead
of computing η ∈ Z[τ ] of minimal norm he obtains an element η′ ≡ n (mod δ) which
might have a slightly longer expansion, but the computations involve only truncated di-
visions by powers of 2, which can easily be realized in soft- and hardware. For the
particular curves he considers one can explicitly state the group order as an expression
of the degree of extension k and therefore find appropriate denominators giving a good
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approximation. In our general case this is not possible, but one can work with an ar-
bitrary good approximation δ′1(T ) of δ1(T ) in which all denominators are powers of 2.
The idea of Solinas of using the number theoretic norm can be generalized to computing

(τ1 − 1)
(τk

1 − 1)
=

2g∏
i=1

(τi − 1)
(τk

i − 1)
×

2g∏
i=2

(τk
i − 1)

(τi − 1)
= N−1 ×

2g∏
i=2

(τk
i − 1)

(τi − 1)
.

Thus, one can also precompute a Barrett inversion of N and get the inversion by multi-
plications and modular reductions.
Note that in any case the resulting η′ will still be in the same class as n since

η′ = n − δ 	nδ′1� ≡ n (mod δ).

15.1.2.d Complexity and comparison

The estimates for the complexity are given as number of group operations. Using precomputations
as suggested, one only needs to use group additions. If the elements are represented with respect to
a normal basis, then φq(

__
D) can be computed for free. In any case, the expansions are all of approx-

imate length k such that k applications of φq are always needed. Thus we ignore these operations
in the following. Besides the length, the second important characteristic for the complexity is the
density of the expansion.

We first consider the minimal set R = {0, +− 1, . . . , +−�qg/2�} of coefficients. A zero coefficient
occurs with probability 1/qg, therefore the asymptotic density is (qg − 1)/qg < 1. Certainly all
usual (signed) windowing methods carry through to τ -adic windows; thus if one precomputes all
multiples

[r0]
__
D ⊕ [r1]φq(

__
D) ⊕ · · · ⊕ [rw−1]φw−1

q (
__
D), ri ∈ R, r0 �= 0

the density reduces. Thus one can trade off storage for larger speedup. Depending on the curve one
can also use other sets of coefficients, cf. Chapter 9 and [GÜLA+ 2000, LAN 2001a]. This includes
precomputing all multiples [r]

__
D for the set R′ = {r ∈ [2,

⌊
q2g/2

⌋
] : qg � r} and leads to a density

of (qg −1)/(2qg −1). We also like to mention that the comb methods can be applied as well, which
is interesting if the Frobenius operation is not for free and the precomputations are done for a fixed
base point as this method reduces not only the number of additions but also the number of Frobenius
operations. As a drawback, more additions than with the windowing method are used for the same
number of precomputations.

To estimate the advantage of using Koblitz curves these numbers need to be compared to the
usual arithmetic. Using binary double and add, the number of operations is 3

2 lg n ≈ 3
2kg lg q and

using an NAF of n it still is ≈ 4
3kg lg q.

To sum up we have obtained the following result:

Fact 15.37 If we disregard storage and time for precomputations and assume a τ -adic expansion of
length ≈ k + 2g + 1, the speedup factor is approximately

3gqg lg q

2(qg − 1)
> 1.5g

compared to the binary expansion and

4gqg lg q

3(qg − 1)
> 1.3g

compared to the NAF expansion, for the minimal set of coefficients and for k large compared to g
and q.
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Precomputations and signed digit expansions cannot be taken into account in a general formula, as
it is a bit tricky to allow the same number of precomputations for comparison. We state q = 2
and q = 5 as examples, allowing windows of length at most 2, and using both, the minimal set
of remainders and R′. The tables list the average number of group operations to compute a scalar
multiple using a signed digit windowing method and using the Frobenius endomorphism. For q = 2
and w = 1 the corresponding binary system is allowed to use a window of width g + 1; for w = 2
a width of 2g + 1 is more than fair.

Entries may be rounded to the nearest integer. We also include the case of elliptic curves. For
them w = 2 does not require any storage and hence, we consider only that case.

g binary τ -adic speedup binary τ -adic speedup

window w = 1 factor window w = 2 factor

1 4k/3 k/3 4
2 5k/2 3k/4 3 7k/3 3k/7 5.5
3 18k/5 7k/8 4 27k/8 7k/15 7

For q = 5, we cannot directly express the width wbin for the binary method as a function in g, thus
we include this parameter in the table. In all cases, wbin was chosen as the ceiling of lg(qg − 1/2)+2
respectively lg(qgqg − 1/2) + 2, hence favoring the binary method.

g wbin binary τ -adic speedup wbin binary τ -adic speedup

window w = 1 factor window w = 2 factor

1 3 4 lg(5)k/5 4k/5 3.5 6 8 lg(5)k/7 4k/9 6
2 6 16 lg(5)k/7 24k/25 5.5 11 13 lg(5)k/6 24k/49 10
3 8 10 lg(5)k/3 124k/125 8 15 51 lg(5)k/16 124k/249 15

15.1.3 Alternative setup

Like before, we concentrate on the fast computation of scalar multiples. If this is used in a DL
system (cf. Chapter 23), the scalars are often randomly chosen. Hence, one can as well start with an
expansion of fixed length and use this as the secret scalar — not caring which integer it corresponds
to if at all. This idea, suggested by H. Lenstra, as mentioned by Koblitz [KOB 1992], implies that
the device need not be able to perform polynomial arithmetic and to deal with arithmetic, both in
finite fields and in Q.

If, as usual, we restrict ourselves to divisor classes
__
D of prime order �, we work in a cyclic

group and φq operates as a group automorphism. Then for the action of the Frobenius, we have
φq(

__
D) = [s]

__
D, where s is an integer modulo �; see Remark 15.30. Hence, any sum

l−1∑
i=0

riτ
i corresponds to an integer mod �, namely to

l−1∑
i=0

ris
i mod �,

and one can replace the whole procedure of choosing random integers and computing a reduced
expansion described above by choosing a random l-tuple of coefficients ri ∈ R. The integer s is
obtained via

gcd
(
χC(T ), T d−1 + · · · + T + 1

)
=

(
T − s

)
in F�[T ].

This computation is done only once and s is included in the curve parameters. Here, we use the
minimal set

R =
{

0, +− 1, . . . , +−
qg − 1

2

}
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in odd characteristic and

R =
{

0, +− 1, . . . , +−
(qg

2
− 1

)
, qg

2

}
in even characteristic to avoid ambiguity.

Remark 15.38 Likewise we can use the enlarged sets R′ of size qg(qg − 1) and impose conditions
on the density to obtain sequences (rl−1 . . . r0)τ resembling outputs of the reduction and expansion
procedure. Obviously, this leads to faster computations but it requires more precomputed points.
We skip the details as most considerations are very similar.

By a random expansion of length l we mean a tuple (rl−1, . . . , r0) with ri chosen randomly in
R along with the interpretation as

∑l−1
i=0 riτ

i. In [LAN 2005c, LASH 2005b] it is shown that a
reasonable choice is l = k − 1. The main reason against longer expansions is that collisions are
then more likely, i.e., there are several expansions corresponding to the same integer modulo � and
the probability of multiple occurrence is not equally distributed.

As a possible drawback, the most significant τ -adic digits are always zero. One can design a
τ -adic baby-step giant-step algorithm to exploit this and it slightly reduces the security, but usually
the storage requirements are prohibitively large. To play it safe one should choose a slightly bigger
value for the extension degree k.

This is also suggested as the Frobenius endomorphism speeds up the ordinary baby-step giant-
step algorithm by allowing us to consider equivalence classes under φq , cf. Section 19.5.5.

For signature schemes this setup might sound suspicious to attacks as described in [BOVE 1996,
HOSM 2001, NGSH 2003]. Lange [LAN 2001a, LAN 2005c] generalizes the attack to hyperelliptic
curves and shows that the τ -adic variant is much harder to break and that up to current knowledge
no extra weakness is implied. An extremely careful user might feel better using this approach only
for ElGamal and Diffie-Hellman.

Remarks 15.39

(i) One can restrict the key size even more by choosing a smaller set of coefficients for the
τ -adic expansion. This reduces the storage requirements and the probability of colli-
sions, but for extreme choices, e.g., if R′ = {0, +− 1} chosen also for g, q > 2 to avoid
precomputations, one has to be aware of lattice based attacks on the subset sum prob-
lem [COJO+ 1992, NGST 1999]. If one tries to get around these by using longer keys of
length k+ ε, collisions get more likely since one has to deal with 1+s+ · · ·+sk−1 ≡ 0
(mod �). Then the zero element occurs at least

2
(

ε + r′max − 1
r′max

)
+ 1 times

where r′max is the maximal coefficient of R′.
Another idea is to consider only sparse representations to reduce the complexity. Al-
though this reduces the size of the key-space as well, the implications are less dramatic.

15.2 Scalar multiplication using endomorphisms

In the previous section we detailed how to use the Frobenius endomorphism to speed up the compu-
tation of scalar multiples. Gallant, Lambert, and Vanstone [GALA+ 2001] observe that for curves
that have an efficiently computable endomorphism of small norm, a speedup can be obtained. Such
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specially designed curves are often called GLV curves. Every curve over a finite field comes with
a nontrivial endomorphism ring, cf. Remark 14.14, but for a random curve over a prime field one
cannot expect to find such a special endomorphism. We refer to [SICI+ 2002] for arguments as to
why the class of elliptic curves with an endomorphism of small norm is small.

15.2.1 GLV method

Here we describe how to compute scalar multiples using efficient endomorphisms. To ease the
exposition we start with elliptic curves only. Let E/Fq be an elliptic curve and let |E(Fq)| = c�,
where the cofactor c is small, in particular � � c. Hence, there is only one cyclic group G of order
� contained in E(Fq). Let ψ be a nontrivial endomorphism defined over Fq with characteristic
polynomial (cf. Definition 4.84)

χψ(T ) = T 2 + tψT + nψ,

where the integers tψ and nψ are respectively the trace and the norm of ψ. In the sequel, we
assume that both the trace and the norm of ψ are small. In G, the endomorphism corresponds to
the multiplication with some integer ψ(P ) = [sψ]P for sψ ∈ [0, � − 1] and sψ can be obtained
as one of the roots of χψ(T ) modulo �. This is a complete analogy with the case of Koblitz curves
considered above where ψ is the Frobenius endomorphism and sψ = s, cf. Section 15.1.

To every pair (n0, n1) there corresponds the endomorphism n0 + n1ψ operating as

[n0]P ⊕ [n1]ψ(P ), for P ∈ G.

So we can associate the integer n = n0 + n1sψ mod � to (n0, n1). Conversely, given n, the GLV
method aims at finding n0 and n1 with the extra condition that n0 and n1 should be sufficiently
small, i.e., of half the binary length of n. Then one can use multi-exponentiation, cf. Section 9.1.5,
to compute [n]P faster than with ordinary scalar multiplication.

We first give some examples of curves with efficiently computable ψ and then state the algorithms
to compute the ψ-adic expansion.

15.2.1.a Examples

The following examples can be found in [COH 2000, GALA+ 2001].

1. Let p ≡ 1 (mod 4) be a prime. Let E1/Fp be given by

E1 : y2 = x3 + a4x.

Let α be an element of order 4 in Fp and let P = (x1, y1) ∈ E1. Then ψ1(P ) =
(−x1, αy1) is also on E1 and the map ψ1 is an endomorphism of E1 defined over Fp

with endomorphism ring Z[ψ1] = Z[
√−1]. One can check that ψ1 satisfies ψ2

1 + 1 = 0.

2. Let p ≡ 1 (mod 3) be a prime. Define an elliptic curve E2/Fp by

E2 : y2 = x3 + a6.

If β is a third root of unity in Fp, then ψ2 defined in the affine plane by ψ2(x1, y1) =
(βx1, y1) is an endomorphism of E2 defined over Fp with Z[ψ2] = Z

[
1+

√−3
2

]
. As β is

a third root of unity, ψ2 satisfies the equation ψ2
2 + ψ2 + 1 = 0.

3. Let p > 3 be a prime such that −7 is a quadratic residue modulo p. Define an elliptic
curve E3/Fp by

E3 : y2 = x3 − 3

4
x2 − 2x − 1.
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If γ = 1+
√
−7

2 and a = (γ − 3)/4, then the map ψ3 defined in the affine plane by

ψ3(x1, y1) =
(

x2
1 − γ

γ2(x1 − a)
, y1(x2

1 − 2ax1 + γ)
γ3(x1 − a)2

)

is an endomorphism of E3 defined over Fp with Z[ψ3] = Z
[

1+
√−7
2

]
. Moreover ψ3 sat-

isfies the equation ψ2
3 − ψ3 + 2 = 0.

4. Let p > 3 be a prime such that −2 is a quadratic residue modulo p. Let E4/Fp be
defined by

E4 : y2 = 4x3 − 30x − 28.

The map ψ4 defined in the affine plane by

ψ4(x1, y1) =
(
−2x2

1 + 4x1 + 9
4(x1 + 2)

, − 2x2
1 + 8x1 − 1

4
√
−2(x1 + 2)2

)

is an endomorphism of E4 defined over Fp with Z[ψ4] = Z[
√−2]. Moreover, ψ4 satis-

fies the equation ψ2
4 + 2 = 0.

5. Iijima et al. [IIMA+ 2002] suggest using a quadratic twist Ẽv/Fqk of a Koblitz curve
E/Fq, with char(Fq) �= 2, 3, to get an endomorphism derived from the Frobenius endo-
morphism without the drawback that the group order needs to contain a factor |E(Fq)|
from the ground field. Therefore, k needs to be even and v is a nonsquare in Fqk .
More precisely, let E be given by

E : y2 = x3 + a4x + a6,

and let
Ẽv : y2 = x3 + a4v

2x + a6v
3

be the quadratic twist of E by v. Let P = (x1, y1) ∈ Ẽv(Fqk). Then one can check that
φ̃q defined by

φ̃q(x1, y1) =
(
v1−qxq

1, v
3(1−q)/2yq

1

)
is an endomorphism of Ẽv over Fqk , satisfying also the characteristic polynomial of φq .

15.2.1.b Computing a basis of the endomorphism ring

In each case the endomorphism ring can be seen as a two-dimensional lattice spanned by 1 and sψ.
Finding integers n0 and n1 such that n = n0 + n1sψ with ni ≈ �1/2 corresponds to finding the
closest vector to n. To avoid this heavy machinery, [GALA+ 2001] suggest starting with applying
several steps of the extended Euclidean algorithm 10.42 to first find short vectors v0, v1 generating
the lattice and then to compute the splitting of n.

Note that the initial part of finding v0, v1 does not depend on the integer; hence, the vectors can
be precomputed and kept with the curve parameters. Let us detail how to compute v0 and v1. By
repeated division with remainder, it is possible to obtain a sequence of relations

si� + tisψ = ri, for i = 0, 1, 2, . . . ,

where

• |si| < |si+1|, for i � 1
• |ti| < |ti+1| and ri > ri+1 � 0, for i � 0.
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This can be explicitly done executing a modified version of Algorithm 10.42 with arguments sψ and
�. Namely, start with i = 0, put the statements ti ← UA and ri ← A at the beginning of the while
loop in Algorithm 10.42, and increment the index after each loop.

This procedure would terminate with rl−1 = 1 for some l as � is prime and sψ < �, but we do
not need to compute all these steps. We use the additional property that at each step

ri|ti+1| + ri+1|ti| = �.

As one aims to find ti of size �1/2 the GLV algorithm defines the index m as the largest integer for
which rm > �1/2. The coefficients rm+1 and tm+1 satisfy rm+1 − sψtm+1 ≡ 0 (mod �) and

(r2
m+1 + t2m+1)

1/2 � (2�)1/2.

So v0 = (rm+1,−tm+1) is a short vector. The GLV algorithm then sets v1 to be the shorter of
(rm,−tm) and (rm+2,−tm+2).

Remark 15.40 In [SICI+ 2002], it is shown that

min
{
max{rm, |tm|}, max{rm+2, |tm+2|}

}
� K�1/2

with an explicitly computable constant K . The size of K depends heavily on the norm of ψ and,
hence, only endomorphisms with small norm lead to representations with small integers. Further-
more, this paper gives an optimal strategy to find a short vector such that the entries have a small
size. This is done by using a different norm.

Given the short vectors v0 and v1 from the previous step we now show how to find an expansion of
an integer n. Solve the linear equation n = n′′

0v0 + n′′
1v1 in the two-dimensional vector space over

the rationals Q and then choose n′
i = �n′′

i � = �n′′
i + 1/2�, a closest integer to n′′

i . As for Koblitz
curves this approximation is sufficiently good. Then we deduce

n ≡ n − n′
0v0 − n′

1v1sψ (mod �)

and we assign the result to n0 + n1sψ, with small ni as the entries of vi are small. The algorithm is
as follows.

Algorithm 15.41 GLV representation

INPUT: The integers n ∈ [0,  − 1], sψ and the vectors v0 = (a0, b0), v1 = (a1, b1) as above.

OUTPUT: The integers (n0, n1) such that n ≡ n0 + n1sψ (mod ).

1. n′′
0 ← b1n/ and n′′

1 ← −b0n/

2. n′
0 ← �n′′

0� and n′
1 ← �n′′

1 �
3. n0 ← n − n′

0a0 − n′
1a1 and n1 ← −n′

0b0 − n′
1b1

4. return (n0, n1)

Example 15.42 Let p = 2029 and let us consider a curve of the form E2

E : y2 = x3 + 10

defined over Fp. The group E(Fp) is generated by P = (1620, 334) and has prime cardinality � =
1951. In Fp, β = 975 is a primitive third root of unity and ψ2(x, y) = (βx, y) is an endomorphism
of E. Also, the action of ψ2 corresponds to the scalar multiplication by sψ = 1874.
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To compute [n]P with the GLV method, one must first compute short vectors v0 = (a0, b0) and
v1 = (a1, b1) such that ai + sψbi ≡ 0 (mod �), for i = 0, 1. One applies the modified version of
Algorithm 10.42 explained above, which gives the relations

1 × 1951 + 0 × 1874 = 1951
0 × 1951 + 1 × 1874 = 1874
1 × 1951 − 1 × 1874 = 77

−24 × 1951 + 25 × 1874 = 26
49 × 1951− 51 × 1874 = 25.

It follows that v0 = (26,−25) and v1 = (25, 51). Now let us compute [1271]P using Algo-
rithm 15.41. One has 1271 ≡ 13 + 9sψ (mod 1951). The joint sparse form of 13 and 9 returned
by Algorithm 9.27 is (

13
9

)
=

(
1101
1001

)
JSF

.

Now precomputing ψ2(P ) = Q = (938, 334) and R = P ⊕ Q = (1500, 1695), one has

[1271]P = [13]P ⊕ [9]Q
= [4]([2]R ⊕ P ) ⊕ R

= (370, 359).

with only 3 additions and 3 doublings. A direct computation using 1271 = (10100001̄001̄)NAF

requires 10 doublings and 4 additions.

15.2.2 Generalizations

The approach obviously generalizes to hyperelliptic curves as soon as one has an efficiently com-
putable endomorphism of small norm. In [PAJE+ 2002b] this idea is outlined and studied in more
detail, also giving bounds for the constants in [SICI+ 2002, PAJE+ 2002a].

So far, only very few examples were stated in the literature. The following curves are generaliza-
tions of the above examples.

1. Let p ≡ 1 (mod 4) and consider the hyperelliptic curve C1/Fp of genus g given by

C1 : y2 = x2g+1 + f2g−1x
2g−1 + · · · + f3x

3 + f1x.

For P = (x1, y1) ∈ C1 also ψ1(P ) = (−x1, αy1) is on C1 where as before α4 = 1.
This endomorphism operates on the divisor classes in a similar manner by

ψ1

([
xr +

r−1∑
i=0

uix
i,

r−1∑
i=0

vix
i

])
=

[
xr +

r−1∑
i=0

(−1)iuix
i, α

r−1∑
i=0

(−1)ivix
i

]

and has the characteristic polynomial T 2 + 1.

2. Let p ≡ 1 (mod 8). Let the genus 2 curve C2/Fp be given by

C2 : y2 = x5 + ax,

for an arbitrary a ∈ F∗p. For ξ an eighth root of unity the map ψ5(x1, y1) = (ξ2x1, ξy1)
is an endomorphism of the curve with characteristic polynomial T 4 + 1.
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Likewise, one can construct a genus 3 curve with complex multiplication by a twelfth
root of unity ζ

C3 : y2 = x7 + ax,

satisfying ψ6(x1, y1) = (ζ2x1, ζy1) and χC3(T ) = T 6 + 1.

3. Let m = 2g + 1 be an odd prime and let p ≡ 1 (mod m). Then the curve C4/Fp given
by

C4 : y2 = xm + a

has complex multiplication by an m-th root of unity and characteristic polynomial

T 2g+1 − 1
T − 1

= T 2g + T 2g−1 + · · · + T + 1.

All these examples have complex multiplication by a root of unity. There is however no technical
reason against constructing curves with an endomorphism with small norm, e.g., using the CM
method 18.

Takashima [TAK 2004] proposes to combine the GLV method of scalar splitting with real mul-
tiplication by some ψRM on genus 2 curves. He states how to apply ψRM on divisor classes in
Mumford representation and presents two types of curves on which the endomorphism can be ap-
plied particularly efficiently. These curves are far more general than the examples above and the
splitting is efficient.

On the BH curves

Cβ,γ : y2 = βx5−(β+γ−3)x4+(β2−3β+5−2γ)x3−γx2+(β−3)x−1, with β ∈ F∗q , γ ∈ Fq

the application of ψRM can be computed with only slightly more field operations than an addition of
divisor classes, and the characteristic polynomial of ψRM is

χ(ψRM)(T ) = T 2 + T − 1,

such that the splitting leads to small coefficients.
The idea of using real multiplication can be extended to other curves and Takashima provides one

more example.

15.2.3 Combination of GLV and Koblitz curve strategies

In [CILA+ 2003], it is shown how to combine the methods presented so far. Let ψ be an endomor-
phism of a GLV curve of cardinality � with endomorphism ψ and let

χψ(T ) = T 2 + tψT + nψ.

We denote by ν a complex root of χψ(T ). In Section 15.2.1, we have given an algorithm to compute
an expansion of the form n = n0 + n1ν ∈ Z[ν] where ni ≈ �1/2 while for Koblitz curves we have
shown how to obtain a long expansion with small coefficients, cf. Sections 15.1.1.b and 15.1.2.b.

The ideas used to achieve the long expansion can be applied successfully to every other endo-
morphism as long as the norm nψ is larger than 1. Namely, set

R =
{

0, +− 1, . . . , +−
⌊nψ

2

⌋}
and precompute [ri]P for every ri ∈ R. If (tψ , nψ) �= (+− 2, 2), (+− 3, 3), (+− 4, 5) or (+− 5, 7), the
relation nψ = −tψν − ν2 used inductively on n0 +n1ν gives rise to a ν-adic expansion of the form

n =
l−1∑
i=0

riν
i
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with ri ∈ R and l ≈ lognψ
�.

When the pair (tψ , nψ) belongs to the set of exceptions listed above, the coefficients ri have to
be taken in the larger set

R ∪
{

+−
⌈

nψ + 1

2

⌉}
·

This longer expansion with small coefficients is useful only if applying ψ to P is less expensive than
two additions. In [CILA+ 2003] some examples are given where this can be achieved in projective
coordinates, namely for the examples E3 and E4.

For these two cases one can obtain better performance for either simple scalar multiplications, if
one can precompute Q = ψ�l/2�(P ), or double scalar multiplications. In the former case, once a
ν-adic expansion of length l is found, we can split the expansion in two parts,

�l/2�−1∑
i=0

riψ
i(P ) and

�l/2�−1∑
i=0

r�l/2�+iψ
i(Q).

such that in both cases one deals with a double scalar multiplication and can try to reduce the joint
weight of them.

The characteristic polynomial of ψ4 for E4 is given by T 2+2 and thus a slightly modified version
of the original JSF for integers can be used leading to a joint density of 1/2.

We observe that the characteristic polynomial of ψ3 is the same as that of the binary elliptic
Koblitz curves considered in Section 15.1.1 and thus exactly the same Algorithm 15.21 can be used
to derive a joint ψ3-adic expansion of joint density 1/2.

Hence, in the two cases that one either does a double expansion as for signature verification (cf.
Algorithm 1.20) or one has a long-term precomputation of Q, the longer expansions lead to faster
computation of scalar multiples.

15.2.4 Curves with endomorphisms for identity-based parameters

Lenstra [LEN 1999] and Brown, Myers, and Solinas [BRMY+ 2001] suggest curves with endomor-
phisms not only because they offer the fast scalar multiplication detailed in the previous sections
but also because their numbers of points are easy to determine due to their simple endomorphism
rings.

All examples given in Section 15.2.1.a have small discriminant and Lenstra lists some more
curves with discriminant up to 163 together with divisibility conditions on p. Using the CM-theory
as shown in Chapter 18 in an explicit way, one can easily state the number of points depending on
the representation of p = a2 + db2 with integers a, b, where d divides the discriminant. He also
shows that there are several primes p such that the curves have an almost prime group order over
Fp.

The advantage of this idea lies in the cryptographic applications (cf. Chapters 1 and 23). The
tables can be used to associate a curve with known group order and base point of almost prime
order in a deterministic manner to any bit-string, e.g., the name and properties of an entity. This is
done by using the bit-string to define a and x, where first a is modified in a prescribed way till there
exists a b such that a2 + db2 is a prime of the desired size. Then the base point is constructed using
x. The resulting curve and base point can be used as parameters for a DL system assigned to the
entity given by a, x. The advantage is that the public parameters can be computed by everybody,
reducing the requirements for certificates. Furthermore, the scalar multiplication on these curves is
fast.

In [BRMY+ 2001], Brown et al. restrict to fewer curves that correspond to the first two
in [LEN 1999], which they call compact curves, and give the group order more explicitly. This
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implies that the parameters can be constructed much faster even by restricted devices. These curves
are special cases of the curves E1 and E2 given in Section 15.2.1.a and thus the GLV method leads
to a fast scalar multiplication. Moreover, they provide the short vectors v0, v1, as defined in Sec-
tion 15.2.1.b, which allow us to obtain the decomposition in the GLV method efficiently and then
apply the JSF. The following two examples are provided in [BRMY+ 2001].

1. Let f ≡ 3 (mod 4) and g ≡ 2 (mod 8) be integers such that p = f2 + g2 and r =
p + 1/2+g are both prime. The curve Cα

f,g , having complex multiplication with a fourth
root of unity α as ψ1(x1, y1) = (−x1, αy1), is given by

Cα
f,g : y2 = x3 − 2x.

Obviously the point P = (−1, 1) ∈ Cα
f,g for all choices of f, g. The curve Cα

f,g has
order 2r.

2. Let f ≡ 2 (mod 3) and g ≡ 3 (mod 6) be integers such that p = f2 − fg + g2 and
r = p + 1 − (2f − g) are both prime. For p ≡ 2, 5 (mod 8) define

Cβ
f,g : y2 = x3 + 2.

Obviously the point P = (−1, 1) ∈ Cβ
f,g for all choices of f, g.

If p ≡ 7 (mod 8) let
Cβ

f,g : y2 = x3 − 2,

with point P = (3, 5).
For these cases, Cβ

f,g has order r and the curves have an automorphism ψ2 given by
ψ2(x1, y1) = (βx1, y1) with β3 = 1.

These conditions can be verified very easily such that they can be used to implement Lenstra’s idea
even for restricted environments. We like to point out that in spite of these positive applications the
curves are very special and thus susceptible to specialized attacks.

The same authors also proposed such a system based on genus two GLV curves of type C4.

15.3 Trace zero varieties

Trace zero varieties were suggested for cryptographic applications by Frey [FRE 1998, FRE 2001].
The construction is based on the Weil restriction of a curve over Fpd to Fp, cf. Section 7.4.2. To
obtain fast arithmetic in the group, one makes use of efficient arithmetic in the finite field Fpd and of
the Frobenius endomorphism. The strategy can be seen as a Koblitz curve method applied to small
extension degrees. This way, scalar multiplications in the group can be performed faster than on a
Jacobian of the same size.

In the genus 1 case, these varieties were studied by Naumann [NAU 1999] and Blady [BLA 2002]
for d = 3 and by Weimerskirch [WEI 2001] for d = 5. Diem [DIE 2001] studies the background of
the general case and [LAN 2001a, LAN 2004c] studies in detail the case of genus 2 curves over Fp3 .
The implementation details are considered in [AVLA 2005]. (See also [CES 2005, AVCE 2005] for
the case of trace zero varieties over fields of even characteristic.) Following [DISC 2003] we argue
in Section 22.3.4.b that these are the only cases of relevance for cryptographic applications as the
others achieve lower security for the same group size and thus are not competitive. Clearly, the
theoretical results can easily be generalized to larger genera and extension fields Fpd . The complete
mathematical background is detailed in Section 7.4.2. Therefore, we concentrate on the algorithmic
details here.
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15.3.1 Background on trace zero varieties

The starting point for our construction is a hyperelliptic curve of genus g including elliptic curves
defined over a prime field Fp, where p is chosen such that pd−1 is of the desired group size. In
particular, we assume p > 5. We consider the divisor class group over the finite field extension Fpd

and restrict the computations to the subgroup G defined by the property that its elements
__
D are of

trace zero, i.e.,

G :=
{ __
D ∈ Pic0

C(Fpd)
∣∣ __
D ⊕ φp(

__
D) ⊕ · · · ⊕ φd−1

p (
__
D) = 0

}
.

The group G is a subgroup of Pic0
C(Fpd) as it is the kernel of the trace map. Obviously, φp is a

group automorphism of G.
Since in the case considered here, p is not too large, we may assume that the characteristic poly-

nomial of the Frobenius endomorphism is known. Therefore, we can compute the order of G as

|G| =
|Pic0

C(Fpd)|
|Pic0

C(Fp)|
=

∏2g
i=1(1 − τd

i )∏2g
i=1(1 − τi)

, (15.15)

where τi are the roots of χC(T ), the characteristic polynomial of the Frobenius endomorphism.
Explicitly, if ai are the coefficients of χC(T ), one has

• for g = 1 and d = 3

|G| = p2 − p(1 + a1) + a2
1 − a1 + 1

• for g = 1 and d = 5

|G| = p4 − (a1 + 1)p3 + (a1 + 1)2p2 +(
5a1 − (a1 + 1)3

)
p −

(
5a1(a2

1 + a1 + 1) − (a1 + 1)4
)

• for g = 2 and d = 3

|G| = p4 − a1p
3 + (a2

1 + 2a1 − a2 − 1)p2 +

(−a2
1 − a1a2 + 2a1)p + a2

1 + a2
2 − a1a2 − a1 − a2 + 1.

The equations above with |τi| � p1/2 allow to obtain upper bounds on |G|. Namely

• for g = 1 and d = 3
|G| � p2 + 2p3/2 + 3p + 2p1/2 + 1

• for g = 1 and d = 5

|G| � p4 + 2p7/2 + 3p3 + 4p5/2 + 5p2 + 4p3/2 + 3p + 2p1/2 + 1

• for g = 2 and d = 3

|G| � p4 + 4p7/2 + 10p3 + 16p5/2 + 19p2 + 16p3/2 + 10p + 4p1/2 + 1.

In the cryptographic applications which we envision, a cyclic group of prime order is used. There-
fore we shall assume that G has a subgroup G1 of large prime order � with a small cofactor. In
particular, we may assume that G1 is the only subgroup of order � of G, hence the Frobenius oper-
ation maps G1 onto itself. Like in the case of Koblitz curves (cf. Remark 15.30), there is an integer
s (modulo �) such that φp(

__
D) = [s]

__
D for all

__
D ∈ G1 (this must hold for a generator of G1, hence

for all elements). The integer s is computed as follows
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• for g = 1 and d = 3

s =
p − 1
1 − a1

mod �

• for g = 1 and d = 5

s =
p2 − p − a2

1p + a1p + 1
p − 2a1p + a3

1 − a2
1 + a1 − 1

mod �

• for g = 2 and d = 3

s = −p2 − a2 + a1

a1p − a2 + 1
mod �.

In other words, it can be computed explicitly in terms of a1 (and a2) and, hence, it depends only on
the curve parameters; if all users of a cryptographic system use the same curve, or may choose from
a small set, s can as well be hard-coded.

15.3.2 Arithmetic in GGGGGGGG

To perform the arithmetic in the trace zero subvariety, one can use the formulas and algorithms for
the whole divisor class group, cf. Chapters 13 and 14. So far no formulas are known that succeed in
making use of the subgroup properties.

Remark 15.43 In [LAN 2004c] it is shown that for g = 2 only the main cases of representation need
to be considered in the case distinction of Section 14.3.1. This has advantages for implementations
as the code size can be reduced and conditional branches can be avoided to a larger extent.

The fast arithmetic of trace zero varieties results from a fast arithmetic of the finite field Fpd with
small extension degree (cf. Section 11.3.6) and from using the Frobenius endomorphism φp of
the Jacobian which can be restricted to G. This approach is similar to the one for Koblitz curves
presented in Section 15.1 but due to the small extension degree, some different choices have to be
made.

Remark 15.44 It is still an open problem to find explicit formulas for the arithmetic in G or G1 only,
that are faster than the general formulas. For g = 1, see Section 7.4.2 for a geometrical description
of the trace zero variety.

On the one hand, φp satisfies its characteristic polynomial inherited from Pic0
C and by construction

it also satisfies T d−1 + · · ·+ T + 1 = 0. Using it, we want to replace the scalar multiplication [n]
__
D

with computations of the type

[n0]
__
D ⊕ · · · ⊕ [nd−1]φd−1

p (
__
D),

where the ni are of size O
(
�1/(d−1)

)
. The multiple scalar product can be carried out simultaneously

reducing the number of doublings to about 1/(d − 1)-th of those necessary for [n]D, if the implied
constants are small enough. For more details on multiple scalar multiplications see Section 9.1.5.

There are two approaches to get such a representation, both being generalizations of the different
approaches for Koblitz curves.

• One is, given n, to split it into suitable ni’s like in the expansion method of Koblitz
curves Section 15.1 or in the GLV method Section 15.2. As we started with random
n < � we need to ensure that the ni’s are small, i.e., ni = O

(
�1/(d−1)

)
with small

constants, but need not worry about the distribution of the scalars.
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• The second approach is to start with the ni’s and with suitable bounds on their size.
We give upper bounds on the ni’s ensuring that collisions cannot occur, i.e., any two
different sets of ni’s lead to different elements of G. One can use this approach if one
can obtain close to � different elements. It has the advantage that one saves the time for
the splitting of n; for a restricted environment it is even more important that one saves
space for the code, cf. Section 15.1.3 for similar discussions of Koblitz curves.

Starting with the expansion is preferable if one can randomly choose the integer, however, in appli-
cations like electronic signatures, cf. Section 1.6.3, one needs to multiply with a given integer.

To obtain the splitting, one can use the same method as developed for the GLV curves because
the Frobenius endomorphism satisfies T d−1 + · · · + T + 1 for all points in G and this polynomial
plays the role of the characteristic polynomial of the endomorphism in that method. As the constant
term is 1, we can expect the expansions to be short. A different version working directly with the
two equations T d−1 + · · ·+T +1 and χφp(T ) is provided in [AVLA 2005]. This method has lower
requirements than needed for implementing the GLV method but leads to slightly longer expansions.
For example, the splitting of the initial n can be done with 10M for g = 1, d = 3 and some more
multiplications in the other two recommended cases.

We now state bounds on the ni such that the resulting n = n0 + · · · + nd−2s
d−2 are all distinct

modulo �. Thus, using ni within the given bounds avoids collisions. The proofs can be found in
[NAU 1999, AVLA 2005, LAN 2004c] in the given order.

Theorem 15.45 Let C be a curve of genus g defined over Fp and consider a base field extension
of degree d. Let

__
D be a generator of a subgroup of prime order � of the corresponding trace zero

variety G.

1. In case g = 1, let T 2 + a1T + p be the characteristic polynomial of the Frobenius
endomorphism.

(i) If d = 3, let

r := min
{

�

p − a1

, p − 1
gcd(p − 1, a1 − 1)

}
·

Then the r2 classes [n0]
__
D ⊕ [n1]φp(

__
D), 0 � ni < r are distinct.

(ii) If d = 5, let

r := min
{

�

(1 + p + |a1|p)M
, |p

2 − a2
1p + a1p − p + 1|

γ

}
·

Then the r4 classes [n0]
__
D ⊕ [n1]φp(

__
D) ⊕ [n2]φ2

p(
__
D) ⊕ [n3]φ3

p(
__
D), 0 � ni < r

are pairwise distinct.

2. In case g = 2, let T 4 + a1T
3 + a2T

2 + a1pT + p2 be the characteristic polynomial of
the Frobenius endomorphism. If d = 3, let

r := min
{

�

M
, p2 − a2 + a1

gcd(p2 − a2 + a1, a1p − a2 + 1)

}
,

where M = max
{
|p2 + a1p − 2a2 + a1 + 1|, |p2 + a1 − a1p − 1|

}
.

Then the r2 classes [n0]
__
D ⊕ [n1]φp(

__
D), 0 � ni < r are distinct.

These bounds show how to avoid collisions. If we assume � to be of size pg(d−1) and if the involved
greatest common divisor is not too large, we can hope for r ∼ pg . Then there are ∼ pg(d−1) distinct
multiples of

__
D obtainable using this approach. Since |G| ∼ pg(d−1) these multiples represent almost
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all of G. As the size of r can easily be computed, one can check if a trace zero variety is good for
this approach.

For d = 3 one uses the JSF of the two integers applied to
__
D and φp(

__
D) while for d = 5 it is more

useful to work with all four integers in NAF representation and use the plain Straus–Shamir trick
for joint doublings (cf. Chapter 9 for details).
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16.1 The basic algorithm

In this chapter, we will be dealing with the computation of the Tate–Lichtenbaum pairing on Jaco-
bians JC of hyperelliptic curves C of genus g defined over some finite field Fq of characteristic p.
It is defined in Definition 6.16. The mathematical background can be found in Chapter 6. The idea
to use pairings for cryptographic purposes was introduced during the 1990s, and because of the im-
portance for applications a lot of valuable work was done to make the computation of these pairings
as efficient as possible. There is a vast and rapidly growing literature; here we restrict ourselves to
mentioning [GAHA+ 2002, BAKI+ 2002, BALY+ 2004b] and recommending a visit to the most
interesting crypto lounge of Barreto [BAR] which provides a very complete source of information.

For simplicity, we assume that C has an Fq-rational Weierstraß point, which we choose as the
point at infinity P∞. That implies that we can describe the affine part of C by an equation y2 +
h(x)y = f(x) with a polynomial f of odd degree.

As explained in Section 4.4.6.a, we can represent elements in JC(Fqk), or alternatively divisor
classes

__
D of degree 0 in Pic0

C·F
qk

, by divisors of the form

D − gP∞

389
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with D an effective divisor of C of degree g rational over Fqk . If we assume that D is reduced (see
Section 4.4.6.a) the representation of

__
D depends only on the choice of the Weierstraß point.

We will first specify the context we are interested in and recall the definition of the Tate–Lichten-
baum pairing in this context.

16.1.1 The setting

As usual in cryptographic applications, we shall work in a cyclic subgroup of prime order �. We
shall assume that � is large. The most interesting case is that �2 does not divides the order of JC(Fq).
We shall assume this in the future.

Let k be the smallest integer such that � divides qk − 1. Thus, Fqk is obtained by adjoining the
�-th roots of unity to Fq. The number k is called the embedding degree (with respect to �). In most
of the constructive applications of the Tate pairing we have k > 1.

The following remarks are easy but important consequences of our definitions and assumptions.

Remarks 16.1

(i) For e < k there are no �-th roots of unity in the field Fqe and so every element in Fqe is
an �-th power.

(ii) The group JC(Fqk) has no element of order �2.

More generally, it may happen that we have to deal with the whole group JC(Fq). In this case, k is
chosen such that the exponent of JC(Fq) divides qk − 1.

Using Remarks 16.1, we can identify JC(Fqk)/�JC(Fqk) with JC(Fqk)[�]. But on the other side
we have great freedom to choose a convenient representative in the class Q + �JC(Fqk), which can
be used to simplify computations, and we shall do this rather often in the following.

So, even when we are interested in computing the Tate–Lichtenbaum pairing T� over the field Fqk

between elements P of order � in JC(Fq) and elements Q of order � in JC(Fqk), we shall identify
Q with a class in JC(Fqk)/�JC(Fqk). Since the value of the pairing does not depend on the choice
of the representative of the class, we can give up the condition that Q has order � and define the
Tate–Lichtenbaum pairing for arbitrary Q ∈ JC(Fqk) without changing notation.

Next we remark that by definition qk is congruent to 1 modulo �. This implies that the subgroup
J0 ⊂ JC(Fqk) (defined as in Theorem 6.15 but with respect to the ground field Fqk ) is equal to
JC(Fqk)[�]), and so contains JC(Fq)[�].
Hence, we interpret (without changing the notation) the Tate–Lichtenbaum pairing for our purposes
as pairing

T� : JC(Fq)[�] × JC(Fqk) → F∗qk/(F∗qk)�.

Here is its explicit description. Take P ∈ JC(Fq)[�] and Q ∈ JC(Fqk).

1. Represent P by an Fq-rational divisor DP of degree 0.

2. Let fP be a function on C with div(fP ) = �(DP ).
3. Represent Q by a divisor DQ of degree 0 coprime to DP and evaluate fP (DQ). Recall

that for D =
∑

R∈C nRR the value fP (D) is defined by
∏

R∈C fP (R)nR .

Remark 16.2 In this form, the value set of the pairing consists of classes modulo �-th powers. To
get as value set the elements of order � in Fqk we compose the pairing with the exponentiation map
with exponent qk−1

� · In the following, we shall always assume that we use this slight modification
of the Tate–Lichtenbaum pairing without changing the notation.
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16.1.2 Preparation

To implement this pairing we shall need a result following from the Riemann–Roch theorem.

Lemma 16.3 Let C be as above and k ∈ N.
Let s ∈ N with s � O(lg q) and take effective divisors D1, . . . , Ds of degree � g rational over

Fq. Let D be an effective divisor of degree g rational over Fqk and D2 a randomly chosen effective
Fq-rational divisor of C.

Then, with a high probability (depending on q) the divisor D1 := D ⊕ D2 is relatively prime to∑s
j=1 Dj + P∞.

Remark 16.4 This lemma is of no real practical importance. In the cases that are important for
cryptographic applications we shall see directly how to choose D2.

Using a variant of Lemma 16.3, we give a heuristic algorithm to represent a divisor class (D − gP∞)
in JC(Fqk) by a difference D1 −D2 of effective divisors (with D2 being Fq-rational) and D1 + D2

prime to a finite set of Fq-rational divisors D1, . . . , Ds of degree � g with s = O(lg q).

Algorithm 16.5 Relative prime representation

INPUT: Effective divisors D, D1, . . . , Ds of degree g.

OUTPUT: Divisors D1, D2 with D1 − D2 = D − gP∞ and D1 +D2 prime to P∞ +
Ps

j=1 Dj .

1. repeat

2. choose P ∈ C(Fq) and m ∈ N such that m � |JC(Fq)|
3. compute D2 effective with D2 − gP∞ = m(P − P∞)

4. compute D1 such that (D − gP∞) − (D2 − D1) = 0.

5. until D1 + D2 is prime to
Ps

j=1 Dj + P∞

6. return (D1, D2)

Remarks 16.6

(i) By Lines 2 and 3, we get a “nearly random” element in the set of effective divisors of
degree g on C. Note that for many instances these steps can be done by a precomputa-
tion.

(ii) In very rare cases (D1, D2) will not satisfy the relative primeness condition. So the
choice of another random pair (P, m) will never be necessary in practice.

16.1.3 The pairing computation algorithm

We shall give a procedure to compute the Tate–Lichtenbaum pairing that works in the general case.

16.1.3.a The basic step

To compute the Tate–Lichtenbaum pairing we first have to compute the function fP and then evalu-
ate it at DQ. The basic step for the computation of fP consists of solving the following task, which
is also the key ingredient for the addition law in the Jacobian.

For given effective divisors A, A′ of degree g and rational over Fq, find an effective divisor B of
degree g and a function G on C such that A + A′ − B − gP∞ = div(G).
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We remark that G is a function on C defined over Fq, whose zero divisor and pole divisor have
degree � 2g.

We shall always assume that the divisor B is reduced. By adding a suitable multiple of P∞ we
can and will assume that B has degree g.

16.1.3.b Representation of elements

We want to compute T�(P, Q) with P ∈ JC(Fq)[�] and Q ∈ JC(Fqk).
We give P by a representative DP − gP∞ with DP reduced of degree g.
For every multiple [i]P, 1 � i � � we choose the same type of representation: [i]P is given by

DPi −gP∞ with DPi an Fq-rational effective divisor of degree g. So we have an identity of divisors

DPi + DPj − DPi+j − gP∞ = div(hi,j) for i + j � �

and DPi ⊕ DPj = DPi+j .
By using Algorithm 16.5 we choose a representative DQ = D1−D2 for Q with D2 an Fq-rational

effective divisor on C such that D1 + D2 is prime to DP + P∞.

Remark 16.7 The reader should not be confused: It can happen that P = Q. Nevertheless, we
choose different representations according to the different roles the elements play in the pairing.

16.1.3.c The pairing algorithm

We get the following algorithm for the computation of the Tate–Lichtenbaum pairing. For elliptic
curves this algorithm was proposed by Miller to compute the Weil pairing [MIL 1986, MIL 2004].

Algorithm 16.8 Tate–Lichtenbaum pairing

INPUT: The integer � = (�l−1 . . . �0)2 with �l−1 = 1, a point P ∈ JC(Fq)[�], the divisor DP

with P = DP − gP∞, and Q = DQ − gP∞ ∈ JC(Fqk).

OUTPUT: The Tate–Lichtenbaum pairing T�(P, Q).

1. compute D1, D2 [using Algorithm 16.5 on DQ]

2. DQ ← D1 − D2

3. T ← DP and f ← 1

4. for i = l − 2 down to 0 do

5. T ← [2]T

6. f ← f2 G(DQ) [div(G) = 2T − [2]T − gP∞]

7. if �i = 1 then

8. T ← T ⊕ DP

9. f ← f G(DQ) [div(G) = T + DP − (T ⊕ DP ) − gP∞]

10. return (f)
qk−1

�

Remarks 16.9

(i) In Algorithm 16.8, we have to evaluate several functions G at DQ. They have zeroes
and poles at P∞ and DPi for indices i occurring in the addition chain, depending only
on the binary expansion of �. We need the divisor DQ to be prime to the divisors of
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these functions. By Lemma 16.3 we know that we have a very good chance that this is
satisfied; or else we have to choose a new random representation for Q.

(ii) The algorithm is presented here in a double and add form and requires O(lg �) basic
steps to evaluate fP at DQ (i.e., to compute the Tate–Lichtenbaum pairing). In the
following, for clarity, we will always use this form, but the reader must keep in mind
that better algorithms are available and must be used in practice. These algorithms
(window methods, recoding of the exponent, use of endomorphisms of special curves
if available) are described in Chapters 9 and 15 and can be applied to our situation for
pairings without difficulties.

(iii) While executing Algorithm 16.8 we have to evaluate quotients of polynomials and so
inversions occur. But, as is easily seen, we can postpone these inversions by multiplying
and squaring denominators, and then we have to execute just one inversion in Fqk at the
end of the algorithm.

(iv) The algorithm depends heavily on the Hamming weight of �, and if we have the oppor-
tunity to have an � with small Hamming weight, such as a Solinas prime [SOL 1999a],
for instance, it should be taken.
In fact, the same remark applies if the order N of JC(Fq) has low Hamming weight
[GAHA+ 2002]. We replace �-elements by the whole Mordell–Weil group JC(Fq). If
N/� is sufficiently small such a choice provides computational savings. But be careful:
we need more roots of unity and so k would be much larger in general (without any
positive effect for security).

In constructive applications we are often in a context that k > g. For g = 1 this just means that k
is larger than 1. In applications to g � 2 the assumption on k is reasonable, too. In the following
section we explain which accelerations this implies.

16.1.4 The case of nontrivial embedding degree kkkkkk

In this section we shall assume that k > g.
As always we assume that the element P is rational over Fq and has order �.
It is useful to recall that for any element P ′ in JC(Fqe) with e < k we get that

T�(P, P ′) = 1.

This can be seen by either using Example 6.10 or directly in the following way.
Remember we are computing the Tate–Lichtenbaum pairing over Fqk by using Algorithm 16.8.

So, we have to take a representation of P ′ by divisors prime to (the representation of multiples of)
DP − gP∞. This can be done over Fqe . Then the result of the evaluation lies in Fqe and hence
(Remarks 16.1) is an �-th power.

Hence, we get for all elements Q ∈ JC(Fqk)

T�(P, Q) = T�(P, Q + P ′).

Now assume that Q ∈ JC(Fqk)� JC(Fqe) for all e < k.
Let P be represented by DP − gP∞ and Q by DQ − gP∞.
We choose a random point P0 ∈ C(Fq). Since q is assumed to be large we can assume that P0

is different from P∞ and prime to the divisors DPj , which occur in the addition chain during the
execution of Algorithm 16.8.

Let Q′ be the class of DQ−gP0. Since DQ−gP0 = (DQ−gP∞)+(gP∞−gP0) and gP∞−gP0

defines an Fq-rational element in JC(Fq) we get

T�(P, Q) = T�(P, Q′).
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Let P ′ be a point on C(Fq), which appears in DPj =: Dj (for some j) as well as in DQ. Then
all conjugates of P ′ appear in Dj and so P ′ is rational over a field Fqe with e < k. First assume
that e | k. Then the divisor class of P ′ − P0 lies in JC(Fqe) and so we can subtract P ′ − P0 from
DQ − gP0 without changing the Tate–Lichtenbaum pairing (see discussion above).

Assume now that e does not divide k and define

e1 =
k

gcd(k, e)
, k1 =

e

gcd(k, e)
·

So Fqe1 is a proper subfield of Fqk and the composite field of Fqk with Fqe is equal to Fqkk1 . It
follows that the conjugates of P ′ over Fqe1 are the same as the conjugates of P ′ over Fqk and so the
divisor

k1∑
j=1

φj
qe1 P ′ − k1P0

is an Fqe1 -rational sub-summand of DQ−gP0. Hence, it can be subtracted from DQ−gP0 without
changing the Tate–Lichtenbaum pairing.

We summarize and get the following proposition.

Proposition 16.10 Let

• C be a hyperelliptic curve of genus g defined over Fq such that � | |JC(Fq)| and �2 does
not divide |JC(Fq)|

• k be the smallest integer such that � | (qk − 1) and assume that k > g

• P ∈ JC(Fq)[�], Q ∈ JC(Fqk), P and Q represented by DP − gP∞ resp. D′
Q − gP∞

• DQ be the divisor obtained from D′
Q by removing all sub-summands that are rational

over Fqe for some e < k.

Then

1. the divisor DQ is prime to all divisors DPj + P∞ where DPj occurs as positive part in
the standard representation of [j]P

2. the Tate–Lichtenbaum pairing satisfies

T�(P, Q) =
(
fP (DQ)

) qk−1
� .

To prove Proposition 16.10, we use the discussion from above to replace D′
Q by DQ in Algo-

rithm 16.8. To get rid of P0 we remark that any factor in the evaluation of the functions G in the
pairing algorithm that arises by evaluating Fq-rational divisors can be omitted since we are only
interested in values modulo �-th powers.

So we get a much simpler and faster algorithm.

Algorithm 16.11 Tate–Lichtenbaum pairing if k > g

INPUT: The integer � = (�l−1 . . . �0)2 with �l−1 = 1, P = DP − gP∞ ∈ JC(Fq)[�], Q =
D′

Q − gP∞ ∈ JC(Fqk), D′
Q effective of degree g.

OUTPUT: The Tate–Lichtenbaum pairing T�(P, Q).

1. compute DQ from D′
Q by removing all sub-summands rational over Fqe with e < k

2. T ← DP and f ← 1

3. for i = l − 2 down to 0 do

4. T ← [2]T
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5. f ← f2 G(DQ) [div(G) = 2T − [2]T − gP∞ ]

6. if �i = 1 then

7. T ← T ⊕ DP

8. f ← f G(DQ) [div(G) = T + DP − (T ⊕ DP ) − gP∞]

9. return (f)
qk−1

�

The remaining computations in the pairing algorithm are performed in Fq with the exception of the
evaluations of the functions G at DQ, which are executed by multiplications of elements of Fq with
elements of Fqk , since the coefficients of the functions G are in Fq . For implementation of extension
field arithmetic, we refer to Chapter 11.

16.1.5 Comparison with the Weil pairing

Both in a destructive manner [MEOK+ 1993] and in a constructive manner [BOFR 2001], the use
of pairings in cryptography first appeared through the use of the Weil pairing. It is defined by

W� : JC(Fq)[�] × JC(Fq)[�] → µ�

(P, Q) �→ fP (DQ)
fQ(DP )

where µ� is the multiplicative groups of the �-th roots of unity in the algebraic closure Fq of Fq .
Note that no final powering is required for the Weil pairing.

To evaluate the pairing, we have to work in a finite field Fqk′ . We can take k′ as the degree of the
smallest extension of Fq over which the rank of �-torsion elements is larger than g.

It follows that k � k′. In most cases, k is equal to k′ (for instance, for elliptic curves such that �
does not divide q−1 [BAKO 1998]) but there are cases in which we have inequality even for elliptic
curves and so the underlying field used for the Tate–Lichtenbaum pairing is smaller. Related to this
is the following observation: by definition W�(P, P ) is always trivial. This is not always the case
for the Tate–Lichtenbaum pairing [FRMÜ+ 1999]. This point will be discussed in more detail in
Section 24.2.1.b.

This first advantage of the Tate–Lichtenbaum pairing concerns mostly its destructive role. On the
constructive side, we want k to be different from 1.

The computation of the Weil pairing evidently requires two evaluations of functions, whereas
only one is required for the Tate pairing so that it is usually assumed that the computation of the
Weil pairing takes roughly twice as long as the computation of the Tate–Lichtenbaum pairing. The
situation is in fact worse if we take the results in Section 16.1.4 into account. The accelerations
obtained there crucially depend on the fact that P is defined over Fq. It shows that the evaluation of
fP (Q) modulo �-th powers is faster than the evaluation of fQ(P ) if k > 1 or even k > g.

Moreover, in the Weil pairing we must take Q as an element of order � not lying in the cyclic group
generated by P . To find such an element it is often necessary to take a random element in JC(Fqk)
and then to multiply it by |JC(Fqk)|/�, which corresponds to the final exponentiation in the Tate–
Lichtenbaum pairing. In any case we cannot use the freedom to choose a suitable representative in
the class of Q modulo �JC(Fqk), which enabled us to considerably simplify the pairing algorithm .

There is one additional step when we compute the Tate–Lichtenbaum pairing: the final exponen-
tiation. Since it is costly it should be postponed whenever possible, and in fact this can be done in
many protocols (cf. Chapter 24).

So, there are reasons to prefer the Tate–Lichtenbaum pairing for cryptographic use. We shall now
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give more explicit details for this algorithm, first in the case of elliptic curves and second in the case
of hyperelliptic curves of genus 2.

16.2 Elliptic curves

In this section, E will denote an elliptic curve defined over Fq . In this case the Tate–Lichtenbaum
pairing is described in full detail in [FRMÜ+ 1999]. The special situation is that E can be identified
with its Jacobian (after the choice of P∞ as zero point).

16.2.1 The basic step

As we know, every divisor class of degree 0 in E(Fq) can be uniquely represented by a divisor
P −P∞ with P ∈ E(Fq). We will describe how to find the function G that occurs in the basic step
of the computation.

Take P and P ′ in E(Fq). We have to find a point B on E and a function G such that we have the
divisor identity

P + P ′ − B − P∞ = div(G).

We observe that B = P ⊕ P ′ is in fact the usual sum of P with P ′ on E, and G is given by the
equations of the lines used to compute B.

Let L1 be the line through P and P ′ (which is the tangent to the curve at P if P = P ′). This line
intersects E at a third point C. Let L2 be the (vertical) line through C and P∞.

The equations of these two lines induce two functions on the curve, the function G is nothing but
L1/L2. In fact

div(L1) = P + P ′ + C − 3P∞

div(L2) = C + B − 2P∞

div(L1/L2) = P + P ′ − B − P∞.

To clarify, we choose the usual affine coordinates and assume that P = (x1, y1) and Q = (x2, y2)
and that x1 �= x2. We get

G =
Y − λ(X − x1) − y1

X + (x1 + x2) − λ2
where λ =

y1 − y2

x1 − x2
·

If P = Q we have to replace λ by the slope of the tangent to E at P to get G.
We remark that we can avoid the inversion needed to compute λ by using homogeneous coor-

dinates. We cannot avoid that G is a rational function, so divisions occur when we evaluate the
functions G at a point R. But we can reduce them easily to one inversion at the end of the addition
chain (for the cost of one multiplication and, in some instances, one squaring in addition, at each
step of the pairing algorithm).

16.2.2 The representation

We restrict ourselves to the most interesting case and assume that k > 1.
As usual, we represent points R on E by the divisor R−P∞. So, points on E play an ambiguous

role, being interpreted as prime divisors or as elements on the Jacobian of E associated to the class
R − P∞.
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As � is given, the pairing algorithm involves a fixed set of prime divisors [dj ]P (denoted by DPj in
the general case) whose number s is of size O(lg �). Let Q be given in the standard form Q − P∞
with Q an Fqk -rational point on E which is not rational over Fqe for e < k. In particular, Q is prime
to P∞ and [dj ]P .

To justify the following algorithm we choose a number m � � − 1 different from all of the
numbers dj and take P0 = [m]P . So P0 is prime to all divisors occurring in the pairing algorithm.
In the evaluation only the existence of the point P0 is needed.

16.2.3 The pairing algorithm

We now give the algorithm for computing the Tate–Lichtenbaum pairing. We refer to the remark
that the inversion operation in each step of the algorithm can be postponed till the end and we write
down the algorithm in this version. Afterwards we give a baby example.

Algorithm 16.12 Tate–Lichtenbaum pairing for g = 1 if k > 1

INPUT: The integer � = (�l−1 . . . �0)2 with �l−1 = 1, the points P = (x1, y1) ∈ E(Fq)[�] and
Q = (x2, y2) ∈ E(Fqk).

OUTPUT: The Tate–Lichtenbaum pairing T�(P, Q).

1. T ← P , f1 ← 1 and f2 ← 1

2. for i = l − 2 down to 0 do

3. T ← [2]T [T = (x3, y3)]

4. λ ← the slope of the tangent of E at T

5. f1 ← f2
1 (y2 − λ(x2 − x3) − y3)

6. f2 ← f2
2 (x2 + (x1 + x3) − λ2)

7. if �i = 1 then

8. T ← T ⊕ P

9. λ ← the slope of the line through T and P

10. f1 ← f1(y2 − λ(x2 − x3) − y3)

11. f2 ← f2(x2 + (x3 + x1) − λ2)

12. return
`

f1
f2

´ qk−1
�

16.2.4 Example

Consider the elliptic curve E defined over F13 by

y2 = x3 + 6.

Its order is � = 7 = (111)2 and E(F13) is generated by the point P = (2, 1). In the addition chain,
there occur T = P, T = [2]P, T = [3]P, T = [6]P . We can choose P0 = [5]P . The embedding
degree is 2 because 7 divides 132 − 1 but not 13 − 1. Since 2 is not a square in F13, F132 � F13[α]
where α2 = 2. We want to compute the Tate–Lichtenbaum pairing of P and Q = (10+3α, 11+2α).
Let us apply Algorithm 16.12.

First, initialize f1 = f2 = 1 and T = (2, 1).
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Then i = 1. We compute the lines L1 and L2 arising in the doubling of T = (x3, y3):

λ = 3x2
3/2y3 = 6,

L1 = y − y3 − λ(x − x3) = y + 7x + 11,

L2 = x + 2x3 − λ2 = x + 7.

Then, we evaluate these functions at Q:

L1(Q) =
(
11 + 2α + 7(10 + 3α) + 11

)
= 1 + 10α,

L2(Q) = (10 + 3α) + 7 = 4 + 3α,

so that T = [2]P = (6, 1) and

f1 = L1(Q) = 1 + 10α,

f2 = L2(Q) = 4 + 3α.

Since �1 = 1, we compute now the lines arising in the addition of T and P :

L1 = y + 12 and L2 = x + 8,

so that T = [3]P = (5, 12) and

f1 = f1L1(Q) = (1 + 10α)(10 + 2α) = 11 + 11α,

f2 = f2L2(Q) = (4 + 3α)(5 + 3α) = 12 + α.

The next value of i is 0. We compute the lines L1 and L2 arising in the doubling of T :

L1 = y + 5x + 2 and L2 = x + 11,

so that T = [6]P = (2, 12) and

f1 = f2
1 L1(Q) = (11 + 11α)2(11 + 4α) = 1 + 6α,

f2 = f2
2 L2(Q) = (12 + α)2(8 + 3α) = 12 + 6α.

Since �0 = 1, we now compute the lines arising in the addition of T and P :

L1 = x − 2 and L2 = 1,

so that T = 7P = P∞, f1 = (1 + 6α)(8 + 3α) = 5 + 12α and f2 = 12 + 6α.
Thus the Tate–Lichtenbaum pairing of P and Q is(

5 + 12α

12 + 6α

)24

= 4 + α.

16.3 Hyperelliptic curves of genus 22222222

In Section 16.1.3.c, it is shown how to evaluate the Tate–Lichtenbaum pairing on the Jacobian of a
curve, assuming an explicit reduction algorithm for divisors on the curve. For hyperelliptic curves,
such an algorithm can be given by Cantor’s algorithm or by explicit formulas (see Chapter 14). We
shall make this a bit more explicit in the case that g = 2.
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16.3.1 The basic step

Let A = [u, v] and A′ = [u′, v′] be divisors in Mumford representation. Cantor’s Algorithm 14.7
returns the divisor B in Mumford representation such that there exists a function G on C and

A + A′ − B − 2P∞ = div(G).

We will now explain how to compute G.
In the composition step of Cantor’s algorithm, we compute the polynomial δ which is the greatest

common divisor of u, u′ and v + v′ + h and a divisor [U, V ], which is in the same divisor class as
B. At this point, two cases may occur:

• deg(U) � 2: this means that [U, V ] is already reduced, so we set G(x, y) equal to δ(x),

• deg(U) > 2: the divisor [U, V ] must be reduced to obtain B and G(x, y) =
U(x)

V (x) + y
δ(x).

16.3.2 Representation for k > 2k > 2k > 2k > 2k > 2k > 2

Assume that P ∈ JC(Fq) and Q ∈ JC(Fqk)�JC(Fqe) for all e < k are given in the standard
representation by divisors DP − 2P∞ respectively D′

Q − 2P∞.
For cryptographic applications we can assume that q is so big that for fixed � there is a point

P0 ∈ C(Fq), which is (as divisor) prime to the divisors DPj occurring in the addition chain of the
pairing algorithm. Again we only need the existence of this point to justify Algorithm 16.11.

In Proposition 16.10 we have proved that we can remove from D′
Q sub-summands that are rational

over proper subfields. We shall make this more explicit now.

Proposition 16.13 Let

• C be a hyperelliptic curve of genus 2 defined over Fq such that � | |JC(Fq)| and �2 does
not divide |JC(Fq)|

• k be the smallest integer such that � | (qk − 1) and assume that k > 2
• P ∈ JC(Fq)[�] and Q ∈ JC(Fqk), P and Q represented by DP − 2P∞ respectively

D′
Q − 2P∞ with D′

Q = Q1 + Q2 and assume that Q is not rational over any field Fqe

with e < k

• DQ be the divisor obtained from D′
Q by removing Qi if it is rational over Fqe with

e < k.

Then

1. the divisor DQ is prime to all divisors DPj + P∞ where DPj occurs as positive part in
the standard representation of [j]P

2. the Tate–Lichtenbaum pairing satisfies

T�(P, Q) =
(
fP (DQ)

) qk−1
� .

Proof. Let D′
Q = Q1 + Q2 with Qi ∈ C. If Q1 is rational over Fqe with e < k we can remove it

from D′
Q without changing the result of the Tate–Lichtenbaum pairing.

If Q1 is rational over Fqk but not over a proper subfield containing Fq , it has k conjugates over
Fq and hence it cannot divide any effective divisor of degree � 2 rational over Fq.

If Q1 is not rational over Fqk then it is Galois conjugate to Q2 over Fqk and so over Fq. If it
divided an Fq-rational effective divisor D of degree � 2, Q2 would also divide D and so D =
Q1 + Q2 = D′

Q, which contradicts our assumption on Q.
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So, we can remove in D′
Q exactly the points that are defined over Fqe with e < k to get DQ.

Having an explicit description of the basic step and of the relevant divisor DQ, we can now use
Algorithm 16.11 with a simple first step.

16.4 Improving the pairing algorithm

For the convenience of the reader we summarize some possibilities to improve the performance of
the pairing algorithm.

16.4.1 Elimination of divisions

One of the main improvements to the evaluation algorithm consists of avoiding inversions, since
these are time-consuming operations, especially in Fqk . Inversions appear twice at each step of the
algorithm: once in the computation of the functions G, and once in the function evaluations.

Inversions in the first case can be eliminated by using alternative systems of coordinates, such as
projective coordinates, as explained in Chapter 13 for elliptic curves and in Chapter 14 for genus 2
curves. More details for elliptic curves are given in Section 16.5.1.

Concerning inversions occurring in function evaluations, we have already seen that they can be
postponed at the end of the algorithm.

We will even see in Section 16.5.2 that these denominators can be removed for interesting in-
stances.

16.4.2 Choice of the representation

To make the pairing algorithm explicit, we have to represent P and Q by relatively prime divisors.
Because of the optimization of addition formulas, it is wise to choose for P a standard representa-
tion.

The choice for the representing divisors for Q is especially important if k > g. We have explained
in Proposition 16.10 and in Example 16.2.4 how to do this.

Also, the extension field arithmetic has to be implemented with care [GAHA+ 2002].

16.4.3 Precomputations

If P is either fixed or used several times, the computation of the pairing can easily been sped up
by precomputing the functions G. Indeed, these functions depend only on P . Then, if k > g ,
we simply evaluate these functions at DQ. Note that actual cryptosystems based on pairings often
need such a P (base divisor on the Jacobian, public key). On the other side the number of needed
precomputations is of size O(lg �), which is quite large.

16.5 Specific improvements for elliptic curves

We list now some possibilities for improving the evaluation algorithm in the special case that C is
an elliptic curve E.



§ 16.5 Specific improvements for elliptic curves 401

16.5.1 Systems of coordinates

We have already seen that other systems of coordinates should be used to avoid inversions, as it is the
case for scalar multiplication (see Section 16.4.1). Moreover, Izu and Takagi observe [IZTA 2003a]
that in using Jacobian coordinates, many squarings of the Z-coordinate are needed in the computa-
tion of the lines L1 and L2. Therefore, they introduce a new system of coordinates (X, Y, Z, Z2)
in which (X, Y, Z) represent a point in the Jacobian coordinates. This representation is called the
simplified Chudnovsky Jacobian coordinates and denoted J s. This system of coordinates requires
the same number of operations as Jacobian coordinates for doubling and addition, but a square can
be removed both in the computation of the line for addition and for doubling.

The authors also provide iterated doubling formulas with this new system of coordinates. It
consists in directly computing 2jP . This method avoids j − 1 squarings compared to j standard
doublings. We can take advantage of this if a large window size is used in the scalar multiplication
or if the binary expansion of � has many zeroes. The same kind of idea is used in [BLMU+ 2004]
where some operations are saved using a 4-ary algorithm with direct formulas.

Nevertheless, we have to keep in mind that, since P is defined over Fq , the inversions saved
by these changes of coordinate are inversions in Fq . Also, extra multiplications are introduced (as
usual, when one uses projective coordinates), but with one of the factors in Fqk . So projective-
like coordinates must be used very carefully for the computation of the Tate–Lichtenbaum pairing
[GAHA+ 2002]. By coupling the pairing algorithm with Montgomery’s scalar multiplication lad-
der, Scott and Barreto obtained a laddering version of Algorithm 16.12 [SCBA 2004]. This can
of course be combined with efficient formulas for doubling and addition if the curve can be trans-
formed into Montgomery form as described in Section 13.2.3. Therefore, the advantages of this
scalar multiplication method (little memory required, parallel computing eased and resistance to
side-channel attacks enabled [JOYE 2000]) can be exploited in pairing-based cryptosystems.

16.5.2 Subfield computations

Let e be a nontrivial divisor of k and let k1 = k/e. We shall use the fact that elements in Fqe are
�-th powers. This makes the inversion needed in the evaluation step faster.

Lemma 16.14 Let z be an element of F∗qk . Then

k1−1∏
j=1

φj
qe (z) ≡ z−1 mod

(
(F∗qk)�

)
. (16.1)

The proof follows from the fact that z times the left-hand term of (16.1) is in Fqe and hence is an
�-th power.

Remark 16.15 In Chapter 11, it is explained how to evaluate
∏k1−1

j=1 φj
qe(z) quickly. There, the

norm map is used to compute inverse elements in extension fields exactly and not only up to �-th
powers.

So, we can rewrite our pairing algorithm for the Tate–Lichtenbaum pairing of elliptic curves.

We assume that k > 1 and that k1 is the smallest prime divisor of k.

As usual we take P ∈ E(Fq) and Q ∈ E(Fqk)�E(Fq).
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Algorithm 16.16 Tate–Lichtenbaum pairing for g = 1 if k > 1 and k = k1e

INPUT: The integer � = (�l−1 . . . �0)2 with �l−1 = 1, the points P = (x1, y1) ∈ E(Fq)[�] and
Q = (x2, y2) ∈ E(Fqk).

OUTPUT: The Tate–Lichtenbaum pairing T�(P, Q).

1. T ← P and f1 ← 1 and f2 ← 1

2. for i = l − 2 down to 0 do

3. T ← [2]T [T = (x3, y3)]

4. λ ← the slope of the tangent of E at T

5. f1 ← f2
1

`
y2 − λ(x2 − x3) − y3

´

6. f2 ← f2
2

`
x2 + (x3 + x1) − λ2

´

7. if �i = 1 then

8. T ← T ⊕ P

9. λ ← the slope of the line through T and P

10. f1 ← f1(y2 − λ(x2 − x3) − y3)

11. f2 ← f2(x2 + (x3 + x1) − λ2)

12. return
`
f1

Qk1−1
j=1 φj

qe(f2)
´ qk−1

�

For small number k1 the inversion would be computed using the norm map and an inversion in Fqk .
So, our observation saves one inversion and also 2k1 multiplications in Fqe .

The nicest case is k1 = 2 and so k even. We have to apply φqe just once. But we shall see in
the next section that with the cost of at most one addition on elliptic curves (which is very often not
necessary) we shall get a further simplification.

16.5.3 Even embedding degree

We assume that k = 2e and choose k1 = 2. The Frobenius automorphism φqe operates as an
involution on E(Fqk)[�] and has one eigenvalue 1 with P as eigenvector. By elementary linear
algebra it follows that it has −1 as eigenvalue with eigenspace V − of rank 1. If Q′ ∈ V − we get
that φqe (Q′) has the same x-coordinate as Q′ and so the x-coordinate of Q′ lies in Fqe .

If Q is any point of E[�] the point Q′ := Q − φqeQ lies in V −.
Since

T�(P, Q′) = T�(P, Q) · T�(P,−φqeQ) = T�(P, Q)2

it follows that we can compute T�(P, Q)2 by using Q′, a point whose x-coordinate lies in Fqe .
Again, given that elements in this field are �-th powers, we can simplify the evaluation algorithm
for the Tate–Lichtenbaum pairing.

Algorithm 16.17 Tate–Lichtenbaum pairing for g = 1 and k = 2e

INPUT: The integer � = (�l−1 . . . �0)2 with �l−1 = 1, points P ∈ E(Fq)[�] and Q ∈ E(Fqk).

OUTPUT: The quantity T�(P, Q)2

1. Q ← Q − φqeQ

2. T ← P and f ← 1



§ 16.5 Specific improvements for elliptic curves 403

3. for i = l − 2 down to 0 do

4. T ← [2]T

5. f ← f2 L(Q) [L is the tangent line of E at T ]

6. if �i = 1 then

7. T ← T ⊕ P

8. f ← f L(Q) [L is the line through T and P ]

9. return f
qk−1

�

Remark 16.18 In most applications, the knowledge of T�(P, Q)2 will be as good as that of T�(P, Q).
If not, we can proceed as follows.

• If q is even, compute the unique square root of f
qk−1

� in Fqk which is equal to T�(P, Q).
• Otherwise, set

χ(f) =

{
−1 if f is not a square in Fqk ,

1 else.

and T�(P, Q) = f
qk−1

2� χ(f).

16.5.4 Example

We consider again the elliptic curve E defined over F13 by

y2 = x3 + 6.

We take P = (2, 1).
The embedding degree is 2 because 7 divides 132 − 1 but not 13 − 1. Since 2 is not a square in

F13, F132 � F13[α] where α2 = 2. We want to compute the Tate–Lichtenbaum pairing of P and
Q = (10 + 3α, 11 + 2α).

We apply Algorithm 16.17. So, we have to compute Q′ = Q − φ132(Q). Since

−φ132(Q) = (10 + 10α, 2 + 2α)

we get
Q′ = (12, 3α).

First, let us initialize f = 1 and T = (2, 1). Then i = 1. We compute the line L arising in the
doubling of T = (x3, y3):

λ = 3x2
3/2y3 = 6,

L = y − y3 − λ(x − x3) = y + 7x + 11.

We evaluate L at Q′:

L(Q′) = (3α + 7 × 12 + 11) = 4 + 3α.

Now, we have T = [2]P = (6, 1) and f = 4 + 3α.
Since �1 = 1, we compute the line arising in the addition of T and P :

L = y + 12
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and compute T = [3]P = (5, 12). So

f = (4 + 3α)(12 + 3α) = 1 + 9α.

Finally, i = 0. We compute the line L arising in the doubling of T :

L = y + 5x + 2

and compute T = [6]P = (2, 12) and

f = f2L(Q′) = (1 + 9α)2(10 + 3α = 9 + 6α = 3(3 + 2α).

Since �0 = 1, we compute the line arising in the addition of T and P :

L = x − 2

We get, as expected T = 7P = P∞.
Since the x-coordinate of Q′ is in F13, we are done:

T�(P, Q′) = (3 + 2α)24 = 5 + 8α.

We note that T�(P, Q) = (3 + 2α)12 = 4 + α, and we get the result from Example 16.2.4 back.
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17.1 Elementary methods

This section describes various elementary methods to compute the characteristic polynomialχ(φq)C

of a nonsingular curve C over a finite field Fq. Recall that the L-polynomial of C is defined as
LC(T ) = T 2gχ(φq)C(1/T ), which shows that computing either polynomial is sufficient.

17.1.1 Enumeration

Let C be a projective, nonsingular curve over a finite field Fq with q = pd and let

LC(T ) =
2g∑

i=0

aiT
i =

2g∏
i=1

(1 − αiT )

denote the L-polynomial of C. By the Weil conjectures we have

|C(Fqk )| = qk + 1 −
2g∑

i=0

αk
i , (17.1)

407
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and if Sk = −
2g∑

i=0

αk
i , then the Newton–Girard formula gives the following recurrence formula:

kak = Ska0 + Sk−1a1 + · · · + S1ak−1, (17.2)

with ai = 0, for i > 2g. The functional equation of the zeta function implies that ai+g = qg−iai

for i = 0, . . . , g, so it suffices to compute a0, . . . , ag or S1, . . . , Sg by (17.2).

17.1.1.a Hyperelliptic curves over finite fields of characteristic � 3� 3� 3� 3� 3� 3

In this section, we will assume that p is an odd prime and q = pd. As shown in Section 4.4.2.b, a
genus g hyperelliptic curve C with Fq-rational Weierstraß point can be defined by an affine equation
of the form y2 = f(x) with f ∈ Fq[x] a squarefree polynomial of degree 2g + 1.

To compute |C(Fqk )| for k = 1, . . . , g, we simply test which α ∈ Fqk give rise to points on C
and add the unique place at infinity. Clearly, to every zero α ∈ Fqk of f only one point (α, 0) cor-
responds and to every α ∈ Fqk with f(α) a nonzero square, two points

(
α, +−

√
f(α)

)
correspond.

Let Fqk be represented by Fp[X ]/
(
g(X)

)
with g(X) an irreducible polynomial of degree dk, then

by the definition of the (generalized) Legendre symbol (see Section 2.3.4), we have

|C(Fqk)| = 1 +
∑

α∈F
qk

(
1 +

(
f(α)
g(X)

))
= qk + 1 +

∑
α∈F

qk

(
f(α)
g(X)

)
, (17.3)

where the 1 corresponds to the place at infinity. Comparing with (17.1) shows that

Sk =
∑

α∈F
qk

(
f(α)
g(X)

)
·

To compute the generalized Legendre symbol, we can use Algorithm 11.69. However, for small q it
is often much faster to precompute a hash table of squares in Fqk and test if f(α) is in the table.

Remark 17.1 Precomputing a hash table of squares in a finite field Fqk can be done quite efficiently
as follows: first assume that q = p and k = 1, then clearly 1 (mod p) is a square and the other
squares can be computed using the recursion

(α + 1)2 ≡ α2 + 2α + 1 (mod p),

for α = 1, . . . , (p−1)/2. A similar, though slightly more complicated trick can be used to compute
the table for k > 1 based on the recursion(

α(X) + X i
)2 = α(X)2 + 2α(X)X i + X2i.

The product α(X)X i is in fact a simple shift, which leaves the term X2i. Here we make the
distinction between i < �dk/2� and i � �dk/2�, since in this case we also need X2i (mod g(X)).
Note that a similar trick should be used to compute f(α) for all α ∈ Fqk .

Example 17.2 Let p = 5, d = 2 and Fq � Fp(θ) with θ2+4θ+2 = 0. Let the genus 3 hyperelliptic
curve be defined by

y2 = x7 + (4θ + 4)x6 + (3θ + 1)x5 + (3θ + 1)x4 + (3θ + 3)x3 + (3θ + 2)x + 3θ + 3,

then S1 = 3, S2 = 7 and S3 = −351. Formula (17.2) gives a0 = 1, a1 = 3, a2 = 8, a3 = −102,
so the L-polynomial of C is

15625T 6 + 1875T 5 + 200T 4 − 102T 3 + 8T 2 + 3T + 1.
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17.1.1.b Hyperelliptic curves over finite fields of characteristic 222222

Recall from Section 4.4.2.b that a genus g hyperelliptic curve C with Fq-rational Weierstraß point
for q = 2d can be defined by an affine equation y2 + h(x)y = f(x), with deg h � g and deg f =
2g + 1. To compute |C(Fqk )|, we again count the number of points corresponding to every element
α ∈ Fqk and add the unique place at infinity. Every zero α ∈ Fqk of h is the x-coordinate of
only one point

(
α,
√
f(α)

)
; every α ∈ Fqk with h(α) �= 0 is the x-coordinate of either 0 or 2

points depending on the trace of f(α)/h(α)2. Indeed, define z = y/h(α), then the equation of
the curve becomes z2 + z = f(α)/h(α)2 and according to Hilbert Satz 90 this equation has two
distinct solutions if and only if TrF

qk /F2

(
f(α)/h(α)2

)
= 0. Let Vh be the affine variety defined by

h(x) = 0, then we conclude that

|C(Fqk)| = 1 + |Vh(Fqk)| + 2
∑

α∈F
qk �Vh

(
1 − TrF

qk /F2

(
f(α)
h(α)2

))
,

where again the 1 corresponds to the unique place at infinity.

Example 17.3 Let d = 5 and F25 � F2(θ) with θ5 + θ2 + 1 = 0 and let C be defined by y2 +
h(x)y = f(x) with

h(x) = (θ4 + θ3 + θ + 1)x3 + (θ4 + θ2 + θ + 1)x2 + (θ3 + θ)x + θ2 + θ + 1,

f(x) = x7 + (θ4 + θ2)x6 + (θ4 + θ2 + θ)x5 + (θ4 + θ3 + θ2 + θ)x4 + (θ3 + θ2)x3

+ (θ3 + θ)x2 + (θ4 + θ3)x + θ3 + θ

then S1 = 3, S2 = 13, S3 = 423 and formula (17.2) leads to a0 = 1, a1 = 3, a2 = 11, a3 = 165,
so the L-polynomial of C is given by

LC(T ) = 32768T 6 + 3072T 5 + 352T 4 + 165T 3 + 11T 2 + 3T + 1.

17.1.2 Subfield curves

Curves defined over a small finite field admit faster Jacobian arithmetic using the Frobenius endo-
morphism as shown in Section 15.1. Since the curve is defined over a small finite field, it is easy to
compute its L-polynomial using an elementary method such as enumeration.

Let C be a nonsingular curve over Fq with Jacobian variety JC and let Lk ∈ Z[T ] denote the
L-polynomial of C/Fqk , then the order |JC(Fqk)| is given by Lk(1). Assume we have computed
L1(T ) =

∏2g
i=1(1 − αiT ), then by the Weil conjectures (see Section 8.3) we can easily recover

Lk(T ) as

Lk(T ) =
2g∏

i=1

(1 − αk
i T ).

A first approach therefore is to factorL1(T ) overCwith suitable precision, compute the k-th powers
of the roots and recover |JC(Fqk)| =

∏2g
i=1(1 − αk

i ). Since JC(Fq) is a subgroup of JC(Fqk) we
conclude that L1(1) | Lk(1). This observation can be used to lower the precision with which the αi

have to be computed, since it suffices to round
∏2g

i=1(1 − αk
i ) to the nearest multiple of L1(1).

The second method solely relies on integer arithmetic and is thus far easier to implement. Let
L1(T ) =

∑2g
i=0 aiT

i and define Sk = −
∑2g

i=1 α
k
i , then again we can use the recurrence formula

due to Newton–Girard
kak = Ska0 + Sk−1a1 + · · · + S1ak−1 (17.4)
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where ai = 0, for i > 2g.
The above formula can be used in two ways: firstly, given ai for i = 0, . . . , 2g compute Sk

for any k or secondly, given Sk for k = 1, . . . , g compute ai for i = 0, . . . , g and thus also for
i = g + 1, . . . , 2g since ai+g = qg−iai. Write

Lk(T ) =
2g∏

i=1

(1 − αk
i T ) =

2g∑
i=0

ak,iT
i,

then we can easily compute the ak,i given Sjk for j = 1, . . . , g by using the Newton–Girard formula
for Lk:

iak,i = Sikak,0 + S(i−1)kak,1 + · · · + Skak,i−1. (17.5)

The algorithm thus proceeds in two phases: in the first phase compute Sjk for j = 1, . . . , g from the
coefficients ai using (17.4); in the second phase, recover the ak,i using (17.5). A similar approach
can be found in the thesis of Lange [LAN 2001a].

Example 17.4 Let C be an elliptic curve over Fq, then L1(T ) = qT 2 − tT + 1, with t = α1 + α2

the trace of the q-th power Frobenius. Let tk = αk
1 + αk

2 be the trace of the qk-th power Frobenius,
then the tk are given by the recursion t1 = t, t2 = t2 − 2q and

tk = t tk−1 − qtk−2.

The number of points on C(Fqk) then follows easily from |C(Fqk)| = qk + 1 − tk.

17.1.3 Square root algorithms

Let C be a projective nonsingular curve over Fq of genus g and let JC denote its Jacobian variety.
This section shows how the structure of the abelian group JC(Fq) helps to compute its order.

Recall that for an arbitrary abelian group G the exponent e is defined as the smallest nonzero
integer such that [e]α = 0 for all α ∈ G. Denote with ord(α) the order of α. The square root
algorithms described in Chapter 19 compute ord(α) as the discrete logarithm of 0 to the base α in
time O

(
ord(α)1/2

)
.

Since clearly e = lcmα∈G

(
ord(α)

)
, in many cases e can be computed very efficiently by picking

a few random αi ∈ G for i = 1, . . . , n and computing en = lcm
(
ord(α1), . . . , ord(αn)

)
. Note that

ei should be used to speed up the computation of the order of αi+1. If the group order is bounded
from above by C and if en > C/2, then en is the group order of G. Furthermore, if the group order
is also bounded from below by C/2 < B � |G| � C and en > C − B, then the unique multiple
of en in the interval [B,C] is the group order of G. In the unlikely event that the above cases
do not apply, one can always resort to a probabilistic algorithm that computes the group order of
any abelian group [COH 2000, Algorithm 5.4.1] with expected running time of O(

√
C −B) group

operations. Recall from Proposition 5.78 that JC(Fq) is the direct sum of at most 2g cyclic groups

JC(Fq) �
⊕

1�i�2g

Z/diZ,

with di | di+1 for 1 � i < 2g and for all 1 � i � g one has di | q − 1.
Since the curve C is of genus g, the Weil conjectures imply

(
√
q − 1)2g � |JC(Fq)| � (

√
q + 1)2g.

In particular, the width of the Hasse–Weil interval is w = 4gqg−1/2 + O(qg−1) and the square root
algorithms compute |JC(Fq)| in time O

(√
g q

2g−1
4
)
. Note that since |JC(Fq)| � (

√
q − 1)2g, the
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exponent e = d2g satisfies e � (
√
q − 1). However, in most cases e > w so there is only one

multiple of e in the Hasse–Weil interval.
The above approach is especially useful in combination with other algorithms that provide partial

information, i.e., JC(Fq) (mod N) for some modulus N ∈ N. Clearly, if N > w then there is only
one candidate for |JC(Fq)| in the Hasse–Weil interval. When N < w, the square root algorithms
can be easily adapted to work in time O(

√
w/N).

If not only JC(Fq) (mod N) is known, but also χ(φq)C(T ) (mod N), then it is possible to
obtain an N -fold speedup instead of a

√
N -fold speedup. This was first noticed by Matsuo, Chao

and Tsujii [MACH+ 2002] who adapted the classical baby-step giant-step algorithm to take this
extra information into account. Gaudry and Schost [GASC 2004b] applied the same ideas to a
parallelized lambda method (see Section 19.6) with distinguished points. The latter version only
requires negligible space, whereas the former needs O

(√
gq

2g−1
4 /N

)
space; a slight disadvantage

is that it runs about 3 times slower than the original algorithm.

17.1.4 Cartier–Manin operator

This section introduces the Cartier–Manin operator and shows how it can be used to recover the
characteristic polynomial of Frobenius modulo the characteristic of the base field.

Let Fq be a finite field of characteristic p > 2 and let C be a projective nonsingular curve over Fq ,
with function field K = Fq(C). Let Kp denote the subfield of p-th powers and choose a separable
generating transcendental element x ∈ K �Kp.

Denote with Ω(K) the K-vector space of differentials as introduced in Section 4.4.2.c, then every
differential ω ∈ Ω(K) can be written uniquely as

ω = dλ + αpxp−1dx with λ, α ∈ K.

Definition 17.5 The Cartier operator C : Ω(K) → Ω(K) is defined as

C(ω) = αdx.

Recall that the set of holomorphic differentials Ω0(K) (see Section 4.4.2.c) forms an Fq-vector
space of dimension g.

Proposition 17.6 TheFq-vector space Ω0(K) is closed under the Cartier operator. Let (ω1, . . . , ωg)
be a basis of Ω0(K), then there exists a g × g matrix A = (ai,j) with coefficients in Fq such that

C

⎡
⎢⎢⎣
ω1

...

ωg

⎤
⎥⎥⎦ = A(1/p)

⎡
⎢⎢⎣
ω1

...

ωg

⎤
⎥⎥⎦ ,

where A(1/p) denotes the matrix
(
a
1/p
i,j

)
.

The matrix A in the above proposition is called the Cartier–Manin matrix of C and is determined up
to a transformation of the form S−1AS(p), with S a nonsingular g × g matrix and S(p) is obtained
from S by raising each of its elements to the p-th power. Manin [MAN 1961] proved that the matrix
A can be linked to the characteristic polynomial of Frobenius χ(φq)C .

Theorem 17.7 Let C be a projective nonsingular curve of genus g over a finite field Fq with q = pd.
Since the Cartier–Manin matrix A is determined up to a transformation of the form S−1AS(p), the
matrix M = AA(p) · · ·A(pd−1) is an invariant of the curve. Let κ(T ) = det(TIg − M) be the
characteristic polynomial of M and χ(φq)C the characteristic polynomial of Frobenius, then

χ(φq)C(T ) ≡ T gκ(T ) (mod p).
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To apply the above theorem, we need to compute the Cartier–Manin matrix A. For a hyperelliptic
curve of genus g given by an equation y2 = f(x) with f ∈ Fq[x] a monic squarefree polynomial of
degree 2g + 1, Manin [MAN 1962] proved the following proposition.

Proposition 17.8 Let ci denote the coefficient of xi in the polynomial f(x)(p−1)/2, then the Cartier–
Manin matrix with respect to the basis ωi = xi−1dx/y for i = 1, . . . , g is given by

A =

⎡
⎢⎢⎢⎢⎣
cp−1 cp−2 · · · cp−g

c2p−1 c2p−2 · · · c2p−g

...
...

. . .
...

cgp−1 cgp−2 · · · cgp−g

⎤
⎥⎥⎥⎥⎦ . (17.6)

The trivial method to apply the above proposition is to expand h = f(x)(p−1)/2 and to select the
desired coefficients. As noted by Flajolet and Salvy [FLSA 1997], the coefficients of h satisfy a
linear recurrence based on the identity:

f(x)h′(x) − p− 1
2

f ′(x)h(x) = 0.

Let f(x) =
∑

n∈Z fnx
n and h(x) =

∑
n∈Z hnx

n, then from the above equation we deduce that:

(n + 1)f0hn+1 +
(
n− p− 1

2

)
f1hn + · · · +

(
n− 2g − (2g + 1)(p− 1)

2

)
f2g+1hn−2g = 0.

Bostan, Gaudry, and Schost [BOGA+ 2004] describe an optimized algorithm to compute terms in
linear recurrences and prove that the Cartier–Manin matrix can be computed in time

O
((
RM (g)g

√
p + g3RP (

√
p)
)
(d lg p)µ

)
,

with RM (s) the number of ring operations to multiply two s × s matrices over a ring, RP (s) the
number of ring operations to multiply two degree s polynomials over a ring, and µ a constant such
that two B-bit integers can be multiplied in time Bµ.

Example 17.9 Let p = 101 and consider the genus 3 hyperelliptic curve C defined by

y2 = x7 + 93x6 + 64x5 + 2x4 + 65x3 + 90x2 + 18x + 10.

The Cartier–Manin matrix A of C can be easily computed and is given by

A =

⎡
⎢⎣ 4 54 49

13 67 10
78 40 44

⎤
⎥⎦ .

Computing the characteristic polynomial of A then shows that

χ(φq)C(T ) ≡ T 6 + 87T 5 + 84T 4 + 100T 3 (mod p).

which is indeed the reduction of the characteristic polynomial of Frobenius

χ(φq)C(T ) = T 6 − 14T 5 − 17T 4 + 1716T 3 − 1717T 2 − 142814T + 1030301.
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17.2 Overview of ��������-adic methods

This section gives an overview of the �-adic methods to compute the number of points on an elliptic
curve over a finite field. Although the �-adic approach can be made to work in all characteristics,
we will mainly focus on elliptic curves over large prime fields Fp. For curves over finite fields of
small characteristic, the p-adic algorithms described in Section 17.3 are much faster and easier to
implement.

17.2.1 Schoof’s algorithm

In 1985 Schoof [SCH 1985] was the first to describe a polynomial time algorithm to count the
number of points on an elliptic curve E over a large prime field Fp. In the remainder of this section,
we will assume that p > 3. As shown in Corollary 4.118, this means that E can be given by an
equation of the form

E : y2 = x3 + a4x + a6, with a4, a6 ∈ Fp. (17.7)

Recall that |E(Fp)| = p+ 1− t with t the trace of the Frobenius endomorphism φp and by Hasse’s
Theorem 5.83, we have |t| � 2

√
p. The main idea of Schoof’s algorithm is to compute t modulo

various small primes �1, . . . , �r such that
∏r

i=1 �i > 4
√
p. The trace t can then be determined using

the Chinese remainder theorem and the group order follows. From the prime number theorem, it
follows that r is O(lg p/ lg lg p) and that the largest prime �r is of order O(lg p).

To illustrate the idea, we show how to compute t (mod 2). Since p is an odd prime, we have
|E(Fp)| ≡ t (mod 2), so t ≡ 0 (mod 2) if and only if E(Fp) has a nontrivial Fp-rational point of
order two. The nontrivial points of order two are given by (ξi, 0) with ξi a root of X3 + a4X + a6.
Therefore, if X3 + a4X + a6 is irreducible over Fp we have t ≡ 1 (mod 2); otherwise, t ≡ 0
(mod 2). Note that the polynomial X3 + a4X + a6 is irreducible over Fp if and only if gcd(X3 +
a4X + a6, X

p −X) = 1. The computation of t (mod 2) thus boils down to polynomial arithmetic
modulo X3 + a4X + a6.

More generally, we obtain the trace t modulo a prime � by computing with the �-torsion points.
Recall that the Frobenius endomorphism φp is defined by φp : E(Fp) → E(Fp) : (x, y) �→ (xp, yp)
and that it satisfies the equation χ(φq)E(T ) = T 2 − tT + p, i.e., for all points P ∈ E(Fp) we have

φ2
p(P ) − [t]φp(P ) + [p](P ) = P∞.

By restricting to nontrivial �-torsion points P ∈ E[�]� {P∞}, we obtain the reduced equation

φ2
p(P ) − [t�]φp(P ) + [p�]P = P∞

with t� ≡ t (mod �) and p� ≡ p (mod �) and 0 � t�, p� < �.
As shown in Section 4.4.5.a, P = (x1, y1) ∈ E(Fp) is a nontrivial �-torsion point if and only

if x1 is a root of the �-th division polynomial f�. The nontrivial �-torsion points can therefore be
described as the solutions of the system of equations

Y 2 −X3 − a4X − a6 = 0 and f�(X) = 0.

This implies that the equation(
Xp2

, Y p2)⊕ [p�](X,Y ) = [t�](Xp, Y p) (17.8)

holds modulo the polynomials f�(X) and E(X,Y ) = Y 2 − X3 − a4X − a6. Note that the
addition ⊕ in (17.8) is the elliptic curve addition and that [p�](X,Y ) and [t�](Xp, Y p) can be easily
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computed using the division polynomials (see Section 4.4.5.a). To compute t�, we simply try all τ ∈
{0, . . . , �− 1} until we find the unique value τ for which

(
Xp2

, Y p2)⊕ [p�](X,Y ) = [τ ](Xp, Y p)
holds modulo f�(X) and E(X,Y ).

Example 17.10 Let p = 1009 and consider the elliptic curve E/Fp defined by the equation

E : y2 = x3 + 184x+ 896.

For � = 3, the �-th division polynomial is given by f�(X) = 3X4 + 95X2 + 338X + 450. An easy
calculation shows that q� ≡ 1 (mod �) and

Xp ≡ 278X3 + 467X2 + 479X + 447 (mod f�(X))

Y p ≡ (357X3 + 734X2 + 822X + 967)Y (mod (f�(X), E(X,Y )))

and Xp2 ≡ X (mod f�(X)) and Y p2 ≡ −Y (mod (f�(X), E(X,Y )). This clearly shows that
φ2

p(X,Y )⊕ (X,Y ) = P∞ and thus t ≡ 0 (mod 3). Computing t modulo 2, 3, 5, and 7 shows that
χ(φq)E(T ) = T 2 + 12T + p.

Recall that for � �= 2 and gcd(�, p) = 1, we have E[�] � Z/�Z × Z/�Z and thus deg f� =
(�2 − 1)/2. The computation of (Xp2

, Y p2
) and (Xp, Y p) modulo f� and E(X,Y ) clearly takes

O(lg p) multiplications in the ring Fp[X,Y ]/
(
E(X,Y ), f�(X)

)
. Since deg f� is of the order O(�2),

each of these multiplications takes O(�2µ lgµ p) bit-operations, so computing t (mod �) requires
O(�2µ lg1+µ p) bit-operations. Summing over all primes �1, . . . , �r and using the prime number
theorem gives an overall complexity of O(lg2+3µ p) bit-operations.

Note that if we could replace the division polynomials f� by alternative polynomials of lower
degree, the complexity of the algorithm would drop considerably. In the next section, we show that
for ordinary elliptic curves it is possible to use alternative polynomials for about half the primes �
and show how to deal with the other primes.

17.2.2 Schoof–Elkies–Atkin’s algorithm

The improvements of Atkin and Elkies rely on a detailed analysis of the action of the Frobenius
endomorphism φp on the group of �-torsion points E[�] with � �= p. Since E[�] � F� × F�,
the Frobenius endomorphism can be represented by an element of PGL2(F�). Atkin [ATK 1988,
ATK 1991] devised an algorithm to compute the order of φp in PGL2(F�) and showed how this can
be used to count the number of points on E(Fp). Elkies [ELK 1991] on the other hand devised a
method to replace the division polynomials of degree (�2 − 1)/2 by a factor of degree (�− 1)/2 for
about half the primes �.

Recall that the restriction of φq to E[�] satisfies the equation

T 2 − t�T + q� = 0.

Depending on whether the discriminant ∆ = t2 − 4q is a square or a nonsquare in F�, the roots of
this polynomial are defined over F� or F�2 . In the former case, the prime � is called an Elkies prime
and in the latter case, � is called an Atkin prime. Of course, since we do not know t, we cannot use
the above definition to decide if � is an Elkies or Atkin prime. Atkin proved that the �-th modular
polynomial Φ�(X,Y ) ∈ Z[X,Y ] can be used to distinguish both cases.

The �-th modular polynomial Φ�(X,Y ) ∈ Z[X,Y ] (see Section 17.2.3) is a symmetric polyno-
mial of degree � + 1 and has the following crucial property: let Fp be a finite field with p �= � and
E an elliptic curve over Fp, then the � + 1 zeroes j̃ ∈ Fp of the polynomial Φ�

(
X, j(E)

)
= 0
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are precisely the j-invariants of the isogenous curves Ẽ = E/C with C one of the � + 1 cyclic
subgroups of E[�]. Vélu’s formulas [VÉL 1971] can be used to write down a Weierstraß equation
for Ẽ and the isogeny E → Ẽ. The following proposition shows that C can be defined over Fp[j̃]
with j̃ ∈ Fp a zero of Φ�

(
X, j(E)

)
= 0.

Proposition 17.11 Let E be an ordinary elliptic curve over Fp with j-invariant j �= 0 or 1728.
Then

• the polynomial Φ�(X, j) has a zero j̃ ∈ Fpr if and only if the kernel C of the corre-
sponding isogeny E → E/C is a one-dimensional eigenspace of φr

p in E[�], with φp the
Frobenius endomorphism of E

• the polynomial Φ�(X, j) splits completely in Fpr [T ] if and only if φr
p acts as a scalar

matrix on E[�].

The above proposition already shows that φp has a one-dimensional eigenspace defined over Fp

precisely when Φ�(X, j) has a root in Fp. However, Atkin [ATK 1991] proved that only certain
factorizations can occur.

Theorem 17.12 (Atkin) Let E be an ordinary elliptic curve defined over Fp with j-invariant j �= 0
or 1728. Let Φ�(X, j) = f1f2 · · · fs be the factorization of Φ�(X, j) ∈ Fp[X ] as a product of
irreducible polynomials. Then there are the following possibilities for the degrees of f1, . . . , fs:

1. (1, �) or (1, 1, . . . , 1). In either case we have t2 − 4p ≡ 0 (mod �). In the former case
we set r = � and in the latter case r = 1.

2. (1, 1, r, r, . . . , r). In this case t2 − 4p is a square modulo �, r divides �− 1 and φp acts
on E[�] as a diagonal matrix

[
λ 0
0 µ

]
with λ, µ ∈ F∗� .

3. (r, r, . . . , r) for some r > 1. In this case t2 − 4p is a nonsquare modulo �, r divides
� + 1 and the restriction of φp to E[�] has an irreducible characteristic polynomial over
F�.

In all cases, r is the order of φp in the projective general linear group PGL2(F�) and the trace t of
the Frobenius satisfies

t2 ≡ p(ξ + ξ−1)2 (mod �), (17.9)

for some primitive r-th root of unity ξ ∈ F�. Furthermore, the number of irreducible factors s
satisfies

(−1)s =
(p
�

)
·

To decide if a prime � is an Atkin or Elkies prime, the above theorem shows that it suffices to
compute g(X) = gcd

(
Φ�(X, j), Xp − X

)
. Indeed, for g(X) = 1, � is an Atkin prime, else � is

an Elkies prime. Since Φ�(X, j) has degree � + 1, computing g(X) only requires O(�µ lg p1+µ)
bit-operations.

Atkin primes

To limit the number of possibilities for t (mod �) in case of an Atkin prime �, we need to compute
the exact order r of the Frobenius endomorphism in PGL2(F�) by computing

gi(X) = gcd
(
Φ�(X, j), Xpi −X

)
,

for i = 2, 3, . . . until gi(X) = Φ�(X, j). To speed up this computation, i should be limited to the
divisors of � + 1 that furthermore satisfy (−1)(�+1)/i =

(
p
�

)
· Once r is determined, there are only

ϕ(r) � (� + 1)/2 choices for the r-th root of unity ξ, where ϕ denotes Euler’s totient function. By
symmetry there are ϕ(r)/2 possible values for t2� and accordingly ϕ(r) values for t�.
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Atkin repeats this computation for various small primes � and then uses a baby-step/giant-step-like
algorithm to determine the correct value of the trace of Frobenius. Note that only the computations
with the modular polynomials are polynomial time; the baby-step giant-step algorithm on the other
hand is an exponential time algorithm.

Elkies primes

If � is an Elkies prime, then Theorem 17.12 implies that there exists a subgroup C� of order �
that is stable under φp, i.e., φp(P ) ∈ C� for P ∈ C�. This subgroup C� is an eigenspace of φp

corresponding to one of the eigenvalues λ or µ respectively, i.e., φp acts as multiplication by λ or µ
on C�. Let

g�(X) =
∏

+−P∈C�� {P∞}

(
X − x(P )

)
,

where x(P ) denotes the x-coordinate of P , then deg g� = (� − 1)/2 and g� could replace the
division polynomial in the above explanation if we knew how to compute it (see Section 17.2.4).
Furthermore as we can obtain t� as t� = λ + p�/λ ∈ F� it suffices to find 0 � λ < � with
φ(P ) = [λ]P , for all P ∈ C�. The complexity of this calculation is determined by the computation
of Xp and Y p modulo g�(X); since g� has degree O(�) instead of O(�2), this computation only
takes O(�µ lg p1+µ) bit-operations.

The main idea to obtain g� is to use an isogeny whose kernel is precisely C�. This is possible as
for every finite subgroup C� of E(Fp) which is stable under the Frobenius endomorphism φp, there
exists an isogenous curve E(�) defined over Fp and a separable isogeny ψ� : E → E(�) with kernel
equal to C�. A detailed description of how to compute g� is given in Section 17.2.4.

17.2.3 Modular polynomials

In this section, we define the �-th modular polynomials Φ�(X,Y ) over C as minimum polynomi-
als for j-invariants of curves isogenous to E considered as modular functions for certain subgroups
Γ0(�) of SL2(Z). However, the classical modular polynomials Φ�(X,Y ) have two main drawbacks:
the size of their coefficients increases badly as � increases and their degree in Y is too high. Poly-
nomials with fewer and smaller coefficients can be obtained as minimum polynomials of different
modular functions. In this section we only review one such alternative, called the canonical modular
polynomials, and refer the interested reader to [MOR 1995, MÜL 1995] for more complete details.
The mathematical background can be found in [SER 1970, SCH 1974, SIL 1994].

17.2.3.a Modular functions

As shown in Corollary 5.18, an elliptic curve E defined over C is analytically isomorphic to the
quotient of C by a lattice Λτ = Z + τZ where τ belongs to the Poincaré upper half plane H =
{z ∈ C | mz > 0}. The j-invariant of the elliptic curve defined by Λτ can be computed by the
series

∀τ ∈ H, j(τ) =
1
q

+ 744 +
∑
n�1

cnq
n

where the coefficients cn are integers and q = e2iπτ . For a matrix M =
[

a b
c d

]
∈ SL2(Z), the lattice

(aτ + b)Z+(cτ +d)Z is isomorphic to Λτ . The fundamental domain F of a subgroup Γ of SL2(Z)
is defined as the connected open subset of H such that τ and M(τ) = (aτ + b)/(cτ +d) for M ∈ Γ
do not simultaneously belong to this subset. The fundamental domain F for SL2(Z) is shown in
Figure 17.1
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Figure 17.1 Fundamental domain for SL2(Z).
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Since Eτ and EM(τ) are isomorphic, we have ∀τ ∈ H, ∀M ∈ SL2(Z), j
(
M(τ)

)
= j(τ), which

shows that j(τ) is a modular function. More precisely, denote with

H∗ = {z ∈ C | mz > 0} ∪Q ∪ {∞}

the compactification of H, then a modular function for a discrete subgroup Γ of SL2(Z) is a mero-
morphic function on the compact Riemann surface Γ�H∗.

Definition 17.13 Let Γ be a subgroup of finite index in SL2(Z); a modular function for Γ is a
complex function f of H∗ such that

1. f is invariant under Γ, i.e., ∀M ∈ Γ, f
(
M(τ)

)
= f(τ),

2. f is meromorphic in H∗ (see [SCH 1974] for a precise definition of this condition).

It is not difficult to see that modular functions for a subgroup Γ form a field, denoted KΓ. They
satisfy the following two additional properties.

Proposition 17.14 If f is a modular function for Γ and if Γ′ is a subgroup of finite index of Γ, then
f is a modular function for Γ′.

Proposition 17.15 If f is a modular function for Γ and M ∈ SL2(Z), then f|M : H∗ → C,
τ �→ f

(
M(τ)

)
, is a modular function for M−1ΓM .

Modular functions are worth studying in our context mainly because a modular function for a
discrete subgroup Γ of SL2(Z) is a root of an algebraic equation of degree d = [SL2(Z) : Γ]
whose coefficients are rational functions of j. In other words, KΓ is an algebraic extension of
KSL2(Z) = C(j) of degree d.

Theorem 17.16 Any modular function f for a subgroup Γ of SL2(Z) with finite index d is the root
of an equation of degree d,

G(f, j) =
d∑

i=0

Ri(j)f i = 0
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where Ri(j) are rational functions in j(τ) overC. This equation is G(X, j) =
d∏

i=1

(X − f|Si
) where

Si are representatives of SL2(Z)/Γ.

The modular equations used in the SEA algorithm are built using the above theorem and depend on
the specific discrete subgroups of SL2(Z) and functions f(τ) chosen.

17.2.3.b Classical modular polynomials

For a prime �, the modular polynomial Φ�(X,Y ) is the minimum polynomial of the modular func-
tion j� : τ �→ j(�τ) for the subgroup Γ0(�) of SL2(Z) defined by

Γ0(�) =

{[
a b

c d

]
with ad− bc = 1 and c ≡ 0 (mod �)

}
.

In order to apply Theorem 17.16 to j�, we need to know the structure of SL2(Z)/Γ0(�).

Proposition 17.17 Γ0(�) is a subgroup of SL2(Z) of finite index �+ 1. A set of representatives for
the cosets of SL2(Z)/Γ0(�) is given by[

1 0
0 1

]
and

[
0 −1
1 v

]
for 0 � v < �.

Therefore, the minimum polynomial of j� can be computed as

Φ�

(
X, j(τ)

)
=
(
X − j(�τ)

) �−1∏
i=0

(
X − j

(
−�

τ + i

))
·

The main disadvantage of this polynomial is its huge coefficients, caused by the fact that j� has a
pole of large order at infinity.

Example 17.18 To illustrate this disadvantage we give the classical modular polynomial for � = 3

Φ3(X,Y ) = X4 −X3Y 3 + Y 4 + 2232(X3Y 2 + X2Y 3) − 1069956(X3Y + XY 3)
+ 36864000(X3 + Y 3) + 2587918086X2Y 2 + 8900222976000(X2Y + XY 2)

+ 452984832000000(X2 + Y 2) − 770845966336000000XY

+ 1855425871872000000000(X + Y ).

17.2.3.c Canonical modular polynomials

Instead of using Φ�(X,Y ), Atkin proposed to replace the function j� by the function f� defined by

f�(τ) = �s

(
η(�τ)
η(τ)

)2s

with s = 12/gcd(12, �− 1) and Dedekind’s η-function

η(τ) = q1/24
∞∏

n=1

(1 − qn),

where q = e2iπτ . One can show that f�(τ) is given by a power series expansion of the form

f�(τ) = �sqv +
∑

n�v+1

anq
n,
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with v = s(�− 1)/12 and that f� is a modular function for Γ0(�).
By definition, the canonical modular polynomial is the minimum polynomial of f� given by

Φc
�

(
X, j(τ)

)
=
(
X − f�(τ)

) �−1∏
i=0

(
X − f�

(
−1
τ + i

))
.

One can prove that the splitting behavior of Φc
�(X, j) is the same as the splitting behavior of

Φ�(X, j). However, to determine the j-invariant of the isogenous curve, we cannot simply compute
a zero of Φc

�(X, j), but have to work in two stages. First, compute a zero f of Φc
�(X, j) and then

compute a zero of Φc
�(�

s/f, Y ) which, gives the j-invariant of the isogenous curve. This follows
immediately from the definition of Φc

�(X,Y ), since Φc
�(f�, j) = 0 implies Φc

�(�
s/f�, j�) = 0.

Example 17.19 To illustrate the fact that the canonical modular polynomials have smaller coeffi-
cients and lower degree in Y compared to the classical ones, we give Φc

5(X,Y ):

Φc
5(X,Y ) = X6 + 30X5 + 315X4 + 1300X3 + 1575X2 + (−Y + 750)X + 125.

17.2.4 Computing separable isogenies in finite fields of large characteristic

Assuming � is an Elkies prime, Theorem 17.12 implies that there exists a subgroup C� ⊂ E[�] of
order � which is an eigenspace of the Frobenius endomorphism φp. Furthermore, there exists an
isogenous elliptic curve Ẽ = E/C� and a separable isogeny of degree � between E and Ẽ. This
section not only shows how to compute a Weierstraß equation for the elliptic curve Ẽ, but also the
polynomial

g�(X) =
∏

+−P∈C�� {P∞}

(
X − x(P )

)
.

Both algorithms are due to Elkies [ELK 1991].

17.2.4.a Isogenous curve

Clearly, the j-invariant j̃ of Ẽ can simply be obtained as a root of the polynomial Φ�

(
X, j(E)

)
= 0.

However, in finite fields of large characteristic, the equation of Ẽ can not be recovered directly from
j̃, since a twisted curve has the same j-invariant.

Elkies [ELK 1991] proved the following theorem, which provides a Weierstraß equation for Ẽ,
given the Weiestraß equation for E and the j-invariant j̃. A detailed proof of this theorem can be
found in an article by Schoof [SCH 1995].

Theorem 17.20 Let E be an ordinary elliptic curve over a large prime finite field Fp with j-invariant
j not 0 or 1728. Assume that E is given by the Weierstraß equation E : y2 = x3 + a4x + a6 and
that Ẽ is �-isogenous over Fp to E. Let j̃ be the j-invariant of Ẽ then a Weierstraß equation for Ẽ
is given by

Ẽ : y2 = x3 + ã4x + ã6

with

ã4 = − 1
48

j̃′2

j̃(j̃− 1728)
and ã6 = − 1

864
j̃′3

j̃2(j̃− 1728)
,

where j̃′ ∈ Fp is given by

j̃′ = −18
�

a6

a4

Φ�,X(j, j̃)
Φ�,Y (j, j̃)

j

and Φ�,X (resp. Φ�,Y ) denotes the partial derivative of Φ�(X,Y ) with respect to X (resp. Y ).
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Remark 17.21 A similar theorem can be obtained for the canonical modular polynomial Φc
�(X,Y );

the explicit formulas in this case can be found in [MOR 1995, MÜL 1995].

17.2.4.b Kernel of a separable isogeny

Let E be defined by the Weierstraß equation E : y2 = x3 + a4x + a6 and the isogenous elliptic
curve Ẽ = E/C� by Ẽ : y2 = x3 + ã4x + ã6. To compute the polynomial

g�(X) =
∏

+−P∈C�� {P∞}

(
X − x(P )

)
,

Elkies first computes the sum p1 of the x-coordinates of the nonzero points in E[�]. A proof of the
following theorem can again be found in [SCH 1995].

Theorem 17.22 Let E4 = −48a4 and E6 = 864a6 and similarly, Ẽ4 = −48ã4 and Ẽ6 = 864ã6,
then

p1 =
∑

P∈C�� {P∞}

x(P )

is given by

p1 =
�

2
J +

�

4

(
E2

4

E6

− �
Ẽ2

4

Ẽ6

)
+

�

3

(
E6

E4

− �
Ẽ6

Ẽ4

)
,

where J is defined as

J = − j′2Φ�,XX(j, j̃) + 2�j′j̃′Φ�,XY (j, j̃) + �2j̃′2Φ�,Y Y (j, j̃)
j′Φ�,X(j, j̃)

and j′ = −jE6/E4 and j̃′ = −j̃Ẽ6/Ẽ4. The notation for the partial derivatives is as above, for
instance Φ�,XX is shorthand for ∂2Φ�/∂X

2.

Given the equation for E and Ẽ and the value of p1, there are various algorithms to compute the
polynomial g�(X). In this section we follow the description in [SCH 1995] and refer to [MOR 1995,
MÜL 1995] for alternative algorithms.

Instead of working with Ẽ, Schoof works with the isomorphic curve Ê : y2 = x3 + â4x + â6

with â = �4ã4 and â6 = �6ã6. To E we can associate the reduced Weierstraß ℘-function by

℘(z) =
1
z2

+
∞∑

k=1

ckz
2k

where the coefficients are given by

c1 = −a4

5
, c2 = −a6

7
, ck =

3
(k − 2)(2k + 3)

k−2∑
j=1

cjck−1−j , for k � 3.

The function ℘̂ for Ê is defined similarly using the coefficients â4 and â6. The following theorem
provides an efficient method to compute g�(X) given E, Ẽ = E/C� and p1.

Theorem 17.23 Let g�(X) be the polynomial that vanishes on the x-coordinates of the points in
the kernel of the isogeny ψ� : E → Ẽ, then

z�−1g�

(
℘(z)

)
= exp

(
−1

2
p1z

2 −
∞∑

k=1

ĉk − �ck

(2k + 1)(2k + 2)
z2k+2

)
·
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Let g�(X) = Xd +
∑d−1

k=0 g�,kX
k, then by the above theorem, the first few coefficients of g�(X)

are

g�,d−1 = −p1

2
,

g�,d−2 =
p2
1

8
− ĉ1 − �c1

12
− �− 1

2
c1,

g�,d−3 = −p3
1

48
− ĉ2 − �c2

30
+ p1

ĉ1 − �c1
24

− �− 1
2

c2 +
�− 3

4
c1p1.

Remark 17.24 The above algebraic relations are in fact reductions of relations over C; for these
relations to hold over a finite field, the characteristic p must be large enough. In particular, the
coefficients ck and ĉk need inversions of integers of the form (k−2)(2k+3), which can be equal to
zero when k � (p− 3)/2. For finite fields of small characteristic, alternative algorithms to compute
g�(X) have been developed; the most important references are [LER 1996, COU 1996].

17.2.5 Complete SEA algorithm

To conclude we give an overview of the SEA algorithm in pseudo-code. The time complexity of
Algorithm 17.25 amounts to O

(
(lg p)2µ+2

)
bit-operations and the space complexity is O

(
(lg p)2

)
.

Algorithm 17.25 SEA

INPUT: An ordinary elliptic curve E over Fp, with j-invariant not 0 or 1728.

OUTPUT: The number of points |E(Fp)|.
1. � ← 3, MA ← 1, A ← {}, ME ← 2 and E ← {(t2, 2)} [t2 like in the introduction]

2. while ME × MA < 4
√

p do

3. compute a modular equation Φ�(X, Y ) (mod p)

4. find the splitting of Φ�(X, j) (mod p)

5. if � is an Elkies prime then

6. compute j(�) from Φ�(X, j) in Fp

7. determine an isogeny ψ� : E → E(�) and g�

8. find an eigenvalue λ of φ in F�

9. t� ← λ + p/λ mod �

10. E ← E ∪ {(t�, �)} and ME ← ME × �

11. else [� is an Atkin prime]

12. determine the set T� of possible values for t (mod �)

13. A ← A ∪ {(T�, �)} and MA ← MA × �

14. � ← nextprime(�)

15. determine t from E ∪ A using match and sort algorithm [ATK 1988, LER 1997]

16. return p + 1 − t

Example 17.26 Let E be the curve defined over F257 by y2 = x3 + x + 2. Assume we want to
compute the trace t5 of the Frobenius endomorphism modulo 5. Evaluating Φc

5(X, j) (mod p) with
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j = 25 shows that 5 is an Elkies prime for E since

Φc
5(X, 25) ≡ (X + 74)(X + 137)(X4 + 76X3 + 98X2 + 152X + 124) (mod p).

This polynomial has two roots, f1 = 120 and f2 = 183. Assume we choose the root f2 =
183, then the j-invariant of the isogenous curve can be determined as the root of Φc

5(�
s/f2, Y ) ≡

Φc
5(231, Y ) ≡ 0 (mod p). The root of this polynomial is j(5) = 166. Using Elkies’ formulas, we

know that the curve E is therefore isogenous to

E(5) : y2 = x3 + 86x + 204,

and that the sum of the x-coordinates of the nonzero points in the kernel of the isogeny is equal to
p1 = 225. Finally, we recover

g5(X) = X2 + 16X + 21.

An easy calculation then shows that

X257 ≡ 256X + 241 (mod g�(X))

Y 257 ≡ (144X + 61)Y (mod g�(X), Y 2 −X3 −X − 2).

Determining the eigenvalue gives λ = 3 and finally we conclude that t5 = λ+257/λ ≡ 2 (mod 5).

Remarks 17.27

(i) In 1990, Pila [PIL 1990] described a generalization of Schoof’s algorithm that computes
the characteristic polynomial of Frobenius on an arbitrary abelian variety over a finite
field. Although the algorithm has a polynomial time complexity in the size of the finite
field, it is rather impractical since it requires as input a system of polynomial equations
describing the abelian variety and a set of rational functions that express the group law.
Even for the Jacobian of a genus 2 curve, this requires 72 quadratic equations in 15
variables.

(ii) Kampkötter [KAM 1991] developed an algorithm specifically for hyperelliptic curves
including recurrence formulas describing the �-torsion. Although the algorithm is much
faster than Pila’s, it is still too slow to be of cryptographic interest.

(iii) Adleman and Huang [ADHU 1996, ADHU 2001] and Huang and Ierardi [HUIE 1998]
improved Pila’s work by restricting to curves, but again the algorithms are more of
theoretical interest and far too slow for cryptographic purposes.

(iv) For curves over finite fields of large characteristic, only the genus 2 case is more or
less practical thanks to the work of Gaudry and Harley [GAHA 2000] and the improve-
ments by Gaudry and Schost [GASC 2004a]. The current situation is best compared to
Schoof’s algorithm for elliptic curves and as such, the algorithm is just fast enough to
reach the cryptographic range. The corresponding improvements by Elkies and Atkin
are still lacking for higher genus curves, although Gaudry and Schost [GASC 2005] have
introduced modular polynomials using a purely algebraic construction based on ideas by
Charlap, Coley and Robbins [CHCO+ 1991].

17.3 Overview of pppppppp-adic methods

The history of p-adic algorithms to compute the zeta function of curves or even algebraic varieties,
is a rather odd one. Indeed, in 1960 Dwork [DWO 1960] already illustrated the power of the p-adic
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approach in his proof of the rationality of the zeta function of an algebraic variety. Furthermore, at
the end of the 1970’s, Kato and Lubkin [KALU 1982] designed a p-adic algorithm to compute the
number of points on an elliptic curve that runs in polynomial time for fixed p, but nobody actually
implemented their algorithm.

Finally, at the end of 1999, Satoh [SAT 2000] realized that the p-adic approach is, at least for
small p, much more powerful than the existing �-adic methods. Not only did Satoh describe a p-
adic algorithm to compute the number of points on an ordinary elliptic curve over a finite field, but
also illustrated its efficiency with an implementation.

Since then, many p-adic algorithms have been designed and in this section we give an overview
of the three most practical ones: Satoh’s algorithm, the Arithmetic-Geometric-Mean algorithm and
finally, an algorithm based on Monsky–Washnitzer cohomology.

17.3.1 Satoh’s algorithm

In [SAT 2000], Satoh shows how to efficiently compute a p-adic approximation of the canonical lift
of an ordinary elliptic curve E over a finite field and how this can be used to count the number of
points on E.

17.3.1.a The canonical lift of an ordinary elliptic curve

In this section, we specialize the theory of the canonical lift of ordinary abelian varieties to ordinary
elliptic curves over a finite field Fq, with q = pd and p prime.

Definition 17.28 The canonical lift E of an ordinary elliptic curve E over Fq is an elliptic curve
overQq which satisfies:

• the reduction of E modulo p equals E,
• the ring homomorphism End(E) → End(E) induced by reduction modulo p is an iso-

morphism.

Deuring [DEU 1941] showed that the canonical lift E always exists and is unique up to isomorphism.
The above definition is actually one of many ways in which the canonical lift can be characterized.

Theorem 17.29 Let E/Fq denote an ordinary elliptic curve and let E/Qq be a lift of E, then the
following statements are equivalent:

• E is the canonical lift of E.
• Reduction modulo p induces an isomorphism End(E) � End(E).
• The q-th power Frobenius φq ∈ End(E) lifts to an endomorphism Fq ∈ End(E).
• The p-th power Frobenius isogeny φp : E → Eσ lifts to an isogeny Fp : E → EΣ, with

Σ the Frobenius substitution on Qq .

The last property implies that there exists an isogeny of degree p between the canonical lift E and its
conjugate EΣ. By the properties of the p-th modular polynomial Φp(X,Y ) ∈ Z[X,Y ], this implies
that Φp

(
j(E),Σ

(
j(E)

))
= 0. The next theorem by Lubin, Serre and Tate [LUSE+ 1964] shows

that this is in fact a sufficient condition.

Theorem 17.30 (Lubin–Serre–Tate) Let E be an ordinary elliptic curve over Fq with j-invariant
j(E) ∈ Fq �Fp2 . Denote with Σ the Frobenius substitution on Qq and with Φp(X,Y ) the p-th
modular polynomial. Then the system of equations

Φp

(
X,Σ(X)

)
= 0 and X ≡ j(E) (mod p), (17.10)
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has a unique solution J ∈ Zq , which is the j-invariant of the canonical lift E of E (defined up to
isomorphism).

The hypothesis j(E) �∈ Fp2 in Theorem 17.30 is necessary to ensure that a certain partial derivative
of Φp does not vanish modulo p and guarantees the uniqueness of the solution of (17.10). The
case j(E) ∈ Fp2 can be handled very easily as shown in Section 17.1.2, since the curve is then
isomorphic to a curve defined over Fp or Fp2 . In the remainder of this section we will therefore
assume that j(E) �∈ Fp2 and in particular that E is ordinary [SIL 1986, Theorem V.3.1].

17.3.1.b Isogeny cycles

To compute j(E) mod pN , Satoh considered E together with all its conjugates Ei = Eσi

with
0 � i < d and σ the p-th power Frobenius automorphism of Fq. Let φp,i denote the p-th power
Frobenius isogeny φp,i : Ei → Ei+1 : (x, y) �→ (xp, yp), then we obtain the following cycle

E0 E1 · · · Ed−1 E0.� � � �φp,0 φp,1 φp,d−2 φp,d−1

Composing these isogenies, we can express the Frobenius endomorphism as

φq = φp,d−1 ◦ φp,d−2 ◦ · · · ◦ φp,0.

Instead of lifting E separately, Satoh lifts the whole cycle (E0, E1, . . . , Ed−1) simultaneously lead-
ing to the diagram

E0 E1 · · · Ed−1 E0,
� � � �

φp,0 φp,1 φp,d−2 φp,d−1

E0 E1 · · · Ed−1 E0
� � � �

Fp,0 Fp,1 Fp,d−2 Fp,d−1

� � � �

π1 π1 π1 π1
(17.11)

with Ei the canonical lift of Ei and Fp,i the corresponding lift of φp,i, which exists by Theo-
rem 17.29.

17.3.1.c Computing the canonical lift

The theorem of Lubin, Serre, and Tate implies that the j-invariant of E is uniquely determined by
Φp

(
j(E),Σ

(
j(E)

))
= 0 and j(E) ≡ j(E) (mod p). Note that this system of equations can be

solved efficiently using the algorithms described in Section 12.7, which were designed specifically
with this application in mind.

In Satoh’s original algorithm however, this lifting problem is solved as follows: clearly, the j-
invariants of the Ei satisfy

Φp

(
j(Ei+1), j(Ei)

)
= 0 and j(Ei) ≡ j(Ei) (mod p),

for i = 0, . . . , d− 1. Define Θ : Zd
q −→ Zd

q by

Θ(x0, x1, . . . , xd−1) =
(
Φp(x0, x1),Φp(x1, x2), . . . ,Φp(xd−1, x0)

)
,

then we have Θ
(
j(Ed−1), j(Ed−2), . . . , j(E0)

)
= (0, 0, . . . , 0). Using a multivariate Newton itera-

tion on Θ, we can lift the cycle of j-invariants
(
j(Ed−1), j(Ed−2), . . . , j(E0)

)
to Zd

q with arbitrary
precision. The iteration is given by

(x0, x1, . . . , xd−1) ← (x0, x1, . . . , xd−1) −
(
(DΘ)−1Θ

)
(x0, x1, . . . , xd−1),
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with (DΘ)(x0, . . . , xd−1) the Jacobian matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ′
p(x0, x1) Φ′

p(x1, x0) 0 · · · 0
0 Φ′

p(x1, x2) Φ′
p(x2, x1) · · · 0

...
...

...
. . .

...

0 0 0 · · · Φ′
p(xd−1, xd−2)

Φ′
p(x0, xd−1) 0 0 · · · Φ′

p(xd−1, x0)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where Φ′
p(X,Y ) denotes the partial derivative with respect to X . Note that Φ′

p(Y,X) is the partial
derivative of Φp(X,Y ) with respect to Y since Φp(X,Y ) is symmetric.

The p-th modular polynomial satisfies the Kronecker relation

Φp(X,Y ) ≡ (Xp − Y )(X − Y p) (mod p)

and since j(Ei) �∈ Fp2 and j(Ei+1) = j(Ei)p, we have{
Φ′

p

(
j(Ei+1), j(Ei)

)
≡ j(Ei)p2 − j(Ei) �≡ 0 (mod p),

Φ′
p

(
j(Ei), j(Ei+1)

)
≡ j(Ei)p − j(Ei)p ≡ 0 (mod p).

The above equations imply that (DΘ)(x0, . . . , xd−1) (mod p) is a diagonal matrix with nonzero
diagonal elements. Therefore, the Jacobian matrix is invertible over Zq and we conclude that δ =(
(DΘ)−1Θ

)
(x0, x1, . . . , xd−1) ∈ Zd

q . Note that we can simply apply Gaussian elimination to solve

(DΘ)(x0, . . . , xd−1)δ = Θ(x0, . . . , xd−1)

since the diagonal elements are all invertible. Using row operations we move the bottom left element
Φ′

p(x0, xd−1) towards the right. After k row operations this element becomes

(−1)kΦ′
p(x0, xd−1)

k−1∏
i=0

Φ′
p(xi+1, xi)

Φ′
p(xi, xi+1)

which clearly is divisible by pk since Φ′
p(xi+1, xi) ≡ 0 (mod p). This procedure is summarized in

Algorithm 17.31.

Algorithm 17.31 Lift j-invariants

INPUT: A cycle ji ∈ Fq �Fp2 with Φp(ji+1, ji) ≡ 0 (mod p) for 0 � i < d and precision N .

OUTPUT: A cycle Ji ∈ Zq with Φp(Ji+1, Ji) ≡ 0 (mod pN) and Ji ≡ ji (mod p) for all
0 � i < d.

1. if N = 1 then

2. for i = 0 to d − 1 do Ji ← ji

3. else

4. N ′ ← ˚
N
2

ˇ
and M ← N − N ′

5. (J0, . . . , Jd−1) ← Lift j-invariants
`
(j0, . . . , jd−1), N

′´

6. for i = 0 to d − 2 do

7. t ← Φ′
p(Ji, Ji+1)

−1 mod pM

8. Di ← tΦ′
p(Ji+1, Ji) mod pM
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9. Pi ← t
`
(Φp(Ji+1, Ji) mod pN)/pN′´

mod pM

10. R ← Φ′
p(J0, Jd−1) mod pM

11. S ←
“`

(Φp(J0, Jd−1) mod pN)
´
/pN′”

mod pM

12. for i = 0 to min{M, d − 2} do

13. S ← (S − RPi) mod pM

14. R ← (−RDi) mod pM

15. R ← `
R + Φ′

p(Jd−1, J0)
´

mod pM

16. Pd−1 ← (SR−1) mod pM

17. for i = d − 2 down to 0 do Pi ← (Pi − DiPi+1) mod pM

18. for i = 0 to d − 1 do Ji ← (Ji − pN′
Pi) mod pN

19. return (J0, . . . , Jd−1)

Example 17.32 Let p = 7, d = 5 and Fpd � Fp(θ) with θ5 + θ + 4 = 0. Consider the j-invariant
j0 = 3θ4+6θ3+2θ, then Algorithm 17.31 computes the j-invariant of the canonical lift to precision
N = 10 with Zq � Zp[T ]/

(
G(T )

)
and G(T ) = T 5 + T + 4 as

J0 ≡ 249888299T 4 + 236778044T 3 + 9871351T 2 + 169542361T + 26531974 (mod pN ).

As shown in Section 4.4.2.a, we can assume that either E or its quadratic twist is given by an
equation of the form

p = 2 : y2 + xy = x3 + a6, j(E) = 1/a6,

p = 3 : y2 = x3 + x2 + a6, j(E) = −1/a6,

p > 5 : y2 = x3 + 3ax + 2a, j(E) = 1728a/(1 + a).

Once the j-invariant j(E) of the canonical lift of E is computed, a Weierstraß model for E is given
by

p = 2 : y2 + xy = x3 + 36αx + α, α = 1/
(
1728 − j(E)

)
,

p = 3 : y2 = x3 + x2/4 + 36αx + α, α = 1/
(
1728 − j(E)

)
,

p > 5 : y2 = x3 + 3αx + 2α, α = j(E)/
(
1728 − j(E)

)
.

Note that the above models have the correct j-invariant j(E) and reduce to E modulo p.

17.3.1.d The trace of Frobenius

By analyzing the action of Fq on a holomorphic differential on E (see Section 4.4.2.c), we can easily
recover the trace Tr(φq) of the Frobenius endomorphism φq .

Proposition 17.33 (Satoh) Let E be an elliptic curve overQq having good reduction modulo p and
let f ∈ End(E) of degree n. Let ω be a holomorphic differential on E and let f∗(ω) = c ω be the
action of f on ω, then

Tr(f) = c +
n

c
·

Note that if we apply the above proposition to the lifted Frobenius endomorphism Fq, we get
Tr(Fq) = b + q/b with F∗

q (ω) = b ω. Since E is ordinary it follows that either b or q/b is a unit in
Zq . However, φq is inseparable and thus b ≡ 0 (mod p), which implies that b ≡ 0 (mod q), since
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q/b has to be a unit in Zq . So if we want to compute Tr(Fq) mod pN , we would need to determine
b mod pd+N . Furthermore, it turns out to be quite difficult to compute b directly. As will become
clear later, we would need to know ker(Fp,i), which is subgroup of Ei[p] of order p. However, since
ker(φp,i) is trivial we cannot use a simple lift of ker(φp,i) to ker(Fp,i), but would need to factor the
p-division polynomial of Ei.

To avoid these problems, Satoh works with the Verschiebung V q , i.e., the dual isogeny of φq ,
which is separable since E is ordinary and thus ker(V q) can be easily lifted to ker(Vq), with Vq

the image of V q under the ring isomorphism End(E) � End(E). Furthermore, the trace of an
endomorphism equals the trace of its dual, so we have Tr(Fq) = Tr(Vq) = c + q/c with V∗

q (ω) =
c ω and c a unit in Zq . Diagram (17.11) shows that Vq = F̂p,0 ◦ F̂p,1 ◦ · · · ◦ F̂p,d−1 and therefore
we can compute c from the action of F̂p,i on a holomorphic differential ωi of Ei for i = 0, . . . , d−1.
More precisely, take ωi = ωΣi

for 0 � i < d and let ci be defined by

F̂∗
p,i(ωi) = ci ωi+1,

then c =
∏

0�i<d

ci. Since V q is separable, c will be nonzero modulo p and we conclude

Tr(φq) ≡
∏

0�i<d

ci (mod q).

Since all commutative squares in diagram (17.11) are conjugates of each other, we can also recover
the trace of Frobenius as the norm of c0, i.e.,

Tr(φq) ≡ NQq/Qp
(c0) (mod q).

17.3.1.e Computing the cicicicicici

The final step in Satoh’s algorithm is to compute the coefficients ci using the equations for Ei and
Ei+1 and the kernel of F̂p,i. Consider the following diagram:

Ei+1 Ei

F̂p,i

Ei+1/ ker(F̂p,i)
�

�
�

���
�

�
��

�

νi λi
(17.12)

Given ker(F̂p,i), Satoh uses Vélu’s formulas [VÉL 1971] to compute an equation for the curve
Ei+1/ ker(F̂p,i) and the isogeny νi. Since νi and F̂p,i are both separable and ker(νi) = ker(F̂p,i),
there exists an isomorphism λi : Ei+1/ ker(F̂p,i) −→ Ei that makes the above diagram commuta-
tive. Due to Vélu’s construction, the action of νi on the chosen holomorphic differentials is trivial,
i.e., ν∗i (ωi+1,K) = ωi+1 with ωi+1,K the holomorphic differential on Ei+1/ ker(Σ̂i). Therefore, it
is sufficient to compute the action of λi on ωi.

Note that ker(F̂p,i) is a subgroup of order p of Ei+1[p]. Let Hi(x) be

Hi(x) =
∏

P∈(ker( bFp,i)� {P∞})/ +−

(
x− x(P )

)
,

then Hi(x) divides the p-division polynomial Ψp,i+1(x) of Ei+1. To find the correct factor of
Ψp,i+1(x) Satoh proves the following lemma.
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Lemma 17.34 (Satoh) Let p � 3, then ker Σ̂i = Ei+1[p] ∩ Ei+1(Zur
q ), with Zur

q the valuation ring
of the maximal unramified extensionQur

q of Qq.

The above lemma implies that Hi(x) ∈ Zq[x] is the unique monic polynomial that divides Ψp,i+1(x)
and such that Hi(x) is squarefree modulo p of degree (p− 1)/2. Since Ei is ordinary, ker(φ̂p,i) =
Ei+1[p] and Ψp,i+1(x) (mod p) has inseparable degree p. Therefore, δHi(x)p ≡ Ψp,i+1(x)
(mod p), with δ the leading coefficient of Ψp,i+1. This implies that we cannot apply Hensel’s
lemma 3.17, since the polynomials Hi(x) mod p and Ψp,i+1(x)/Hi(x) mod p are not coprime. To
solve this problem, Satoh devised a modified Hensel lifting [SAT 2000, Lemma 2.1], which also has
quadratic convergence.

Lemma 17.35 (Satoh) Let p � 3 be a prime and Ψ(x) ∈ Zq[x] satisfying Ψ′(x) ≡ 0 (mod p) and
Ψ′(x) �≡ 0 (mod p2). Let h(x) ∈ Zq [x] be a monic polynomial such that

1. h(x) mod p is squarefree and coprime to (Ψ′(x)/p) mod p,

2. Ψ(x) ≡ f(x)h(x) (mod pn+1),

then the polynomial

H(x) = h(x) +
((

Ψ(x)
Ψ′(x)

h′(x)
)

mod h(x)
)

satisfies H(x) ≡ h(x) (mod pn) and Ψ(x) ≡ F (x)H(x) (mod p2n+1).

The following algorithm computes

H(x) =
∏

P∈(ker bΣi� {P∞})/ +−

(
x− x(P )

)
mod pN−1 (17.13)

Algorithm 17.36 Lift kernel

INPUT: The p-division polynomial Ψp(x) of an elliptic curve E over Zq/pNZq and precision N .

OUTPUT: The polynomial H(x) as in (17.13).

1. if N = 1 then

2. H(x) ← h(x) such that Ψp(x) ≡ δh(x)p (mod p) [h(x) monic]

3. else

4. N ′ ← ˚
N−1

2

ˇ

5. H(x) ← Lift kernel(Ψp(x),N ′)

6. H(x) ← H(x) +
“

H′(x)Ψp(x)

Ψ′
p(x)

mod H(x)
”

mod pN

7. return H(x)

Example 17.37 Let p = 7, d = 3, Zq � Zp[T ]/
(
G(T )

)
with G(T ) = T 3 + 6T 2 + 4 and consider

the elliptic curve E : y2 = x3 + a4x + a6 with

a4 ≡ 1409T 2 + 2308T + 2293 (mod p4) and a6 ≡ 139T 2 + 2339T + 2329 (mod p4).
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The p-division polynomial Ψp(x) of E is then equivalent to

7x24 + (1792T 2 + 168T + 350)x22 + (788T 2 + 374T + 1751)x21 + (364T 2 + 1330T + 2051)x20

+ (1974T 2 + 2226T + 1057)x19 + (98T 2 + 1526T + 1995)x18 + (1673T 2 + 546T + 70)x17

+ (77T 2 + 910T + 378)x16 + (1302T 2 + 2289T + 2058)x15 + (631T 2 + 2008T + 1189)x14

+ (791T 2 + 504T + 2268)x13 + (21T 2 + 2247T + 1953)x12 + (1519T 2 + 1106T + 945)x11

+ (490T 2 + 525T + 1526)x10 + (532T 2 + 1792T + 1575)x9 + (434T 2 + 735T + 147)x8

+ (843T 2 + 879T + 925)x7 + (1274T 2 + 2212T + 2009)x6 + (1764T 2 + 903T + 882)x5

+ (2107T 2 + 1946T + 2324)x4 + (784T 2 + 1197T + 1673)x3 + (245T 2 + 560T + 2261)x2

+ (245T 2 + 679T + 1582)x + 1014T 2 + 282T + 1562

modulo p4 and Algorithm 17.36 computes the following factor of Ψp:

H(x) ≡ x3+(502T 2+1965T +742)x2+(1553T 2+2106T +474)x+2329T 2+1521T +2058 (mod p4).

For p > 3, Ei+1 can be defined by the equation y2 = x3 + ai+1x + bi+1. Using Vélu’s formulas,
Satoh [SAT 2000, Proposition 4.3] shows that Ei+1/ ker(F̂p,i) is given by the equation y2 = x3 +
αi+1x + βi+1 with

αi+1 = (6 − 5p)ai+1 − 30(h2
i,1 − 2hi,2)

βi+1 = (15 − 14p)bi+1 − 70(−h3
i,1 + 3hi,1hi,2 − 3hi,3) + 42ai+1hi,1

where hi,k denotes the coefficient of x(p−1)/2−k in Hi(x) and we define hi,k = 0 for (p−1)/2 < k.
Given the above Weierstraß model for Ei+1/ ker(F̂p,i) we can now compute the isomorphism λi

to Ei : y2 = x3 + aix + bi. The only change of variables preserving the form of these equations is
λi : (x, y) −→ (u2

ix, u
3
i y) with

u2
i =

αi+1

βi+1

bi

ai
·

The action of λi on ωi = dx/y is given by λ∗
i (ωi) = u−1

i ωi+1,K with ωi+1,K = dx/y and therefore

c2i =
βi+1

αi+1

ai

bi
· (17.14)

Computing

c2 =
d−1∏
i=0

c2i = NQq/Qp
(c20)

and taking the square root gives the trace of Frobenius up to sign. This ambiguity can be resolved
using the Cartier–Manin operator of Section 17.1.4:

t ≡ γγσ · · · γσd−1
(mod p)

where γ is the coefficient of xp−1 in the polynomial (x3 + a4x + a6)(p−1)/2.
This finally leads to Algorithm 17.38.



430 Ch. 17 Point Counting on Elliptic and Hyperelliptic Curves

Algorithm 17.38 Satoh’s point counting method

INPUT: The elliptic curve E : y2 = x3 + a4x + a6 over Fpd , j(E) �∈ Fp2 .

OUTPUT: The number of points on E(Fpd)

1. N ← ˚
logp 4 + d/2

ˇ

2. S ← 1 and T ← 1

3. a0 ← a4, ad ← a4, b0 ← a6, bd ← a6, j0 ← j(E) and jd ← j(E)

4. for i = 0 to d − 2 do

5. ji+1 ← jp
i

6. (Jd−1, . . . , J0) ← Lift j-invariants
`
(jd−1, . . . , j0), N

´

7. for i = 0 to d − 1 do

8. γ ← Ji/(1728 − Ji) mod pN

9. a ← 3γ mod pN and b ← 2γ mod pN

10. Ψp(x) ← p-division polynomial of y2 = x3 + ax + b

11. H(x) ← Lift kernel (Ψp(x), N + 1)

12. for j = 1 to 3 do hj ← coefficient of H(x) of degree (p − 1)/2 − j

13. α ← (6 − 5p)a − 30(h2
1 − 2h2)

14. β ← (15 − 14p)b − 70(−h3
1 + 3h1h2 − 3h3) + 42ah1

15. S ← βaS and T ← αbT

16. t ← Sqrt(S/T, N)

17. γ ← coefficient of (x3 + a4x + a6)
(p−1)/2 of degree p − 1

18. if t �≡ γγσ · · · γσn−1
(mod p) then t ← −t (mod pN)

19. if t2 > 4pd then t ← t − pN

20. return pd + 1 − t

Example 17.39 Let p = 5, d = 7, Fpd � Fp(θ) with θ7 + 3θ + 3 = 0 and consider the elliptic
curve defined by y2 = x3 + x + a6 with

a6 = 4θ6 + 3θ5 + 3θ4 + 3θ3 + 3θ2 + 3.

Algorithm 17.38 then computes the following intermediate results: N = 6, j0 = 4T 6+T 5+2T 4+
2T 2 and

J0 ≡ 6949T 6 + 6806T 5 + 14297T 4 + 2260T 3 + 13542T 2 + 13130T + 15215 (mod pN),

with Zq � Zp[T ]/
(
G(T )

)
and G(T ) = T 7 + 3T + 3. This gives the following values for a, b

a ≡ 6981T 6 + 8408T 5 + 1033T 4 + 8867T 3 + 15614T 2 + 3514T + 675 (mod pN )
b ≡ 4654T 6 + 397T 5 + 5897T 4 + 703T 3 + 5201T 2 + 7551T + 450 (mod pN )

and the polynomial H describing the kernel of Fp

H(x) ≡x2 + (1395T 6 + 7906T 5 + 3737T 4 + 9221T 3 + 9207T 2 + 5403T + 7401)x

+ 6090T 6 + 206T 5 + 5259T 4 + 7576T 3 + 3863T 2 + 8903T + 7926 (mod pN ).
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Finally, we recover α and β as

α ≡ 11086T 6 + 2618T 5 + 6983T 4 + 13192T 3 + 15324T 2 + 13544T + 10550 (mod pN )
β ≡ 4940T 6 + 3060T 5 + 14966T 4 + 6589T 3 + 7934T 2 + 6060T + 12470 (mod pN ).

By computing the norm of (αb)/(βa), taking the square root and determining the correct sign,
Algorithm 17.38 computes Tr(φq) = 433 and |E(Fpd)| = 77693.

The case p = 3 is very similar to the case p � 5. There are only two minor adaptations: firstly,
note that ker(Fp,i) = {Q,−Q,P∞} with Q a 3-torsion point on Ei+1 with integral coordinates,
so Algorithm 17.36 reduces to a simple Newton iteration on the 3-division polynomial of Ei+1;
secondly, the Weierstraß equation for Ei is different from the one for p � 5, which slightly changes
Vélu’s formulas. Let x2 denote the x-coordinate of Q ∈ ker(F̂p,i) and let Ei+1 be defined by
y2 = x3 + x2/4 + ai+1x + bi+1, then Ei+1/ ker(F̂p,i) is given by the equation y2 = x3 + x2/4 +
αi+1x + βi+1, with

αi+1 = −30x2
2 − 5x2 − 9ai+1,

βi+1 = −70x3
2 − 20x2

2 − (42ai+1 + 1)x2 − 2ai+1 − 27bi+1.

To compute u2
i and thus c2i , we first translate the x-axis to get rid of the quadratic term and then

apply (17.14) which then gives

c2i =
(48ai − 1)(864βi+1 − 72αi+1 + 1)
(864bi − 72ai + 1)(48αi+1 − 1)

·

Taking the square root of

c2 =
d−1∏
i=0

c2i

determines the trace of Frobenius t up to sign. Furthermore, since the curve E is defined by an
equation of the form y2 = x3 + x2 + a6, the correct sign follows from t ≡ 1 (mod 3).

Example 17.40 Let d = 7 and F3d � F3(θ) with θ7 + 2θ2 + 1 = 0 and consider the elliptic curve
E given by

E : y2 = x3 + x2 + θ6 + θ4 + 2θ3 + 2θ2.

The j-invariant of E is 2θ6 + θ4 + θ2 and if Zq � Z3[T ]/
(
G(T )

)
with G(T ) = T 7 +2T 2 +1, then

j(E) ≡ 29T 6 + 378T 5 + 310T 4 + 528T 3 + 337T 2 + 621T + 474 (mod p6).

Computing a, b, α, β then gives

a ≡ 387T 6 + 117T 4 + 315T 3 + 531T 2 + 54T (mod p6)
b ≡ 31T 6 + 81T 5 + 145T 4 + 191T 3 + 521T 2 + 123T + 81 (mod p6)
α ≡ 150T 6 + 204T 5 + 531T 4 + 218T 3 + 329T 2 + 178T + 39 (mod p6)
β ≡ 488T 6 + 53T 5 + 675T 4 + 151T 3 + 97T 2 + 320T + 510 (mod p6).

Computing the norm of the formula for c2i and taking the square root finally leads to Tr(φq) = 73
and thus |E(F3d)| = 2115.
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For p = 2, Lemma 17.34 no longer holds. Indeed, the Newton polygon of the 2-division poly-
nomial shows that there are two nontrivial points in Ei+1[p] ∩ Ei+1(Zur

q ), whereas ker(F̂p,i) has
only one nontrivial point. The main problem in extending Satoh’s algorithm to characteristic 2
therefore lies in choosing the correct 2-torsion point. There are two algorithms that are both
based on diagram (17.12). Let ker(F̂p,i) = 〈Q〉, then since λ is an isomorphism we conclude
j(Ei+1/〈Q〉) = j(Ei).

The first algorithm to compute Q = (x2, y2) is due to Skjernaa [SKJ 2003], who gives an explicit
formula for x2 as a function of j(Ei) and j(Ei+1). Since Q is a 2-torsion point, it follows that
2y2 + x2 = 0. Substituting y2 in the equation of the curve and using the equality j(Ei+1/〈Q〉) =
j(Ei), Skjernaa deduces an explicit expression for x2. A proof of the following proposition can be
found in [SKJ 2003, Lemma 4.1].

Proposition 17.41 Let Q = (x2, y2) be the nontrivial point in ker(F̂p,i+1) and let z2 = x2/2, then

z2 = − j(Ei)2 + 195120j(Ei) + 4095j(Ei+1) + 660960000
8
(
j(Ei)2 + j(Ei)

(
563760− 512j(Ei+1)

)
+ 372735j(Ei+1) + 8981280000

)·
Skjernaa shows that the 2-adic valuation of both the numerator and denominator is 12, so we have
to compute j(Ei) (mod 2N+12) to recover z2 (mod 2N).

The second algorithm is due to Fouquet, Gaudry, and Harley [FOGA+ 2000] and is based on the
fact that ker(F̂p,i) = 〈Q〉 ⊂ Ei+1[2]. Let Ei+1 be given by the equation y2 +xy = x3 +36ai+1x+
ai+1 with ai+1 = 1/(1728 − j

(
Ei+1)

)
. Since Q is a 2-torsion point, we have 2y2 + x2 = 0

and x2 is a zero of the 2-division polynomial 4x3 + x2 + 144ai+1x + 4ai+1. Clearly we have
x2 ≡ 0 (mod 2), so Fouquet, Gaudry, and Harley compute z2 = x2/2 as a zero of the modified
2-division polynomial 8z3 + z2 + 72ai+1z + ai+1. The main problem is choosing the correct
starting value when considering this equation modulo 8. Using j(Ei+1/〈Q〉) = j(Ei) they proved
that z ≡ 1/j(Ei) (mod 8) is the correct starting value giving x2.

Vélu’s formulas show that Ei+1/ ker(F̂p,i) is given by the Weierstraß equation y2 + xy = x3 +
αi+1x + βi+1 with

αi+1 = − 36
j(Ei+1) − 1728

− 5γi+1,

βi+1 = − 1
j(Ei+1) − 1728

− (1 + 7x2)γi+1,

where γi+1 = 3x2
2 − 36/(j(Ei+1) − 1728) + x2/2. The isomorphism λi now has the general form

(x, y) −→ (u2
ix + ri, u

3
i y + u2

i six + ti), (ui, ri, si, ti) ∈ Q∗
q ×Q3

q,

but an easy calculation shows that c2i = u−2
i . Solving the equations satisfied by (ui, ri, si, ti) given

in [SIL 1986, Table 1.2] finally leads to

c2i = −864βi − 72αi + 1
48αi − 1

· (17.15)

The complexity of Algorithm 17.38 directly follows from Hasse’s theorem, i.e., |t| � 2
√
q. There-

fore it suffices to lift all data with precision N � d/2. Since elements of Zq/p
NZq are represented

as polynomials of degree less than d with coefficients in Z/pNZ, every element takes O(dN) mem-
ory for fixed p. As shown in Section 12.2.1, multiplication and division inZq/p

NZq takesO(dµNµ)
time.

For each curve Ei with 0 � i < d we need O(1) elements of Zq/p
NZq , so the total memory

needed is O(d2N) bits. Lifting the cycle of j-invariants to precision N requires O(lgN) iterations.
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In every iteration the precision of the computations almost doubles, so the complexity is determined
by the last iteration that takes O(dµ+1Nµ) bit-operations. Computing one coefficient c2i requires
O(1) multiplications, so to compute all ci we also need O(dµ+1Nµ) bit-operations.

Theorem 17.42 (Satoh) There exists a deterministic algorithm to compute the number of points on
an elliptic curve E over a finite field Fq with q = pd and j(E) �∈ Fp2 , which requires O(d2µ+1)
bit-operations and O(d3) space for fixed p.

17.3.1.f Optimizations of Satoh’s algorithm

Satoh’s algorithm basically consists of two steps: in the first step, a sufficiently precise approxi-
mation of the canonical lift of an ordinary elliptic curve is computed; in the second step, the trace
of Frobenius is recovered as the norm of an element in Zq . As such, the optimizations of Satoh’s
algorithm can be categorized accordingly. Since computing the norm of an element in Zq is not
specific to point counting algorithms, we simply refer the interested reader to Section 12.8.5.

Recall that if E is an ordinary elliptic curve over Fq with q = pd and p a prime, then by the
theorem of Lubin, Serre, and Tate (Theorem 17.30), the j-invariant of the canonical lift E satisfies

Φp

(
j(E),Σ

(
j(E)

))
= 0 and j(E) ≡ j(E) (mod p).

The optimizations of the lifting step are essentially algorithms to compute the root of an equation
of the form φ

(
X,Σ(X)

)
= 0 with φ(X,Y ) ∈ Zq[X,Y ], starting from an initial approximate root

x0 ∈ Zq . The algorithm used by Satoh is a simple multivariate Newton iteration that lifts the
whole cycle of conjugates of x0 simultaneously. Computing the solution to precision pN then takes
O(d1+µNµ) bit-operations and O(d2N) space, for fixed p and fixed degree of φ.

Vercauteren [VEPR+ 2001] devised a lifting algorithm that requires O(dµN1+µ) bit-operations,
but only O(dN) space. This algorithm is based on a repeated application of Proposition 17.51,
since this allows us to avoid costly Frobenius substitutions. Further details can be found in the
paper [VEPR+ 2001].

Mestre [MES 2000b] devised an elliptic curve point counting algorithm in characteristic 2, based
on a 2-adic version of the Arithmetic-Geometric-Mean (AGM). The AGM algorithm has the same
time and space complexity as Vercauteren’s algorithm, but is far easier to implement and also runs
faster in practice. The main difference with the other optimizations is that the AGM cannot be used
to solve a general equation of the form φ

(
X,Σ(X)

)
= 0, although implicitly it computes a root

of Φ2

(
X,Σ(X)

)
= 0 with Φ2(X,Y ) the 2-nd modular polynomial. A detailed description of the

AGM algorithm and its generalization to hyperelliptic curves is given in Section 17.3.2.
Satoh, Skjernaa, and Taguchi [SASK+ 2003] proposed to use a Teichmüller modulus (see Sec-

tion 12.1) to represent Zq , i.e., if Fq is represented as Fp[T ]/
(
f(T )

)
with f(T ) a monic irreducible

polynomial of degree d, then Zq is represented as Zp[T ]/
(
f(T )

)
with f(T ) the unique monic poly-

nomial with f(T ) | T q − T and f(T ) ≡ f(T ) (mod p). The advantage of this representation is
that it allows efficient Frobenius substitutions. Combining this with a Taylor expansion leads to an
algorithm to compute the root of an equation of the form φ

(
X,Σ(X)

)
= 0 to precision pN in time

O
(
dµNµ+1/(µ+1)

)
and O(dN) space, for fixed p and fixed degree of φ. Furthermore, they also

proposed a fast norm computation algorithm, which is described in detail in Section 12.8.5.
Kim, Park, Cheon, Park, Kim, and Hahn [KIPA+ 2002] showed that a Gaussian normal basis

can be lifted trivially to Zq and allows efficient computation of arbitrary iterates of the Frobenius
substitution. Their point counting algorithm is a combination of the SST algorithm and a norm
computation algorithm due to Kedlaya [KED 2001], which can be found in Section 12.8.5.

Gaudry [GAU 2002] used the AGM iteration to devise a modified modular polynomial in char-
acteristic 2 (see Section 17.3.2.b), which has lower degree than Φ2(X,Y ) and thus leads to a faster
algorithm, but with the same time and space complexity as the SST algorithm.
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Lercier and Lubicz [LELU 2003] devised an algorithm to solve Artin–Schreier equations over Zq

(see Section 12.6) and used this to compute a root of an equation of the form φ
(
X,Σ(X)

)
= 0 to

any precision pN . For finite fields with Gaussian normal basis, this algorithm runs in O(dµNµ lg d)
time and O(dN) space, for p fixed and fixed degree of φ. A detailed description of this algorithm
can be found in Section 12.7.

Finally, Harley [HAR 2002b] presented three very efficient algorithms: an algorithm to com-
pute the Teichmüller modulus (see Section 12.1), an algorithm to solve Artin–Schreier equations
modulo pN in time O(dµNµ lgN) (see Section 12.7) and a fast norm computation algorithm (see
Section 12.8.5). Combining these algorithms leads to an asymptotically optimal elliptic curve point
counting algorithm that runs in time O(d2µ lg d) and requires O(d2) space, for p fixed.

17.3.2 Arithmetic–Geometric–Mean algorithm

Classically, the Arithmetic-Geometric-Mean (AGM) was introduced by Lagrange [LAG 1973] and
Gauß [GAU 1973] to compute elliptic integrals or equivalently the period matrix of an elliptic curve
over C. Mestre [MES 2000b] showed how a 2-adic version of the AGM can be used to count
the number of points on an ordinary elliptic curve over a finite field of characteristic 2. Later,
Mestre [MES 2002] reinterpreted this algorithm as a special case of Riemann’s duplication formula
for theta functions and generalized it to ordinary hyperelliptic curves. This section first reviews the
AGM over C and then describes both approaches to the 2-adic AGM.

17.3.2.a AGM in CCCCCC

Definition 17.43 Let a0, b0 ∈ R with a0 � b0 > 0, then the AGM iteration for k ∈ N is defined as

(ak+1, bk+1) =
(
ak + bk

2
,
√
akbk

)
.

Since bk � bk+1 � ak+1 � ak and 0 � ak+1 − bk+1 � (ak − bk)/2, we conclude that the limits
of ak and bk when k tends to infinity exist and are equal. This common value is called the AGM of
a0 and b0 and is denoted as AGM(a0, b0). An easy calculation shows that

ak

bk
− 1 � a0 − b0

2kbk
� 1

2k

(
a0

b0
− 1

)
,

so after a logarithmic number of steps we have ak/bk = 1 + εk with εk < 1. The Taylor series
expansion of 1/

√
1 + εk shows that convergence is quadratic when εk < 1:

ak+1

bk+1
=

ak + bk

2
√
akbk

=
2 + εk

2
√

1 + εk

=
(
1 +

εk

2

)( ∞∑
n=0

(
−1/2
n

)
εn

k

)

= 1 +
ε2

k

8
− ε3

k

8
+ O(ε4

k). (17.16)

Remark 17.44 The coefficient of εn
k in the above Taylor expansion is easily seen to be(

−1/2
n

)
1 − n

1 − 2n
·

Since 1 − 2n is odd, the 2-adic valuation of the denominator of the above coefficient is at most
n + v2(n!) � n + �lg n� (1 + �lg n�)/2. For the 2-adic AGM to converge, it is necessary that
v2(εk+1) < v2(εk), which implies v2(εk) > 3 due to the quadratic term.
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The main reason for Legendre and Gauß to introduce the AGM is that it allows us to compute elliptic
integrals and periods of elliptic curves.

Theorem 17.45 Let a, b ∈ R with 0 < b � a, then∫ π/2

0

dt√
a2 cos2 t + b2 sin2 t

=
π

2AGM(a, b)
·

The proof of this theorem is given later in this section, but the main idea is that the elliptic integral
is invariant under the transformation (a, b) → (ak, bk). By a limit argument, we obtain the integral∫ π/2

0 AGM(a, b)−1dt, which proves the result.
The link with elliptic curves is the following classical result: consider the elliptic curve

Eτ : y2
0 = x0(x0 − a2

0)(x0 − b20),

with a0 = a and b0 = b, then after a suitable change of variables, the above integral becomes

− i

2

∫ −∞

0

dx0

y0
=

π

2AGM(a, b)
, (17.17)

which also equals half of one of the periods of the elliptic curve Eτ . To prove the above equation,
recall that an elliptic curve Eτ over C is isomorphic as an analytic variety to a torus C/(Z + τZ)
with mτ > 0. Consider the following diagram

C/(Z+ τZ) �
µ0

�� Eτ (C)

C/(Z+ 2τZ) �
µ1

��

F

��

E2τ (C)

φ

��

with F : z �→ z and φ the isogeny of degree 2 such that the above diagram commutes. The elliptic
curveE2τ has as equationE2τ : y2

1 = x1(x1−a2
1)(x1−b21) with a1 = (a0+b0)/2 and b1 =

√
a0b0.

Furthermore, the isogeny φ is given by

φ : (x1, y1) �→
(
x1(x1 − b21)
x1 − a2

1

, y
(x2 − 2x1a

2
1 + a2

1b
2
1)

(x1 − a2
1)2

)
· (17.18)

Since φ = µ0 ◦ F ◦ µ−1
1 , the action of φ on the holomorphic differential form dx0/y0 is given by

φ∗
(
dx0

y0

)
= (µ0 ◦ F ◦ µ−1

1 )∗
(
dx0

y0

)
= (F ◦ µ−1

1 )∗dz = (µ−1
1 )∗dz =

(
dx1

y1

)
,

since clearly F ∗(dz) = dz. This shows that the integral (17.17) remains unchanged under the
transformation φ and thus

− i

2

∫ −∞

0

dx√
x(x − a2

0)(x − b20)
= − i

2

∫ −∞

0

dx√
x(x − a2

1)(x − b21)
·

Repeating the same argument and by taking limits, we obtain E∞ : y2 = x
(
x − AGM(a, b)2

)2
.

Note that E∞ is of genus 0, which implies that the corresponding integral can be evaluated using
elementary functions. This finally proves

− i

2

∫ −∞

0

dx√
x(x − a2)(x− b2)

= − i

2

∫ −∞

0

dx√
x(x− AGM(a, b)2)

=
π

2AGM(a, b)
·
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17.3.2.b Elliptic curve AGM

Let Fq denote the finite field with 2d elements and let Qq be the unramified extension of Q2 of
degree d with valuation ring Zq . Let Σ ∈ Gal(Qq/Q2) be the Frobenius substitution, i.e., the
unique automorphism of Qq with Σ(x) ≡ x2 (mod 2) for x ∈ Zq .

For c ∈ 1 + 8Zq, denote by
√
c the unique element e ∈ 1 + 4Zq with e2 = c. Given a, b ∈ Zq

with a/b ∈ 1 + 8Zq , then a′ = (a + b)/2 and b′ = b
√
a/b also belong to Zq and a′/b′ ∈ 1 + 8Zq .

Furthermore, if a, b ∈ 1 + 4Zq, then also a′, b′ ∈ 1 + 4Zq .

Remark 17.46 The analysis in Remark 17.44, shows that the 2-adic AGM sequence will converge
if and only if a/b ∈ 1 + 16Zq. For a/b ∈ 1 + 8Zq the AGM sequence will not converge at all, so
AGM(a, b) is not defined. Nonetheless, the AGM sequence (ak, bk)∞k=0 can be used to compute the
number of points on an ordinary elliptic curve.

Let a, b ∈ 1 + 4Zq with a/b ∈ 1 + 8Zq and Ea,b the elliptic curve defined by

Ea,b : y2 = x(x− a2)(x − b2).

Similar to the AGM over C of Section 17.3.2.a, the 2-adic AGM iteration constructs a sequence of
elliptic curves all of which are 2-isogenous.

Proposition 17.47 Let a, b ∈ 1 + 4Zq with a/b ∈ 1 + 8Zq and Ea,b the elliptic curve defined
by the equation y2

0 = x0(x0 − a2)(x0 − b2). Let a′ = (a + b)/2, b′ =
√
ab and Ea′,b′ : y2

1 =
x1(x1 − a′2)(x1 − b′2), then Ea,b and Ea′,b′ are 2-isogenous. The isogeny is given by

ψ : Ea,b −→ Ea′,b′

(x, y) �−→
(

(x + ab)2

4x
, y

(x− ab)(x + ab)
8x2

)
,

and the kernel of ψ is 〈(0, 0)〉. Furthermore, the action of ψ on the holomorphic differential is

ψ∗
(
dx1

y1

)
= 2

dx0

y0
·

The isogeny φ defined in (17.18) is in fact the dual of the isogeny ψ and the same formula clearly
remains valid over Qq.

Remark 17.48 Note that the above proposition is in fact a special case of the general construction
described in Section 8.3.1. Indeed, the kernel of ψ is precisely Ea,b[2]loc, i.e., the 2-torsion points
in the kernel of reduction. This implies that Ea′,b′ � Ea,b/Ea,b[2]loc.

Let (ak, bk)∞k=0 be the AGM sequence and consider the elliptic curves Eak,bk
. To relate this back to

a sequence of elliptic curves over Fq, we cannot simply reduce the equations defining Eak,bk
since

the result would be singular. The following lemma construct an isomorphic curve which can then
be reduced modulo 2.

Lemma 17.49 Let a, b ∈ 1 + 4Zq with a/b ∈ 1 + 8Zq and Ea,b : y2 = x(x − a2)(x − b2). The
isomorphism

(x, y) �→
(x− ab

4
, y − x + ab

8

)
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transforms Ea,b in y2 + xy = x3 + rx2 + sx + t with

r =
−a2 + 3ab− b2 − 1

4
,

s =
−a3b + 2a2b2 − ab3

8
,

t =
−a4b2 + 2a3b3 − a2b4

64
·

Furthermore, r ∈ 2Zq, s ∈ 8Zq and t ≡ −
(

a−b
8

)2
(mod 16), which shows that the reduction is

nonsingular.

Let E be an ordinary elliptic curve defined by y2 + xy = x3 + c with c ∈ F∗q and let E be its
canonical lift. Take any e ∈ Zq such that e2 ≡ c (mod 2) and let a0 = 1 + 4e and b0 = 1 − 4e,
then Lemma 17.49 shows that Ea0,b0 is isomorphic to a lift of E to Zq and thus j(Ea0,b0) ≡ j(E)
(mod 2).

As indicated in Remark 17.48, the AGM sequence is a special case of the the general construction
described in Section 8.3.1 and thus must converge linearly to the canonical lift E of E.

Theorem 17.50 The sequence of elliptic curves Eak,bk
converges linearly towards the canonical

lift E of E in the following sense:

j (Eak,bk
) ≡ Σk

(
j(E)

)
(mod 2k+1).

The proof of this theorem is not difficult and is based on the following proposition due to Ver-
cauteren [VEPR+ 2001].

Proposition 17.51 Let Qq be the unramified extension of Qp of degree d and denote with Zq its
valuation ring. Let g ∈ Zq[X,Y ] and assume that x0, y0 ∈ Zq satisfy

g(x0, y0) ≡ 0 (mod p),
∂g

∂X
(x0, y0) �≡ 0 (mod p),

∂g

∂Y
(x0, y0) ≡ 0 (mod p).

Then the following properties hold:

1. For every y ∈ Zq with y ≡ y0 (mod p) there exists a unique x ∈ Zq such that x ≡ x0

(mod p) and g(x, y) = 0.

2. Let y′ ∈ Zq with y ≡ y′ (mod pn), n � 1 and let x′ ∈ Zq be the unique element with
x′ ≡ x0 (mod p) and g(x′, y′) = 0. Then x′ satisfies x′ ≡ x (mod pn+1).

By Proposition 17.47 the curves Eak,bk
and Eak+1,bk+1 are 2-isogenous, so

Φ2

(
j(Eak,bk

), j(Eak+1,bk+1)
)

= 0,

with Φ2(X,Y ) the second modular polynomial. Furthermore, an easy computation shows that
j(Eak+1,bk+1) ≡ j(Eak,bk

)2 (mod 2), so we can apply Proposition 17.51 which proves the result.
As noted in Remark 17.46, the AGM sequence itself does not converge, but by the above theorem

the sequence of elliptic curves Eadk,bdk
does converge to the canonical lift E . The first approach

would thus be to use the AGM iteration to compute j(E) mod 2N and then to apply the second
stage of Satoh’s algorithm. However, the AGM also provides an elegant formula for the trace of
Frobenius.
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Assume we have computed a, b ∈ 1 + 4Zq with a/b ∈ 1 + 8Zq such that j(Ea,b) = j(E). Let
(a′, b′) =

(
(a + b)/2,

√
ab
)
, ψ : Ea,b −→ Ea′,b′ the AGM isogeny and F2 : Ea,b −→ EΣ(a),Σ(b) the

lift of the 2-nd power Frobenius, then we have the following diagram:

Ea,b EΣ(a),Σ(b)

F2

Ea′,b′
�

�
�

���
�

�
��

�

ψ λ

(17.19)

The kernel of the Frobenius isogeny F2 : Ea,b −→ EΣ(a),Σ(b) is a subgroup of order 2 of

Ea,b[2] = {P∞, (0, 0), (a2, 0), (b2, 0)}.

Using the isomorphism given in Lemma 17.49, we now analyze the reduction of the 2-torsion points.
An easy calculation shows that (0, 0) is mapped onto P∞ whereas (a2, 0) and (b2, 0) are mapped to
(0, (a−b)/8 mod 2). Therefore we conclude that ker(F2) = {P∞, (0, 0)}. Proposition 17.47 shows
that ker(F2) = ker(ψ) and since both isogenies are separable, there exists an isomorphism λ :
Ea′,b′ −→ EΣ(a),Σ(b), such that F2 = λ◦ψ. The following proposition shows that this isomorphism
has a very simple form.

Proposition 17.52 Given two elliptic curves Ea,b : y2 = x(x − a2)(x − b2) and Ea′,b′ : y′2 =
x′(x′ − a′2)(x′ − b′2) over Qq with a, b, a′, b′ ∈ 1 + 4Zq and a/b, a′/b′ ∈ 1 + 8Zq , then Ea,b and
Ea′,b′ are isomorphic if and only if x′ = u2x and y′ = u3y with

u2 =
a′2 + b′2

a2 + b2
·

Furthermore, we have
(

a
b

)2 =
(

a′
b′
)2

or
(

a
b

)2 =
(

b′
a′
)2·

Let ω = dx/y and ω′ = dx′/y′ be the holomorphic differentials on Ea,b and EΣ(a),Σ(b) respectively,
then

F∗
2 (ω′) = (λ ◦ ψ)∗(ω′) = 2u−1ω with u2 =

Σ(a)2 + Σ(b)2

a′2 + b′2
·

Define ζ = a/b = 1 + 8c and ζ′ = a′/b′ = 1 + 8c′, then Lemma 17.52 also implies that

ζ′2 = Σ(ζ)2 or ζ′2 =
1

Σ(ζ)2
·

Substituting ζ = 1+8c and ζ′ = 1+8c′ in the above equation and dividing by 16, we conclude that
c′ ≡ Σ(c) (mod 4) or c′ ≡ −Σ(c) (mod 4). The Taylor expansion of 1+8c′ = (1+4c)/

√
1 + 8c

modulo 32 shows that c′ ≡ c2 (mod 4). Since after the first iteration, c itself is a square α2 modulo
4 and Σ(α2) ≡ α4 (mod 4), we conclude that ζ′2 = Σ(ζ)2. Note that since ζ ≡ ζ′ ≡ 1 (mod 8),
we conclude that

ζ′ = Σ(ζ). (17.20)

Substituting b′2 = a′2Σ(b)/Σ(a)2 in the expression for u2 and taking square roots leads to

u = +−
Σ(a)
a′

· (17.21)
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Let (ak, bk)∞k=0 be the AGM sequence with a0 = a and b0 = b and consider the following diagram
where Ek = EΣk(a),Σk(b) and F2,k : Ek −→ Ek+1 the lift of the 2-nd power Frobenius isogeny.

E0 E1 E2 · · · Ed = E0
� � � �

F2,0 F2,1 F2,2 F2,d−1

Ea,b Ea1,b1 Ea2,b2 · · · Ead,bd

� � � �
ψ0 ψ1 ψ2 ψd−1

�
Id

�
λ1

�
λ2

...
�

λd

(17.22)

Since ker(F2,k ◦λk) = ker(ψk) for k ∈ N, we can repeat the same argument as for diagram (17.19)
and find an isomorphism λk+1 such that F2,k = λk+1 ◦ ψk ◦ λ−1

k . Since Ea,b is isomorphic to the
canonical lift E of E, we conclude that

Tr(F2,d−1 ◦ · · · ◦ F2,0) = Tr(Fq) = Tr(φq).

The above diagram shows that F2,d−1 ◦ · · · ◦ F2,0 = λd ◦ ψd−1 ◦ · · · ◦ ψ0 and since ψk acts on the
holomorphic differential ω as multiplication by 2 and λd as multiplication by +− ad/a0, we conclude
that

F∗
q (ω) = +− 2d ad

a0
(ω).

The Weil conjectures imply that the product of the roots of the characteristic polynomial of Frobe-
nius is 2d and thus

Tr(Fq) = Tr(φq) = +−
a0

ad

+− 2d ad

a0
· (17.23)

Remark 17.53 If the curve E is defined by the equation y2 + xy = x3 + c with c ∈ F∗q , then
( 4
√
c,
√
c) is a point of order 4, which implies that Tr(φq) ≡ 1 (mod 4). Since a0/ad ∈ 1 + 4Zq ,

we can choose the correct sign in (17.23) and conclude that Tr(φq) ≡ a0/ad (mod q).

The only remaining problem is that we are working with approximations to a and b and not the
exact values as assumed in the previous section, so the question of precision remains.

Let E be an ordinary elliptic curve defined by y2 + xy = x3 + c with c ∈ F∗q . Take any r ∈ Zq

such that r2 ≡ c (mod 2) and let a0 = 1 + 4r and b0 = 1 − 4r. Theorem 17.50 shows that if
(ak, bk)∞k=0 is the AGM sequence, then

j (Eak,bk
) ≡ j(Ek) (mod 2k+1),

where Ek is the canonical lift of σk(E). Expressing j(ak, bk) as a function of ak and bk shows that
ak and bk must be correct modulo 2k+3. Therefore, we conclude that

Tr(φq) ≡
aN−3

aN−3+d
+ 2d aN−3+d

aN−3
(mod 2N ).

Algorithm 17.54 Elliptic curve AGM

INPUT: An elliptic curve E : y2 + xy = x3 + c over F2d with j(E) �= 0.

OUTPUT: The number of points on E(F2d).

1. N ← ˚
d
2

ˇ
+ 3

2. a ← 1 and b ← (1 + 8c) mod 24 [c arbitrary lift of c]

3. for i = 5 to N do

4. (a, b) ← `
(a + b)/2,

√
ab
´

mod 2i
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5. a0 ← a

6. for i = 0 to d − 1 do

7. (a, b) ← `
(a + b)/2,

√
ab
´

mod 2N

8. t ← a0

a
mod 2N−1

9. if t2 > 2d+2 then t ← t − 2N−1

10. return 2d + 1 − t

The complexity of Algorithm 17.54 is determined by the AGM iterations in the for loops, which
require O(d) square root computations to precision O(d). Since each square root computation
takes O(1) multiplications at full precision, the complexity of Algorithm 17.54 is O(d2µ+1) bit-
operations. The space complexity clearly is O(d2), since only O(1) elements of Zq/2NZq are
required.

Remark 17.55 Note that it is possible to replace the loop starting in Line 6 of Algorithm 17.54 by
one AGM iteration and a norm computation. Indeed, equation (17.21) shows that

F∗
2

(
dx

y

)
= +− 2

a1

Σ(a0)

(
dx

y

)
,

and since all curves Ek are conjugates, we have

F∗
q

(
dx

y

)
= +− 2d NQq/Qp

(
a1

Σ(a0)

)(
dx

y

)
= +− 2d NQq/Qp

(
a1

a0

)(
dx

y

)
·

Therefore, it suffices to compute a1 with one AGM iteration and to set

t ≡ NQq/Qp
(a0/a1) (mod 2N).

We refer to Section 12.8.5 for efficient norm computation algorithms.

Remark 17.56 The AGM sequence has been generalized, at least in theory, to ordinary abelian
varieties in the thesis of Carls [CAR 2003].

Example 17.57 Let p = 2, d = 7 and Fpd � Fp(θ) with θ7 + θ + 1 = 0. Consider the elliptic
curve E given by the affine equation y2 + xy = x3 + c with c = 1 + θ4. It is easy to check that
j(E) �= 0. Let Zq � Z2[T ]/(T 7 + T + 1), then after the initialization step

a ≡ 1 (mod 24) and b ≡ 8T 4 + 9 (mod 24).

The values of a0 and a in Line 8 are then given by

a0 ≡ 16T 6 + 32T 4 + 8T 3 + 16T 2 + 36T + 5 (mod 26)

a ≡ 48T 6 + 32T 5 + 32T 4 + 40T 3 + 48T 2 + 52T + 57 (mod 26)

and finally t = 13 and |E(Fpd)| = 116.

A first improvement of Algorithm 17.54 is to consider a univariate AGM sequence. Let (ak, bk)∞k=0

with ak ≡ bk ≡ 1 (mod 4) and ak ≡ bk (mod 8) be the bivariate AGM sequence, then we define
the univariate AGM sequence (ξk)∞k=0 by ξk = ak/bk, which corresponds to the curves

Eξk
: y2 = x(x − 1)(x− ξ2

k).
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Since (ak+1, bk+1) =
(
(ak + bk)/2,

√
akbk

)
, we can compute ξk+1 from ξk by

ξk+1 =
1 + ξk

2
√
ξk

· (17.24)

Note that this only requires 1 inverse square root computation; as shown in Section 12.3.3, this
saves one multiplication over the square root computation

√
akbk. Given an ordinary elliptic curve

E : y2+xy = x3+c with c ∈ F∗q , the univariate AGM sequence should be initialized by ξ1 ≡ 1+8c
(mod 16) with c an arbitrary lift of c. Unlike the bivariate AGM sequence, the univariate AGM
sequence does converge, in the sense that ξk ≡ ξk+d (mod 2k+3).

Remark 17.55 shows that given the bivariate AGM sequence (ak, bk)∞k=0 we can compute the
trace of Frobenius as

Tr(φq) ≡ tk +
q

tk
(mod 2k+3),

with tk = NQq/Qp
(ak/ak+1). Substituting ak+1 = (ak + bk)/2, ξk = ak/bk finally gives

tk = NQq/Qp

(
2ξk

1 + ξk

)
·

Algorithm 17.58 Univariate elliptic curve AGM

INPUT: An elliptic curve E : y2 + xy = x3 + c over F2d with j(E) �= 0.

OUTPUT: The number of points on E(F2d).

1. N ← ˚
d
2

ˇ
+ 3

2. c ← c mod 2 [c arbitrary lift of c]

3. ξ ← (1 + 8c) mod 24

4. for i = 5 to N do

5. ξ ← (1 + ξ)/(2
√

ξ) mod 2i

6. t ← NQq/Qp

`
2ξ/(1 + ξ)

´
mod 2N−1

7. if t2 > 2d+2 then t ← t − 2N−1

8. return 2d + 1 − t

Example 17.59 We keep the settings of Example 17.57, i.e., p = 2, d = 7 and Fpd � Fp(θ) with
θ7 + θ + 1 = 0 and let E be the elliptic curve given by the affine equation y2 + xy = x3 + c with
c = 1 + θ4. Let Zq � Z2[T ]/(T 7 + T + 1), then after the initialization step we get ξ ≡ 8T 4 + 9
(mod 24) and finally in Line 6, ξ ≡ 16T 6 + 56T 4 + 8T 2 + 24T + 9 (mod 26) and t = 13.

A second improvement of Algorithm 17.54 is due to Gaudry [GAU 2002], who devised a modified
modular polynomial based on the univariate AGM sequence. In this case, define λk = bk/ak (i.e.,
λk = 1/ξk) which gives the iteration

λk+1 =
2
√
λk

1 + λk
· (17.25)

Note that this iteration is less efficient than the one for ξk, since it requires a square root computation
(not an inverse square root) and an extra inverse. The sequence can again be initialized by λ1 =
1 + 8c with c an arbitrary lift of c. From 17.20 follows that

λk+1 ≡ Σ(λk) (mod 2k+3).
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Substituting this in equation (17.25) shows that λk satisfies

Σ(Z)2(1 + Z)2 − 4Z ≡ 0 (mod 2k+3) and Z ≡ 1 + 8Σk−1(c) (mod 16).

Let Λ2(X,Y ) = Y 2(1 + X)2 − 4X , then λk satisfies Λ2

(
X,Σ(X)

)
≡ 0 (mod 2k+3). This

equation is almost of the form considered in Section 12.7, except that both partial derivatives vanish
modulo 2. Therefore, we make the change of variables X ← 1 + 8X and Y ← 1 + 8Y to obtain
the modified modular polynomial

Υ2(X,Y ) = (X + 2Y + 8XY )2 + Y + 4XY,

Let γk be defined by λk = 1 + 8γk, then γk satisfies Υ2

(
X,Σ(X)

)
≡ 0 (mod 2k) and γk ≡

σk−1(c) (mod 2). The partial derivatives of Υ2 are

∂Υ2

∂X
(X,Y ) = 2(X + 2Y + 8XY )(1 + 8Y ) + 4Y,

∂Υ2

∂Y
(X,Y ) = (4(X + 2Y + 8XY ) + 1)(1 + 4X),

which shows that ∂Υ2
∂X ≡ 0 (mod 2), but ∂Υ2

∂Y ≡ 1 (mod 2). Using any of the algorithms described
in Section 12.7, we can compute γk for any k ∈ N. The trace of Frobenius can be computed as

Tr(φq) ≡ tk +
q

tk
(mod 2k+3),

with tk = NQq/Qp

(
2/(1 + λk)

)
= NQq/Qp

(
1/(1 + 4γk)

)
.

Remark 17.60 This optimization by Gaudry has been extended to other characteristics by Madsen
in [MAD 2003] using λ-modular polynomials. A related approach based on lifting of Heegner
points on modular curves X0(N) was described by Kohel in [KOH 2003].

17.3.2.c Hyperelliptic curve AGM

To extend the AGM to ordinary curves of genus g � 2, Mestre [MES 2002] showed how to interpret
the AGM as a special case of the Riemann duplication formula for theta functions.

Let Fq a finite field with q = 2d elements. Let C be a curve defined over Fq such that its Jacobian
variety J = JC is ordinary and assume that JC [2] is Fq-rational. Denote with J i the i-th conjugate
of J and let φ2,i : J i −→ J i+1 denote the corresponding 2-nd power Frobenius isogeny.

LetQq be the degree d unramified extension ofQ2, with valuation ringZq such thatZq/2Zq � Fq

and denote with Jc the canonical lift of JC and Ji,c = J Σi

c for i positive. Since Σd = Id, we clearly
have Ji,c = Ji+d,c. Let F2,i be the image of φ2,i under the isomorphism Hom(Ji,c,Ji+1,c) �
Hom(J i, J i+1), then Fq = F2,d−1 ◦ · · · ◦ F2,0 is the lift of the Frobenius endomorphism φq under
the ring isomorphism End(Jc) � End(JC).

Consider the following sequence of abelian varieties

J0
I0−→ J1

I1−→ J2
I2−→ J3

I3−→ . . . , (17.26)

with J0 = Jc and for i ∈ N, Ji+1 = Ji/Ji[2]loc with Ji[2]loc = Ji[2] ∩ ker(π), i.e., the 2-torsion
points in the kernel of reduction. Since the isogenies Ii : Ji −→ Ji+1 reduce to the 2-nd power
Frobenius isogeny φ2,i : J i −→ J i+1, we conclude that Ji must also be a canonical lift of J i. Due
to the uniqueness of the canonical lift, there must exists an isomorphism λi : Ji,c −→ Ji. Consider
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the following diagram

J0,c J1,c J2,c · · · Jd,c = J0,c
� � � �

F2,0 F2,1 F2,2 F2,d−1

J0 J1 J2 · · · Jd
� � � �

I0 I1 I2 Id−1

�Id �λ1
�λ2

...
�λd

(17.27)

then we can express the lift Vq of the dual of the q-th power Frobenius φq as

Vq = F̂2,0 ◦ · · · ◦ F̂2,d−1 = Î0 ◦ · · · ◦ Îd−1 ◦ λd.

As in the elliptic curve AGM, we can choose a basis B of the vector space D0(Jc,Qq) of holo-
morphic differential forms of degree 1 on Jc such that the action of Îi, i.e., the dual of Ii, is the
identity. The action of the lift of Verschiebung Vq on B is thus simply given by the action of λd.

To turn the above approach into an algorithm, Mestre considers the diagram (17.27) over C and
computes on the corresponding analytic varieties. LetQur

2 denote the maximal unramified extension
ofQ2 and fix an embedding σ : Qur

2 ↪→ C. SinceQq ⊂ Qur
2 , we can associate to the Ji in the above

diagram, an abelian variety over C given by JC,i = Ji ⊗σ C.
As shown in Section 5.1.3, each abelian variety JC,i is isomorphic as an analytic variety to a

complex torus Ti = Cg/(Zg + ΩiZ
g) with Ωi a symmetric matrix such that mΩi > 0, i.e., the

period matrix of JC,i. Let µi : JC,i −→ Ti denote this isomorphism, then the following proposition
shows that the isogenies Ii have a particular simple expression in the analytic setting.

Proposition 17.61 The complex torus Ti is given by Cg/(Zg + 2iΩZg) and the isogeny Ii corre-
sponds to the isogeny Ii,an defined by the inclusion of the lattices

2(Zg + 2iΩZg) ⊂ (Zg + 2i+1ΩZg),

i.e., Ii,an ◦ µi = µi+1 ◦ Ii.

Since λd : J0 −→ Jd is an isomorphism, there exists an isomorphism λC,d : T0 −→ Td over C.

Definition 17.62 Let Sp(2g,Z) denote the symplectic group over Z, i.e., the set of 2g×2g matrices
[ A B
C D ] with A,B,C,D ∈ Z(g×g), such that

[
A B

C D

]t [
0 Ig

−Ig 0

][
A B

C D

]
=

[
0 Ig

−Ig 0

]
.

Denote with ΓN the subgroup of elements M ∈ Sp(2g,Z) with M ≡ I2g (mod N).

Then there exists a group action of Sp(2g,Z) on Cg ×Hg given by[
A B

C D

]
(z,Ω) =

(
(CΩ + D)−1z, (AΩ + B)(CΩ + D)−1

)
.

By Theorem 5.50, the isomorphism λC,d : T0 → Td is defined by a matrix [ A B
C D ] ∈ Sp(2g,Z)

and the action of λC,d on Cg is given by z �→ (CΩ + D)−1z. For every i ∈ N, we have that
Bi,an =

(
dz

(i)
1 , . . . , dz

(i)
g

)
forms a basis of the holomorphic differentials on Ti. By the description

of the Ii,an in Proposition 17.61, we conclude that

Î∗
i,anBi,an = Bi+1,an.
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The action of Vq,an on B0,an is thus simply given by MVq = (CΩ + D)−1. If we would be able
to compute MVq we could easily recover the characteristic polynomial of φq from the minimal
polynomial of MVq + qM−1

Vq
. Unfortunately, we will only be able to determine +− det(MVq) and

not MVq itself. Since JC is ordinary, the characteristic polynomial χ(φq)C has exactly g roots
π1, . . . , πg that are 2-adic units and since Vq is separable, we conclude that det(MVq) = π1 · · ·πg .
Although this only determines χ(φq)C uniquely in genus 1 and 2, we can use the LLL algorithm
to determine χ(φq)C(+−T ). To decide the correct sign, test which choice χ(φq)C(+− 1) gives the
correct order.

The determinant +− det(CΩ + D)−1 can be recovered from the theta constants associated to Tn

and Tn+d for any n ∈ N. As shown in Section 5.1.6.a, we can associate to a principally polarized
abelian variety AC over C with period matrix Ω, the Riemann theta function, which for z ∈ Cg is
given by

θ(z,Ω) =
∑
n∈Zg

exp
(
πi(ntΩn + 2ntz)

)
.

More generally, we consider translations of θ(z,Ω) by an element of 1
2Z

g + Ω
(

1
2Z

g
)
, leading to

the theta functions with characteristics

θ [ δ
ε ] (z,Ω) =

∑
n∈Zg

exp
(
πi

(
n +

1
2
δ

)t

Ω
(
n +

1
2
δ

)
+ 2

(
n +

1
2
δ

)t(
z +

1
2
ε

))
,

with δ, ε ∈ Rg . When δ, ε ∈ Zg and δtε ≡ 0 (mod 2) the theta characteristic is called even;
otherwise, it is called odd.

Definition 17.63 For integral theta characteristic [ δ
ε ], the value θ [ δ

ε ] (0,Ω) is called the theta con-
stant of characteristic [ δ

ε ].

The relation with the isomorphism λC,d : T0 → Td given by the matrix [ A B
C D ] ∈ Sp(2g,Z) is the

following proposition.

Proposition 17.64 For all δ, ε ∈ Zg and [ A B
C D ] ∈ Γ2 we have

θ [ δ
ε ]2

(
0, (AΩ + B)(CΩ + D)−1

)
= +− det(CΩ + D)θ [ δ

ε ]2 (0,Ω).

Since T0 has period matrix Ω and Td has period matrix 2dΩ, the above proposition leads to the main
theorem.

Theorem 17.65 Let π1, . . . , πg be the unit roots of χ(φq)C , then if there exists δ, ε ∈ Zg such that
θ [ δ

ε ]2 (0,Ω) �= 0, then θ [ δ
ε ]2 (0, 2dΩ) �= 0 is nonzero and

θ [ δ
ε ]2 (0,Ω)

θ [ δ
ε ]2 (0, 2dΩ)

= +− (π1 · · ·πg).

To apply the above theorem, we need to compute θ [ δ
ε ]2 (0,Ω) and θ [ δ

ε ]2 (0, 2dΩ) for a given
δ, ε ∈ Zg . Unfortunately, there is currently no algorithm that computes these values for one fixed
pair δ, ε ∈ Zg . Luckily it is possible to compute θ [ 0

ε ]2 (0, 2dΩ) for all vectors ε ∈ (Z/2Z)g si-
multaneously. The following duplication formula, which is a special case of Riemann’s duplication
formula, is at the heart of this algorithm.

Proposition 17.66 For ε ∈ (Z/2Z)g we have

θ [ 0
ε ]2 (0, 2Ω) =

1
2g

∑
e∈(Z/2Z)g

θ
[

0
ε+e

]
(0,Ω) × θ [ 0

e ] (0,Ω). (17.28)
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Example 17.67 Let g = 1 and define θi,k = θ
[

0
εi

]2 (0, 2kΩ) with εi the vector containing the bits
in the binary representation of i. The above proposition then gives:

θ2
0,k+1 =

1
2
(
θ2
0,k + θ2

1,k

)
θ2
1,k+1 = θ0,kθ1,k,

which is exactly the AGM iteration if we set ak = θ2
0,k and bk = θ2

1,k.

In the elliptic curve case, we considered the univariate AGM instead of the bivariate one since
it was more efficient. Similarly, we can divide out the theta constant θ [ 0

0 ]2 (0, 2kΩ) to obtain a
nonhomogeneous variant of the above proposition.

Proposition 17.68 Define τi,k = θi,k/θ0,k for i = 1, . . . , 2g − 1 with θi,k = θ
[

0
εi

]2 (0, 2kΩ) and
εi the vector containing the bits in the binary representation of i. Let G : Z2g−1

q −→ Zq be defined
by G(t1) = 2

√
t1

1+t1
if g = 1 and more generally for g > 1 by

G(t1, . . . , t2g−1) = 2
√
t1 +

√
t2
√
t3 + · · · + √

t2g−2
√
t2g−1

1 + t1 + · · · + t2g−1
· (17.29)

Then
∀i ∈ {1, . . . , 2g − 1}, τi,k+1 = G(τi,k, τi2,k, τi3,k, . . . , τi2g−2,k, τi2g−1,k),

where, for each i, the indices i2, . . . , i2g−1 are such that{
{0, i}, {i2, i3}, . . . , {i2g−2, i2g−1}

}
=
{
{j, j XOR i} | j ∈ {1, . . . , 2g − 1}

}
. (17.30)

The iteration in the above proposition satisfies similar properties as the univariate AGM iteration
described in Section 17.3.2.b.

Lemma 17.69 The generalized AGM sequence defined in Proposition 17.68 satisfies:

• Linear convergence: let ηi,k ≡ τi,k (mod pn) for i = 1, . . . , 2g − 1 and let ηi,k+1 be
obtained by applying G, then

ηi,k+1 ≡ τi,k+1 (mod pn+1).

• Conjugacy property:
τi,k+1 = Σ(τi,k).

The linear convergence property shows that if we start from an approximation of τi,0 (mod 2s)
for i = 1, . . . , 2g − 1, then after n iterations we have obtained τi,n (mod 2s+n). To recover
+− (π1 · · ·πg) to precision N , we therefore simply compute

τi,N−s

τi,N−s+d
≡ +− (π1 · · ·πg) (mod 2N).

Like in the univariate AGM, there are two further optimizations possible based on the conjugacy
property. Instead of using the generalized AGM iteration to compute τi,k for i = 1, . . . , 2g − 1, we
compute τi (mod 2N ) for i = 1, . . . , 2g − 1 as the solution of the system of equations

Σ(τi) = G(τi, τi2 , τi3 , . . . , τi2g−2 , τi2g−1), for i = 1, . . . , 2g − 1. (17.31)

This system of equations can be solved efficiently using a vectorial version of the generalized New-
ton lift described in Section 12.7.
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The second optimization replaces the extra d AGM iterations by a fast norm computation. Indeed,
let τi with i = 1, . . . , 2g − 1 be a solution of (17.31) to precision N , then

+− (π1 · · ·πg) ≡ NQq/Qp

(
2g

1 + τ1 + · · · + τ2g−1

)
(mod 2N ). (17.32)

The only remaining problem is to devise an initial approximation to the τi for i = 1, . . . , 2g − 1.
This is in fact the only step that really depends on the curve C itself; all the steps described so far
only require that JC is ordinary and that JC [2] is defined over Fq.

For C a hyperelliptic curve, the initial approximations can be computed using formulas due to
Thomae as follows: assume that C is defined by an equation of the form

C : y2 + h(x)y = h(x)f (x),

with f, h ∈ Fq[x], deg f = deg h = g + 1 and such that h has g + 1 roots in Fq with multiplicity
one. This latter condition ensures that JC [2] is defined over Fq . Note that all ordinary hyperelliptic
curves can be written in the above form after a suitable extension of the base field and a change of
variables.

Take arbitrary lifts f, h ∈ Zq[x] of f and h with deg f = deg h = g + 1, and consider the
curve C : y2 + h(x)y = h(x)f(x). Multiplying both sides by 4 and completing the square gives(
2y + h(x)

)2 = h(x)
(
h(x) + 4f(x)

)
. Since h(x) splits completely over Fq, Hensel’s lemma im-

plies that h(x) and also h(x) + 4f(x) have g + 1 roots over Zq with multiplicity 1. We can thus
consider the isomorphic curve defined by the equation

y2 =
g∏

i=0

(x− αi)
(
x− (αi + 4βi)

)
.

Let a2i = αi and a2i+1 = αi + 4βi for i = 0, . . . , g, then we clearly have a2i ≡ a2i+1 (mod 4).
The following lemma finally provides the last missing step in the algorithm.

Lemma 17.70 (Thomae formula) Let C be a hyperelliptic curve over Zq given by an equation
of the form C : y2 =

∏2g+1
i=0 (x− ai) with ai ∈ Zq and a2i ≡ a2i+1 (mod 4), then for k =

0, . . . , 2g − 1

θ1,k =
√ ∏

0�i<j�g

(a2i+ki − a2j+kj )(a2i+1−ki − a2j+1−kj ),

with k0 = 0, k =
∑g−1

i=0 ki+12i and ki ∈ {0, 1}. The square roots should be chosen such that
θ1,k ≡ 1 (mod 4).

This finally leads to Algorithm 17.71 which computes +− (π1 · · ·πg) (mod 2N ) for a hyperelliptic
curve.

Algorithm 17.71 Hyperelliptic curve AGM

INPUT: Polynomials f, h ∈ Fq[x], with deg f = deg h = g + 1, h separable and precision N .

OUTPUT: The product of unit roots (up to sign) λ ≡ +− (π1 · · ·πg) (mod 2N ).

1. f ← f and h ← h [arbitrary lift to Zq with deg f = deg h = g + 1]

2. (a0, . . . , a2g+2) ← Roots (h) mod 8

3. (a1, . . . , ag+1) ← Roots (h + 4f ) mod 8 [with a2i ≡ a2i+1 (mod 4)]

4. for k = 0 to 2g − 1 do
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5. θk ←
qQ

0�i<j�g(a2i+ki − a2j+kj )(a2i+1−ki − a2j+1−kj ) mod 210g+10

6. for k = 1 to 2g − 1 do

7. τk ← (θk/θ0) mod 210g+10

8. φ(X, Y ) ←
n

y2
i (1 + x2

1 + · · · + x2
2g−1) −

P
0�j�2g−1 xjxi XOR j

o

i=1,...,2g−1

9. (τ1, . . . , τ2g−1) ← Generalized Newton lift
`
φ(X, Y ), (τ1, . . . , τ2g−1), N

´

10. λ ← NQq/Qp

“
2g

1+τ1+···τ2g−1

”
mod 2N

11. return λ

Example 17.72 Consider the hyperelliptic curve of genus 3 defined over F24 � F2(α) with α4 +
α3 +α2 +α+1 = 0 an affine model of which is given by the equation y2 +h(x)y+h(x)f(x) = 0
where

f(x) = x4 + (α + 1)x3 +
(
α3 + α

)
x2 + α3x + α3 + α + 1,

h(x) = (x + α2 + 1)(x + α3)(x + α3 + 1)(x + α2).

The x-coordinates of the eight 2-torsion points of a lift of the curve in the unramified 2-adic exten-
sion defined by T 4 + T 3 + T 2 + T + 1 are, at precision 6,

a = [−T 2, 24T 3 + 7T 2 + 20,−T 2 − 1,−8T 3 + 15T 2 − 28T + 3,

− 13T 3 − 24T 2 − 8T + 32,−T 3, 19T 3 + 24T 2 − 8T − 13,−T 3 − 1].

The Thomae–Fay formulas yield seven constants τe = θe/θ0 which, at precision 7, are equal to

τ = [−48T 3 + 40T 2 − 8T − 31,−8T 3 + 24T 2 + 56T + 25,
−24T 3 + 64T 2 − 55,−56T 3 + 16T 2 − 56T + 57,

−8T 3 + 56T 2 + 16T + 41,−24T 2 + 16T − 47,
−48T 3 + 16T 2 + 40T + 17].

A call to NewtonLift successively lifts τ at precision 82. This yields,

τ = [−312726215120141988400432 T 3 − 1933727213108832572762328 T 2

− 1494080419622419245495432 T + 369373282433378701844449,

1976425370164879348289528 T 3 + 1563232078799037272755224 T 2

− 1149644917000765525620040 T − 2354501050379432611581927,

− 936875050472473454654744 T 3 − 1319227091748533942659264 T 2

+ 265696351406546786744448 T + 885693358432945388185161,

− 1794275179996455307177912 T 3 − 131992495511237471305840 T 2

+ 836495583178329834494024 T − 2038182564118844375928135,

839458300521369803176696 T 3 − 591096183858400754385352 T 2

− 704354275519650081821168 T + 595721996026176100397993,

119216871415648462606208 T 3 − 279339628428735849006744 T 2

− 1478145604901852055715568 T + 1355279383057163288500689,

209229246946766688797264 T 3 + 947564514383409075790352 T 2

+ 916123454126249969343784 T + 36027802238565371903761]
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and
λ ≡ 2876672816405499004481849 (mod 282).

The only remaining problem is to devise χ(φq)C from the product of the unit roots +− (π1 · · ·πg)
(mod 2N). Factoring χ(φq)C gives

χ(φq)C(T ) =
g∏

i=1

(T − πi)(T − πi).

As an intermediate step, we will compute a polynomial of degree 2g−1 with coefficients in Z.

Definition 17.73 The symmetric polynomial Psym of a projective nonsingular curve C over Fq is
the unique monic polynomial of degree 2g−1 whose roots are α+ qg/α where α is the product of g
successive terms in {π1, π1}, . . . , {πg, πg}.

It is not difficult to see that Psym has integer coefficients. Recall that since C is assumed to be
ordinary, the roots π1, . . . , πg are 2-adic units. The following lemma shows that in this case Psym

almost determines χ(φq)C .

Lemma 17.74 Let C be an ordinary, projective nonsingular curve of genus g > 1, then Psym

determines the set {π2
i }i=1,...,g . Furthermore, if χ(φq)C is irreducible, then Psym determines

χ(φq)C(+−T ).

According to a theorem by Tate [TAT 1966], if JC is Fq-simple then χ(φq)C is irreducible, so in
this case Psym determines χ(φq)C .

Given λ ≡ +− (π1 · · ·πg) (mod pN) for some sufficiently large precision N , Psym can be com-
puted using the LLL algorithm [LELE+ 1982] as follows: let η = λ+2dg/λ and consider the lattice
L over Z given by ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SM0 SM1 · · · SMm S2N

0 0 · · · q�Sm� 0
0 0 · · · 0 0
...

...
. . .

...
...

0 q�S1� · · · 0 0
q�S0� 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the columns are the basis vectors, m = 2g−1, S an arbitrarily large constant and

Mi ≡ 2d(m−1−i)ηi (mod 2N ), i = 0, . . . ,m− 1, Mm ≡ ηm (mod pN )

Si =
i(g − 2)

2
, i = 0, . . . ,m− 1, Sm =

m(g − 2)
2

+ 1.

To see where the above lattice comes from, note that Psym(T ) = Tm +
∑m−1

i=0 riq
m−1−iT i and

that the ri can be bounded by

|ri| �
(
m

i

)
2(m−i)q

(g−2)(m−i)
2 + 1.

The Si are thus weight factors such that Siri � Sjrj for all 0 � i, j � m. Multiplying the above
matrix by the column vector [r0, . . . , rm−1, 1, R]t shows that we can recover the coefficients of
Psym from a short vector Π in the lattice. The LLL algorithm can compute this vector Π if its
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Euclidean norm || · ||2 (or sup-norm || ||1) satisfy ||Π||1 � ||Π||2 � det(L)1/ dimL. This leads to
the following asymptotic estimates for the necessary precision N :

N >
22g(g − 2) + 2g+1(g + 2)

16
d.

Example 17.75 Continuing Example 17.72, after the lattice reduction step, one obtains,

Psym(T ) = T 4 + 23T 3 − 18384T 2 − 264960T + 58593280,

and finally,

χ(φq)C(T ) = T 6 − 3T 5 + 11T 4 − 73T 3 + 176T 2 − 768T + 4096.

17.3.3 Kedlaya’s algorithm

Let p � 3 be a prime number and Fq a finite field with q = pd elements and algebraic closure Fq .
Let C be a hyperelliptic curve of genus g defined by the equation

y2 = f(x),

with f ∈ Fq[x] a monic polynomial of degree 2g + 1 without repeated roots. In particular, C is
nonsingular in its affine part and has one rational Weierstraß place at infinity. Kedlaya [KED 2001]
does not work with the curve C itself, but with the affine curve C , which is obtained from C by
removing the point at infinity and the locus of y = 0, i.e., the points (ξi, 0) ∈ Fq × Fq where ξi is
a zero of f . The reason for working with C instead of C will become clear during the exposition of
the algorithm.

17.3.3.a Dagger algebra and Frobenius lift

LetQq be the degree d unramified extension ofQp, with valuation ring Zq , such that Zq/pZq = Fq .
Take any monic lift f ∈ Zq[x] of f and let C be the hyperelliptic curve defined by y2 = f(x). Let
C be the curve obtained from C by removing the point at infinity and the locus of y = 0 and let
A = Qq[x, y, y−1]/

(
y2 − f(x)

)
be its coordinate ring.

The dagger algebra corresponding to C is given by

A† = Qq〈x, y, y−1〉†/
(
y2 − f(x)

)
,

with Qq〈x, y, y−1〉† the dagger algebra of Qq〈x, y, y−1〉 as described in Section 8.3.2. Every ele-
ment of A† can be written as a power series

∑
i∈Z Ai(x)yi with Ai ∈ Qq[x], deg(Ai) � 2g and

vp(Ai) > α|i| + β for constants α, β with α > 0. Note that these constants are not fixed for all of
A†, but depend on the particular element chosen.

Since φq = φd
p, with φp the p-power Frobenius, it suffices to lift φp to an endomorphismFp ofA†.

It is natural to define Fp as the Frobenius substitution on Zq and to extend it to A† by mapping x to
Fp(x) = xp and y to Fp(y) with

Fp(y) = yp

(
1 +

Fp

(
f(x)

)
− f(x)p

y2p

)1/2

= yp
∞∑

i=0

(
1/2
i

)(Fp

(
f(x)

)
− f(x)p

)i

y2pi
· (17.33)

An easy calculation shows that ordp

(
1/2

i

)
� 0 which implies that Fp(y) is an element of A†, since

p divides Fp

(
f(x)

)
− f(x)p. Note that it is essential that y−1 is an element of A†, which explains

why we compute with C instead of C.
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In the final algorithm, we actually need Fp(y)−1, which can be computed as Fp(y)−1 = y−pR
where R is a root of the equation F (Z) = SZ2− 1 with S =

(
1+

(
Fp

(
f(x)

)
− f(x)p

)
/y2p

)
. The

Newton iteration to compute R is given by

Z ← Z(3 − SZ2)
2

(17.34)

starting from Z ≡ 1 (mod p). In each step, the truncated power series should be reduced modulo
the equation of the curve to keep the degree of the coefficients less than or equal to 2g, i.e., for each
term Bi(x)yi with degBi > 2g, write

Bi(x)yi =
(
Qi(x)f(x) + Ri(x)

)
yi = Ri(x)yi + Qi(x)yi+2

with Qi and Ri the quotient and remainder in the division of Bi by f .

17.3.3.b Reduction in cohomology

Analogous to Section 4.4.2.c, we associate to each element h of A† a differential dh such that the
Leibniz rule holds d(hg) = hdg + gdh and such that da = 0 for a ∈ Qq. Let Ω be the module of
these differentials, then the operator d defines a Qq-derivation from A† to Ω. Since y2 − f(x) = 0,
we conclude that

dy =
f ′(x)
2y

dx and thus Ω = A† dx

y
·

By definition we have

H0(C/Qq) = ker(d) = {h ∈ A† | dh = 0}, H1(C/Qq) = coker(d) =
(
A† dx

y

)
/(dA†),

thus elements of H1(C/Qq) are differentials modulo exact differentials dh for some h ∈ A†. The
next lemma gives bases for both H0(C/Qq) and H1(C/Qq).

Lemma 17.76 H0(C/Qq) = Qq and H1(C/Qq) splits into eigenspaces under the hyperelliptic
involution ı:

• a positive eigenspace H1(C/Qq)+ with basis xi/y2 dx for i = 0, . . . , 2g,
• a negative eigenspace H1(C/Qq)− with basis xi/y dx for i = 0, . . . , 2g − 1.

To compute inH1(C/Qq) we need to express an arbitrary differential form as the sum of aQq-linear
combination of the basis in Lemma 17.76 and an exact differential. This process is called reduction
in cohomology and works as follows. It is clear that any differential form can be written as

+∞∑
k=−∞

2g∑
i=0

ai,kx
i/yk dx

with ai,k ∈ Qq. Indeed, using the equation of the curve we can repeatedly replace h(x)f(x) by
h(x)y2. A differential P (x)/ys dx with P (x) ∈ Qq[x] and s ∈ N can be reduced as follows. Since
f(x) has no repeated roots, we can always write P (x) = U(x)f(x) + V (x)f ′(x). Using the fact
that d(V (x)/ys−2) is exact, we obtain

P (x)
ys

dx ≡
(
U(x) +

2V ′(x)
s− 2

)
dx

ys−2
, (17.35)

where ≡ means equality modulo exact differentials. This congruence can be used to reduce a
differential form involving negative powers of y to the case s = 1 and s = 2. A differential



§ 17.3 Overview of p-adic methods 451

P (x)/y dx with degP = n � 2g can be reduced by repeatedly subtracting suitable multiples of the
exact differential d(xi−2gy) for i = n, . . . , 2g. Finally, it is clear that the differential P (x)/y2 dx
is congruent to

(
P (x) mod f(x)

)
/y2 dx modulo exact differentials. A differential of the form

P (x)ys dx with P (x) ∈ Qq[x] and s ∈ N is exact if s is even and equal to P (x)f(x)	s/2
/y dx if
s is odd and thus can be reduced using the above reduction formula.

17.3.3.c Recovering the zeta function

The first Monsky–Washnitzer cohomology group H1(C/Qq) decomposes as the direct sum of the
ı-invariant part H1(C/Qq)+ on which ı acts trivially and the ı-anti-invariant part H1(C/Qq)− on
which ı acts as multiplication by −1. The ı-invariant part of A† is given by

Zq〈x, y2, y−2〉†/
(
y2 − f(x)

)
,

which clearly is isomorphic to Zq〈x, (f(x))−1〉†. The latter ring is the dagger ring of the curve
A1�Vf with Vf the set of zeroes of f . The Lefschetz fixed point formula applied to C andA1�Vf

then gives ∣∣C(Fqk)
∣∣ = qk − rk − Tr

(
qkF−k

q ;H1(C/Qq)−
)

with rk the number of zeroes of f defined over Fqk . Let C̃ be the unique smooth projective curve
birational to C, then

∣∣C̃(Fqk)
∣∣ =

∣∣C(Fqk)
∣∣+ rk + 1 = qk + 1 −

2g∑
i=1

αk
i , (17.36)

with αi the eigenvalues of qF−1
q on H1(C/Qq)−.

The Weil conjectures from Section 8.1.1 imply that the αi can be labeled such that αiαg+i = q
for i = 1, . . . , 2g where the indices are taken modulo 2g. Since αi is an eigenvalue of qF−1

q on
H1(C/Qq)−, it is clear that q/αi = αi+g is an eigenvalue of Fq on H1(C/Qq)−. This proves the
following proposition.

Proposition 17.77 Let χ(T ) be the characteristic polynomial of Fq on H1(C/Qq)−, then the zeta
function of C̃ is given by

Z(C̃/Fq;T ) =
T 2gχ(1/T )

(1 − T )(1 − qT )
·

Since Fq = Fd
p , it suffices to compute the matrix M through which the p-power Frobenius Fp acts

on the anti-invariant part H1(C/Qq)− of H1(C/Qq); the matrix of the q-power Frobenius can then
be easily obtained as MFq = Σd−1(M) · · ·Σ(M)M .

The action of Fp on the basis of H1(C/Qq)− can be computed as

Fp

(
xi

y
dx

)
=

pxp(i+1)−1

Fp(y)
dx,

for i = 0, . . . , 2g− 1. Given a sufficiently precise approximation to 1/Fp(y), we can use reduction
in cohomology to express Fp(xi/y dx) on the basis of H1(C/Qq)− and compute the matrix M .

Remark 17.78 In general, the matrix M has coefficients in p−sZq where s is small and only de-
pends on p and g. However, by comparison with crystalline cohomology there always exists a basis
such that M has integral coefficients, e.g., the basis xi/y3 dx with 0 � i < 2g leads to integral M
for all p and g.
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Write T 2gχ(1/T ) =
∑2g

i=0 aiT
i; then the Weil conjectures imply that for 1 � i � g, ag+i = qiag−i

and

|ai| �
(

2g
i

)
qi/2 �

(
2g
g

)
qg/2.

In particular, if we compute χ (mod pB) with pB greater than twice the above bound, we can
recoverχ uniquely. Note that this does not imply that all computations should be performed modulo
pB since the reduction process introduces denominators and thus causes a loss of precision. The
following lemma quantifies this loss of precision and can be found in [KED 2001, Lemma 2-3].

Lemma 17.79 (Kedlaya) Let h ∈ Zq[x] be a polynomial of degree � 2g, then for n ∈ N the
reduction of h(x)y2n+1 dx (resp. h(x)/y2n+1 dx) becomes integral upon multiplication by pm with
m �

⌊
logp

(
(2g + 1)(n + 1) − 2

)⌋
(resp. m �

⌊
logp(2n + 1)

⌋
).

A further careful analysis [EDI 2003] shows we actually have to compute with N digits instead of
B where

N = B + vp(2g + 1) +
⌊
logp

(
2g + 1 − 2

p

)⌋
+
⌊
logp(2g − 1)

⌋
,

and that it suffices to approximate Fp(y)−1 by

y−p
∑

0�n<M

(
−1/2
n

)(
Fp

(
f(x)

)
− f(x)p

)n
y−2pn,

with M the smallest integer such that M −
⌊
logp(2M + 1)

⌋
� N . This finally leads to Algo-

rithm 17.80.

Algorithm 17.80 Kedlaya’s point counting method for p � 3

INPUT: A hyperelliptic curve C defined by y2 = f(x) over finite field Fq with q = pd and p � 3.

OUTPUT: The zeta function Z(eC/Fq ; T ).

1. B ←
l
logp

“
2
`
2g
g

´
qg/2

”m

2. N ← B + vp(2g + 1) +
j
logp

“
2g + 1 − 2

p

”k
+
¨
logp(2g − 1)

˝

3. compute M with M − ¨logp(2M + 1)
˝

� N

4. S ← `
y−pP

0�n<M

`−1/2
n

´`Fp

`
f(x)

´− f(x)p
´n

y−2pn
´

mod pN [using (17.34)]

5. for i = 0 to 2g − 1 do

6.
P2g−1

j=0 M [i][j]xi

y
dx ← Reduce cohomology(pxp(i+1)−1S dx) [using 17.3.3.b]

7. MFq ← Σd−1(M) · · ·Σ(M)M mod pN

8. χ(T ) ← characteristic polynomial of MFq mod pB

9. for i = 0 to g do

10. if coefficient of χ of degree 2g − i >
`
2g
i

´
qi/2 then

11. add −pB to the coefficient of χ of degree 2g − i

12. coefficient of χ of degree i ← qg−i × (coefficient of χ of degree 2g − i)

13. return Z(eC/Fq ; T ) =
T 2gχ(1/T )

(1 − T )(1− qT )
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A detailed complexity analysis of the above algorithm can be found in [KED 2001].

Theorem 17.81 (Kedlaya) There exists a deterministic algorithm to compute the zeta function of a
smooth hyperelliptic curve of genus g defined over a finite field Fpd with p � 3 using O(g4+εd3+ε)
bit-operations and O(g3d3) space for p fixed.

Example 17.82 Let C be the genus 2 hyperelliptic curve over F3 defined by the equation

y2 = x5 + x4 + 2x3 + 2x + 2.

Algorithm 17.80 then computes the following intermediate results: B = 4, N = 6, M = 9 and
S = y−pR where R is given by

R ≡ 1 + (−363x4 + 96x3 + 144x2 − 6x + 207)τ + (−123x4 − 153x3 − 21x2 + 351x + 210)τ 2

+ (339x4 − 228x3 − 60x2 − 204x + 186)τ 3 + (−81x4 + 54x3 − 243x2 − 243x + 27)τ 4

+ (−54x4 − 162x3 − 54x2 − 54x + 162)τ 5 + (351x4 + 189x3 + 189x2 + 189x + 351)τ 6

+ (−243x4 + 243x3 − 108x2 − 270x + 27)τ 7 + (−135x3 + 54x2 + 81x − 108)τ 8

+ (216x4 + 108x3 − 297x2 + 351x − 162)τ 9 + (−243x4 − 162x3 − 324x2 + 243x)τ 10

+ (81x4 − 243x3 − 162x2 + 162x − 81)τ 11 + (−162x4 + 162x3 + 324x2 − 324x + 324)τ 12

with τ = y−2. The matrix MFp is given by

⎡
⎢⎢⎢⎣

27 39 30 108
129 36 27 126
204 186 12 138
46/3 76/3 41/3 169

⎤
⎥⎥⎥⎦

and the characteristic polynomial is χ(T ) ≡ T 4 + 80T 3 + T 2 + 78T + 9 (mod 34), which gives

Z(C̃/Fq;T ) =
9T 4 − 3T 3 + T 2 − T + 1

(1 − T )(1 − 3T )
·

Remark 17.83 Kedlaya’s algorithm does not apply when p = 2, since the nature of the problem
changes: for p � 3, a hyperelliptic curve defines a Kummer extension, whereas for p = 2, it
defines an Artin–Schreier extension. Denef and Vercauteren [DEVE 2002, DEVE 2005] extended
Kedlaya’s algorithm to characteristic 2 and showed that the average time and space complexity
are the same as for Kedlaya’s algorithm. The main difference is that the curve equation has to be
lifted in a rather specific way. A ready to implement description of the algorithm can be found
in [DEVE 2005].

Remark 17.84 A related approach for Artin–Schreier covers based on Dwork–Reich cohomology
was worked out by Lauder and Wan [LAWA 2002a, LAWA 2004]. For p = 2, their algorithm is
slightly less general than the one of Denef and Vercauteren, and the complexity of the algorithm is
not rigorously proven.
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18.1 CM for elliptic curves

The theoretical background of this chapter is given in Chapter 5 for curves over the complex num-
bers. We briefly summarize what is necessary for the implementations and then concentrate on the
algorithms.

18.1.1 Summary of background

Let E be an elliptic curve over the complex numbers C. Then it is isomorphic to C/ΛE for some
lattice ΛE . We recall that an elliptic curve E/C has complex multiplication if its endomorphism
ring is strictly bigger than Z. Its lattice corresponds to an ideal A of an order O in an imaginary
quadratic field K . The j-invariant j(A) = jEA is an algebraic integer lying in the ring class field
of O. Moreover jEA depends only on the ideal class of A in Cl(O). It satisfies a monic polynomial
with integer coefficients whose zeroes are the j-invariants of the isomorphism classes of the elliptic
curves corresponding to a set of representatives of ideal classes of O.

For our purposes it is enough to restrict to the case that O is equal to the ring of integers OK of
K = Q(

√
−d).

Then the minimal polynomial of j(E) is the Hilbert class polynomial

Hd(X) =
hd∏

r=1

(
X − j(Ar)

)
,

where j(Ar) is the j-invariant of the elliptic curve corresponding to Ar, hd is the order of the ideal
class group of OK , and Ar are representatives of elements of the class group of OK .

The reduction of (a suitably chosen equation for) E modulo a prime p of the Hilbert class field
H is again an elliptic curve. Its j-invariant is a root of Hd(X) (mod p), where p ∈ Z is the prime
integer in (p).

So it is easy to find the j-invariant jp of the reduction of a model of E defined over H by factoring
Hd(X) over Fp if we can compute Hd(X).

We get the most important example by choosing for p a prime that splits completely in H . Then
the reduced curve is defined over Fp.

The important property is that one can easily compute the number of points on the reduced curve.
Let ω ∈ OK be an element with ωω = p.

Then there is an elliptic curve Ep defined over Fp with j-invariant jp having p + 1 − (ω + ω)
points; and ω and ω are the eigenvalues of the Frobenius endomorphism on this curve. From this it
follows that the curve is not supersingular.

Recall that for a given element j an elliptic curve with j-invariant j �= 0, 123 is isomorphic to

Ej : y2 = x3 − 27j

4(j − 123)
x +

27j

4(j − 123)
· (18.1)

or to a quadratic twist of Ej .

18.1.2 Outline of the algorithm

From the background we derive a method to construct elliptic curves over finite prime fields or
small extensions. In this exposition we shall restrict ourselves to the prime field case. Given a
Hilbert class polynomial Hd(X) of an imaginary quadratic field with not too large discriminant d
one can reduce it modulo primes p, which are the product of principal prime ideals in OK and factor



§ 18.1 CM for elliptic curves 457

the result. For these primes, Hd(X) (mod p) splits completely and one obtains jp, from which one
can reconstruct the elliptic curve Ep defined over Fp. To be more exact, one constructs one curve
E′

p with invariant jp and then distinguishes Ep from its twists by checking the group order. This is
performed by trial scalar multiplications with the group order and random points.

For use in cryptography one needs curves with almost prime order. To this aim one additionally
requires that for p = ωω at least one of the numbers p + 1 +− (ω + ω) is almost prime as this is the
group order of Ep or its quadratic twist. From theorems of analytic number theory it follows that
by varying the prime p one has a good chance to find elliptic curves with almost prime order after
few trials. Likewise, one might be interested in curves with a smooth group order. In the sequel we
assume that one wants to construct curves with a certain property Pr.

So first one chooses a squarefree natural number d such that the class number hd ∼ h2
d of Kd =

Q(
√
−d) is not too large. Then one computes Hd(X) or a variant (cf. Remark 18.3).

Remark 18.1 Determining the class number hd and also the Hilbert class polynomial Hd(X) is
done as precomputation and thus does not belong to the actual algorithm. Furthermore, these data
can be obtained by table lookup as all appropriate polynomials are precomputed and published
[WENG].

Starting from Hd we can use the one dimensional scheme Spec(OK) as parameter space. So for
each fixed d we are in a situation that can be compared with the classical construction of discrete log-
arithm systems that uses the global group scheme Gm (the multiplicative group) and then chooses
the reduction modulo primes to find appropriate groups inside the multiplicative group of finite
fields.

To compare the effectiveness of key generation one has to assume that Hd(X) is known and
then one has to find methods to compute both the equation and the group order of a corresponding
elliptic curve. In detail one does the following: one chooses random prime numbers of the desired
ground field size and solves the norm equation p = ωω if possible. For such primes one factors
p + 1 +− (ω + ω). If one of them satisfies property Pr, one computes the factorization of Hd(X)
(mod p). We take a factor X − jp and construct the elliptic curve Ep by (18.1).

In the sequel of this section we study these steps in detail.

18.1.3 Computation of class polynomials

To compute Hd, one first needs a list of the Ar. This is obtained through the equivalence between
the ideal classes of an algebraic number field with discriminant d and the equivalence classes of
primitive, positive definite binary quadratic forms of discriminant d.

Definition 18.2 A quadratic form ax2 + bxy + cy2 is called a reduced binary quadratic form if it
satisfies the conditions

• |b| � a � c

• b � 0 if a = |b| or a = c

• gcd(a, b, c) = 1.

Like in the case of the ideal class group of function fields (cf. Section 4.4.6) one shows that there
is exactly one reduced binary quadratic form in each equivalence class, so one can enumerate all
reduced binary quadratic forms of discriminant d to obtain a complete system of representatives; see
e.g., [ZAG 1981, Teil II, §10]. Then to each reduced quadratic form ax2 + bxy + cy2 corresponds
the ideal A = Z+ τZ, with

τ =
b +

√
−d

2a
· (18.2)
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In that way one obtains a list of numbers τr with Ar = Z+τrZ, and the Ar form a complete system
of representatives of the ideal classes of K .

The j-invariants j(Ar) of the elliptic curves over C with lattice Ar are calculated by

j(Ar)(q) =

(
1 + 240

∑∞
n=1 σ3(n)qn

)3
q
∏∞

n=0(1 − qn)24
,

where q = e2πiτr and σ3(n) =
∑
t|n

t3.
Then

Hd(X) =
hd∏
i=1

(
X − j(Ar)

)
∈ Z[X ].

All computations are done over C and, thus, it is only possible to compute approximate values for
the j(Ar). But since the coefficients of Hd are rational integers, we find the exact polynomial if we
compute with sufficient precision.

For a fixed discriminant d of an imaginary quadratic field K the complexity of computing Hd(X)
depends mainly on the size of the class number hd, and so on the size of

√
d. It turns out that it is no

great problem to deal with d � 8 × 106. In this range we reach class numbers up to 5000. Because
we need to factor Hd(X) it makes no sense to choose larger class numbers because deg(Hd) = hd.

In practice we would propose to use a table of class polynomials, e.g., [WENG], where one finds
many examples covering all CM-curves up to discriminant d � 422500, and choose a d with a not
too small class number.

Remark 18.3 For theoretical reasons we have used the Hilbert class polynomial to explain the
global part of the CM-method. In practice one should use Weber’s polynomials whose coefficients
have smaller absolute value. For details we refer to [ATMO 1993].

18.1.4 Computation of norms

To find suitable curves one chooses primes p and factors Hd modulo p. For this, p has to split as
(p) = (ω)(ω) in OK . These are the primes for which we have integer solutions x, y of the norm
equation

x2 + dy2 = ε p, with ε =

{
1, if d ≡ 1, 2 (mod 4)
4, if d ≡ 3 (mod 4).

(18.3)

A necessary condition for p to split as above is that −d is a square modulo p. Hence, one first
computes the Legendre symbol

“
−d
p

”
(cf. Section 2.3.4) and rejects the prime if the result is not 1.

In the positive case one uses Cornacchia’s algorithm [COH 2000] to find a solution to a2+db2 = p
from which one easily obtains the desired x, y.

Algorithm 18.4 Cornacchia’s algorithm

INPUT: A positive integer d > 0 and a prime p such that
“

−d
p

”
= 1.

OUTPUT: Two integers (a, b) ∈ Z2 with a2 + db2 = p if possible.

1. compute square root p/2 < x0 < p of −d, i.e., x2
0 ≡ −d (mod p)

2. x ← p, y ← x0 and z ← ¨√
p
˝

3. while y > z do r ← x mod y, x ← y and y ← r [Euclidean algorithm]

4. if d � p − y2 or if c = (p − y2)/d is not a square then return “no solution”

5. else return (a, b) = (y,
√

c)
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18.1.5 The algorithm

In the following we give the description of the algorithm using the theory from above. For more
details see [SPA 1994].

The parameter ε is chosen according to (18.3) and δ = +
√

ε.

Algorithm 18.5 Construction of elliptic curves via CM

INPUT: A squarefree integer d �= 1, 3, parameters ε and δ, Hilbert class polynomial Hd(X),
desired size of p and property Pr.

OUTPUT: A prime p of the desired size, an elliptic curve E/Fp whose group order |E(Fp)|
satisfies property Pr.

1. repeat

2. repeat choose p prime of desired size [see remark below]

3. until εp = x2 + dy2 with x, y ∈ Z
4. n1 ← p + 1 − 2x/δ and n2 ← p + 1 + 2x/δ

5. until n1 or n2 satisfies property Pr

6. compute a root j of Hd(X) (mod p)

7. compute Ej/Fp from (18.1) and its twist eEj/Fp

8. while true do

9. take P ∈R Ej(Fp) and compute Q ← [n1]P

10. if Q = P∞ and [n2]P �= P∞ then return p and Ej

11. else if Q �= P∞ then return p and eEj

Examples of desired properties Pr are that the group order contains a prime factor larger than
a given bound or that the group order is smooth with a given smoothness bound. The latter is
interesting for factorization methods (cf. Chapter 25) while the prior can be used as basis for a
cryptosystem (cf. Chapter 23).

Remarks 18.6

(i) To simplify finding primes p that split in OK together with their decomposition, one
replaces Lines 2 and 3 and chooses integers x, y such that x,

√
dy are of size

√
p and

tests whether (x2 + dy2)/ε is a prime.

(ii) The factorization of Hd(X) (mod p) needs the largest computational effort but it is
done only once.

(iii) For d = 1, the splitting condition is p ≡ 1 (mod 4) and the j-invariant is equal to 123,
hence, H1(X) = X − 123. There are 4 twists by the 4th roots of unity to consider.

(iv) For d = 3, the splitting condition is p ≡ 1 (mod 3) and the j-invariant is equal to zero,
thus H3(X) = X . There are 6 twists by the different 6th roots of unity.

18.1.6 Experimental results

We list the running times of the CM-method for elliptic curves as stated in [WEN 2001b, Appendix
A]. Table 18.1 contains the timings needed on a 650 Mhz Pentium III computer to find 1000 prime
numbers of size 2160, which satisfy a norm equation with respect to Kd and lead to a group order
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|E(Fp)| = c with c � 1000 and  prime. The discriminant of the imaginary quadratic field is
denoted by D = −εd. The entries are ordered with increasing class number, which ranges from
200 to 5800.

Table 18.1 Time to find 1000 primes p with |E(Fp)| of cofactor c � 1000.

D Time (in s) D Time (in s)

−53444 476.25 −973496 437.32
−345124 292.89 −2128136 424.44
−17111 734.06 −900311 698.49
−19631 733.88 −1139519 807.23
−19031 521.46 −2155919 876.61
−56696 293.71 −3300359 836.26

−698472 521.44 −4145951 904.15
−98276 293.99 −5154551 817.52

−180164 327.60 −6077111 1013.19
−237236 345.40 −7032119 994.38
−326504 365.75 −8282039 928.72

Table 18.2 shows the timings for constructing an elliptic curve over Fp having complex multipli-
cation by OK for a fixed imaginary quadratic field K . The first column describes the imaginary
quadratic field and the second gives the class number. For completeness, the third column contains
the time needed to compute the class polynomial. In practice Hd has been precomputed and stored
once and for all, e.g., it can be obtained from the large data base [WENG].

The actual running time to construct the curve (given in the fourth column) contains only the
factorization of the class polynomial at one prime p and the time to determine the correct equation
for E.

So the actual running time consists of the time to find a suitable prime p as stated in Table 18.1
and the time stated in the fourth column.

18.2 CM for curves of genus 22222222

For genus g = 2 we can follow the lines we have explained in the beginning of this chapter if we
replace elliptic curves by hyperelliptic curves of genus g = 2. Imaginary quadratic fields and their
class field theory have to be replaced by CM fields of degree 4 and the Shimura–Taniyama version
of class field theory. The invariant theory becomes more involved; we shall need 3 invariants in the
place of the j-invariant of elliptic curves.

After a brief overview of the background we summarize the algorithm. Then we go into the
details of the computations. We give a complete study starting from the choice of the CM field
with computation of the period matrix and the computation of the class polynomials. These two
steps are usually omitted in an actual implementation as the respective information can be obtained
from tables available on the web. The important steps for the implementation are explained in
Section 18.2.5, namely the choice of suitable primes and the computation of the curve equation.
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Table 18.2 Complexity of CM-method for g = 1, dependence on discriminant and class number.

D hK Time (in s) D hK Time (in s)
Precomp. Curve Precomp. Curve

−53444 200 3 14 −345124 200 4 9
−17111 202 1 8 −19031 203 1 9
−56696 204 3 10 −395652 204 16 10
−18119 205 1 9 −19631 208 2 14
−345624 208 20 20 −690072 208 23 9
−57944 210 3 10 −58484 210 6 11
−52664 212 3 9 −159416 212 3 9
−18191 213 1 9 −55844 216 3 10
−698472 224 26 10 −698772 228 91 10
−128456 236 5 10 −158036 242 11 9
−124004 248 5 15 −78536 252 4 10
−699752 264 9 16 −113636 284 7 16
−98276 304 7 18 −132404 332 24 23
−120056 340 10 20 −144836 352 13 20
−160676 380 16 20 −168164 384 18 19
−180164 400 19 101 −185624 402 32 76
−247796 466 75 24 −248804 468 31 24
−237236 476 78 25 −283076 520 43 35
−318776 540 184 49 −326504 578 60 39
−399944 612 75 39 −434216 630 84 42
−442196 644 218 41 −450056 676 103 44
−512984 714 135 43 −607844 752 161 142
−650744 832 211 192 −727256 866 246 170
−803864 914 291 45 −914744 972 367 48
−973496 1044 460 69 −1202984 1126 599 81

−1319876 1188 728 93 −1435496 1218 803 89
−1514036 1250 2201 93 −1561544 1280 966 98
−1617656 1324 1134 99 −1890776 1404 1467 102
−2128136 1500 1724 99 −701399 1581 566 92
−900311 1626 626 94 −1139519 2027 1306 109

−1238639 2150 1595 176 −1614311 2421 3465 193
−1884791 2669 3407 211 −2155919 2968 5373 223
−2336879 3036 5883 212 −3300359 3531 9458 250
−3190151 3593 10034 272 −3312839 3632 10424 269
−3524351 3714 11585 262 −3983591 3918 13694 293
−4145951 4065 16008 281 −4305479 4227 17515 479
−4972679 4498 21830 507 −5154551 4551 22698 521
−5652071 4802 28634 501 −5892311 4913 29785 550
−6077111 5092 34459 509 −6606599 5180 35831 529
−7032119 5424 45254 615 −7651199 5628 52417 589
−7741439 5686 54300 641 −8282039 5819 59305 668
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18.2.1 Summary of background

For this section we refer to Section 5.1.6.b for background. Let C be a hyperelliptic curve of genus
2 over the complex numbersC. Then its Jacobian JC is isomorphic to C2/ΛC for some lattice ΛC .
We recall that C has complex multiplication if the endomorphism ring of its Jacobian contains an
order O of a field of degree 4 over Q, which has to be a CM-field K , i.e., it is a totally imaginary
quadratic extension of a totally real field K0 of degree 2 over Q. For our purposes it is enough to
consider the case that O = OK is the ring of integers of K . The lattice ΛC is called the period
lattice of C and can be chosen as an ideal A of OK . The Jacobian JC is principally polarized.
This is reflected by the period matrix ΩC . This matrix is determined by arithmetical data of K , and
so the Igusa invariants j1, j2, j3 (cf. Section 5.1.6.b) of the curve C can be computed as complex
numbers. Under suitable conditions they depend only on the ideal A and the chosen polarization,
which is reflected by the group of units of OK .

So, it is possible to determine a complete set Ci, 1 � i � s, for some integer s, of representatives
for isomorphism classes of curves whose Jacobian variety JCi has endomorphism ring OK . This is
done in terms of ideals Ai and principal polarizations, which are also used to determine the Igusa
invariants j

(i)
k , k = 1, 2, 3 of Ci. A consequence is that the polynomials

HK,k(X) =
s∏

i=1

(
X − j

(i)
k

)
, k = 1, 2, 3

have rational coefficients.
The computation of these polynomials corresponds to the computation of the Hilbert class poly-

nomial Hd(X) in the case of elliptic curves.
A slight complication is that the polynomials HK,k no longer have integer coefficients. But in

practice, the denominators only have small prime divisors. Hence, we can reduce these polynomials
modulo large enough primes p and get HK,k (mod p) and the roots of these polynomials are the
invariants jk of curves Ci modulo p.

We get the most important example by choosing primes p for which all HK,k (mod p) have at
least one linear factor. This can be interpreted by class field theory in a slightly more complicated
way than in the case of elliptic curves. Then the reduced curve is defined over Fp or over a quadratic
extension. We consider only the first case.

In this case we find elements ω1, ω1 ∈ OK satisfying ω1ω1 = p. Up to negation and conjugation
there can exist at most one second solution ω2ω2 = p, with

ω2 �∈ {+−ω1, +−ω1, +− σ̂(ω1), +− σ̂(ω1)},

where σ̂ is the extension of the real conjugation to an embedding of K into C. In this case put
W = {+−ω1, +−ω2}, else W = {+−ω1}. Then the group order of JCi (mod p)(Fp) is in

{χω(1) | w ∈ W}, (18.4)

where χω(T ) is the characteristic polynomial of ω.
In Section 5.1.6.b it is explained how to obtain the equation of Ci (mod p) from its Igusa invari-

ants. Note that this is not done by exploiting a simple formula as in the elliptic case.

18.2.2 Outline of the algorithm

The first step to construct curves C of genus 2 with CM and known group order modulo a prime p
is to choose a suitable CM field of degree 4, e.g., the subfield K0 has to have class number 1 and
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like for elliptic curves the class number of K has to be moderately small. For further computations
one has to determine the class group of K and its fundamental units. One computes a complete set
of representatives of the ideal classes and principal polarizations.

The next step is to compute the period matrix ΩC , cf. Definition 5.19 attached to the curve C with
lattice ΛC being a given ideal in OK together with a polarization. Using ΩC one determines the
theta constants (5.2), which already provide a system of invariants over the complex numbers. An
algebraic system of equation is given by the Igusa invariants jk, which are explicit rational functions
in the theta constants.

Doing this procedure for every Ci, one can compute the polynomials HK,k(X).
As for elliptic curves, these steps are done once and for all as a precomputation. Suitable CM

fields and their arithmetical data and also the class polynomials HK,k can be obtained from tables.
Then one looks for a prime p for which the norm equation p = ωω has solutions in OK . At

this point one computes the at most 4 numbers (18.4) that contain the information about the group
order of JC (mod p)(Fp). If at least one of them has a desired property one proceeds to compute the
equation of the curve, otherwise one repeats this step with a different choice of p.

One factors the class polynomials modulo p and determines the invariants j
(i)
k of Ci (mod p) as

roots of HK,k(X) (mod p).
The last step is to determine an equation (up to a twist) for some C := Ci (mod p) from the

knowledge of its invariants. For this one uses either Gröbner basis techniques or the more efficient
method of Mestre, which relies on the invariant theory of binary forms.

Finally, one needs to determine the group order of JC(Fp) from the set of possible values (18.4).
This is done by randomly choosing a point P ∈ JC(Fp) and scalar multiplication by the candidate
group orders. If one finds no matches one replaces C by a twist and tries again. This immediately
answers whether one has to take C or a twist of C to get the desired order of the group of rational
points on the corresponding Jacobian variety.

18.2.3 CM-types and period matrices

Choose a squarefree d ∈ N such that K0 := Q(
√

d) has class number one. Choose α = a + b
√

d
squarefree and totally positive, i.e., a +− b

√
d > 0. Then K := K0(i

√
α) is a CM field of degree 4.

We require that K is not a Galois extension ofQ with Galois group Z/2Z×Z/2Z (this ensures that
the constructed Jacobian varieties are simple). We choose two non-conjugate distinct embeddings
ϕ1, ϕ2 of K into C. The tuple (K, Φ) = (K, {ϕ1, ϕ2}) is called CM-type. For an ideal A we put

Φ(A) =
{(

ϕ1(α), ϕ2(α)
)t

, α ∈ A
}

.

By Theorem 5.58, C2/Φ(A) is an abelian variety with complex multiplications by OK . The final
structure, abelian variety with polarization, is determined by Theorem 5.62. The following proce-
dure uses this theorem and computes a complete set of representatives for isomorphism classes of
principally polarized abelian varieties with endomorphism ring OK of CM-type (K, Φ). We use the
notation from Section 5.1.6.d.

The computation of a fundamental unit ε0 of K0 is done with the help of a computer algebra
system. Let U+ be the group of units ε with NK0/Q(ε) = 1. Put

U1 = {ε ∈ U+ | ∃γ ∈ K with NK/K0(γ) = ε}.

At this point one also determines the ideal classes of OK that contain an ideal A such that AĀ =
αOK with ϕi(α) real positive for i = 1, 2. We choose a complete set of representatives A1, . . . , Ah′

K

of these classes. We can assume that Aj is of the form

OK0 + τjOK0 , (18.5)
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where Im(τj) > 0 and if the norm of the fundamental unit NK0/Q(ε0) is negative one also requires
NK/K0(τj) totally positive.

Let σ be the real conjugation in K0 and denote by
√

a
+ the positive square root of a ∈ R. This

gives rise to two embeddings of K given by

σ̂
(
i
√

α
+) = i

√
α

+
and ρσ̂

(
i
√

α
+) = −i

√
α

+
.

We put ψ = ρσ̂.
Having these definitions, we make some observations concerning the CM-types:

1. (K, {1, ψ}) is a CM-type.

2. The abelian varieties obtained for a CM-type (K, Φ) are isomorphic to varieties ob-
tained from either (K, {1, ψ}) or (K, {1, ψ}). If K is Galois overQ then (K, {1, ψ}) is
sufficient.

For the following result we shall treat the two types {1, ψ} and {1, ψ} in parallel and list for each
τj a set Kj defining the period matrices of a complete set of isomorphism classes of principally
polarized abelian varieties related to the ideal Aj .

Definition 18.7 Let τj be as in (18.5).
If K is Galois with Galois group Z/4Z we define Kj by

•
{
(τj , τ

ϕ
j ), (ε0τj , (ε0τj)ϕ)

}
, if NK0/Q(ε0) = 1, ε0 ∈ U1, NK/K0(τj) totally positive,

•
{
(τj , τ

ϕ
j )
}
, if NK0/Q(ε0) = 1, ε0 ∈ U+�U1, NK/K0(τj) totally positive,

•
{
(τj , τ

ϕ
j ), (ε0τj , (ε0τj)ϕ)

}
, if NK0/Q(ε0) = −1,

• ∅, if NK/K0(τj) not totally positive.

If K is not Galois then we define Kj by

•
{
(τj , τ

ψ
j ), (ε0τj , (ε0τj)ψ)

}
, if NK0/Q(ε0) = 1, ε0 ∈ U1, NK/K0(τj) totally positive,

•
{
(τj , τ

ψ
j ), (ε0τj , (ε0τj)ψ)

}
, if NK0/Q(ε0) = 1, ε0 ∈ U1, NK/K0(τj) not totally positive,

•
{
(τj , τ

ψ
j )
}
, if NK0/Q(ε0) = 1, ε0 ∈ U+�U1, NK/K0(τj) totally positive,

•
{
(τj , τ

ψ
j )
}
, if NK0/Q(ε0) = 1, ε0 ∈ U+�U1, NK/K0(τj) not totally positive,

•
{
(τj , τ

ψ
j ), (ε0τj , (ε0τj)ψ)

}
, if NK0/Q(ε0) = −1.

By Spallek [SPA 1994] we have that a complete set of period matrices for all representatives of
isomorphism classes of abelian varieties with complex multiplication with OK is given by the fol-
lowing result.

Theorem 18.8 Let K be a CM field which is not a Galois extension ofQwith Galois groupZ/2Z×
Z/2Z and let {τ1, . . . , τh′

K
} be as described above. Let OK0 = Z+ wZ, with w totally positive.

A complete set of period matrices for representatives of all isomorphism classes of simple prin-
cipally polarized abelian varieties having complex multiplication by OK is given by

{
Ω(t,t̃) : (t, t̃) ∈

h′
K⋃

j=1

Kj

}
,

where

Ωt,t̃ =
1

w − wσ

[
w2t − (wσ)2 t̃ wt − wσ t̃

wt − wσ t̃ t − t̃

]
.
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18.2.4 Computation of the class polynomials

As in the previous section, we are dealing again with a precomputation. As explained in the back-
ground (cf. Chapter 5), the class polynomials are computed from the invariants of the curves over
C represented by the period matrix Ω. To get these invariants we first need to determine the theta
constants. This needs to be done for each of the s = |K| isomorphism classes (cf. Section 18.2.3)
to determine j

(i)
k , k = 1, 2, 3 and i = 1, . . . , s. Here, we omit the upper index and explain how to

compute one set of invariants.

18.2.4.a Computation of the theta constants

We recall (5.2), the definition of the theta constants in terms of the period matrix Ω for genus g = 2:

θ

[
δ

ε

]
(z, Ω) =

∑
n∈Z2

exp
(

πi

(
n +

1
2
δ

)t

Ω
(
n +

1
2
δ

)
+ 2
(
n +

1
2
δ

)t(
z +

1
2
ε

))
.

As explained in Chapter 5 we need only the even theta constants as the odd ones vanish. For
genus 2 they are given by

θ1 := θ

[
(0
0)

(0
0)

]
, θ2 := θ

[
(0
0)

(1
0)

]
, θ3 := θ

[
(0
0)

(0
1)

]
, θ4 := θ

[
(0
0)

(1
1)

]
, θ5 := θ

[
(1
0)

(0
0)

]
,

θ6 := θ

[
(1
0)

(0
1)

]
, θ7 := θ

[
(0
1)

(0
0)

]
, θ8 := θ

[
(0
1)

(1
0)

]
, θ9 := θ

[
(1
1)

(0
0)

]
, θ10 := θ

[
(1
1)

(1
1)

]
.

The algorithmic problem is to evaluate the series with sufficiently high precision. The analysis can
be found in [WEN 2003, Sect. 4].

18.2.4.b Computation of Igusa invariants

We now show how to compute the Igusa invariants from the period matrix using the theta constants.
To compute the Igusa invariants from the theta constants we introduce the values h4, h10, h12, and
h16 related to modular forms of the respective weights. Then we express the invariants I2, I4, I6,
and I10 in terms of the hi to define the Igusa invariants ji as in (5.3).

h4 :=
10∑

i=1

θ8
i , h10 :=

10∏
i=1

θ2
i ,

h12 := (θ1θ5θ2θ9θ6θ10)4 + (θ1θ2θ9θ6θ8θ3)4 + (θ5θ9θ6θ8θ10θ7)4 + (θ5θ2θ6θ8θ3θ7)4

+ (θ1θ5θ2θ10θ3θ7)4 + (θ1θ9θ8θ10θ3θ7)4 + (θ1θ5θ2θ8θ10θ4)4 + (θ1θ5θ9θ8θ3θ4)4

+ (θ5θ9θ6θ10θ3θ4)4 + (θ2θ6θ8θ10θ3θ4)4 + (θ1θ2θ9θ6θ7θ4)4 + (θ1θ5θ6θ8θ7θ4)4

+ (θ2θ9θ8θ10θ7θ4)4 + (θ5θ2θ9θ3θ7θ4)4 + (θ1θ6θ10θ3θ7θ4)4,
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h16 := θ4
8(θ1θ5θ2θ9θ6θ8θ10)4 + θ4

5(θ1θ5θ2θ9θ6θ8θ3)4 + θ4
10(θ1θ2θ9θ6θ8θ10θ3)4

+ θ4
3(θ1θ5θ2θ9θ6θ10θ3)4 + θ4

1(θ1θ5θ9θ6θ8θ10θ7)4 + θ4
2(θ5θ2θ9θ6θ8θ10θ7)4

+ θ4
1(θ1θ5θ2θ6θ8θ3θ7)4 + θ4

9(θ5θ2θ9θ6θ8θ3θ7)4 + θ4
9(θ1θ5θ2θ9θ10θ3θ7)4

+ θ4
6(θ1θ5θ2θ6θ10θ3θ7)4 + θ4

5(θ1θ5θ9θ8θ10θ3θ7)4 + θ4
2(θ1θ2θ9θ8θ10θ3θ7)4

+ θ4
6(θ1θ9θ6θ8θ10θ3θ7)4 + θ4

8(θ1θ5θ2θ8θ10θ3θ7)4 + θ4
10(θ5θ2θ6θ8θ10θ3θ7)4

+ θ4
3(θ5θ9θ6θ8θ10θ3θ7)4 + θ4

7(θ1θ5θ2θ9θ6θ10θ7)4 + θ4
7(θ1θ2θ9θ6θ8θ3θ7)4

+ θ4
9(θ1θ5θ2θ9θ8θ10θ4)4 + θ4

6(θ1θ5θ2θ6θ8θ10θ4)4 + θ4
2(θ1θ5θ2θ9θ8θ3θ4)4

+ θ4
6(θ1θ5θ9θ6θ8θ3θ4)4 + θ4

1(θ1θ5θ9θ6θ10θ3θ4)4 + θ4
2(θ5θ2θ9θ6θ10θ3θ4)4

+ θ4
1(θ1θ2θ6θ8θ10θ3θ4)4 + θ4

5(θ5θ2θ6θ8θ10θ3θ4)4 + θ4
9(θ2θ9θ6θ8θ10θ3θ4)4

+ θ4
8(θ5θ9θ6θ8θ10θ3θ4)4 + θ4

10(θ1θ5θ9θ8θ10θ3θ4)4 + θ4
3(θ1θ5θ2θ8θ10θ3θ4)4

+ θ4
5(θ1θ5θ2θ9θ6θ7θ4)4 + θ4

2(θ1θ5θ2θ6θ8θ7θ4)4 + θ4
9(θ1θ5θ9θ6θ8θ7θ4)4

+ θ4
8(θ1θ2θ9θ6θ8θ7θ4)4 + θ4

1(θ1θ2θ9θ8θ10θ7θ4)4 + θ4
5(θ5θ2θ9θ8θ10θ7θ4)4

+ θ6
6(θ2θ9θ6θ8θ10θ7θ4)4 + θ4

10(θ1θ2θ9θ6θ10θ7θ4)4 + θ4
10(θ1θ5θ6θ8θ10θ7θ4)4

+ θ4
1(θ1θ5θ2θ9θ3θ7θ4)4 + θ4

6(θ5θ2θ9θ6θ3θ7θ4)4 + θ4
8(θ5θ2θ9θ8θ3θ7θ4)4

+ θ4
5(θ1θ5θ6θ10θ3θ7θ4)4 + θ4

2(θ1θ2θ6θ10θ3θ7θ4)4 + θ4
9(θ1θ9θ6θ10θ3θ7θ4)4

+ θ4
8(θ1θ6θ8θ10θ3θ7θ4)4 + θ4

10(θ5θ2θ9θ10θ3θ7θ4)4 + θ4
3(θ1θ2θ9θ6θ3θ7θ4)4

+ θ4
3(θ1θ5θ6θ8θ3θ7θ4)4 + θ4

3(θ2θ9θ8θ10θ3θ7θ4)4 + θ4
7(θ1θ5θ2θ8θ10θ7θ4)4

+ θ4
7(θ1θ5θ9θ8θ3θ7θ4)4 + θ4

7(θ5θ9θ6θ10θ3θ7θ4)4 + θ4
7(θ2θ6θ8θ10θ3θ7θ4)4

+ θ4
4(θ1θ5θ2θ9θ6θ10θ4)4 + θ4

4(θ1θ2θ9θ6θ8θ3θ4)4 + θ4
4(θ5θ9θ6θ8θ10θ7θ4)4

+ θ4
4(θ5θ2θ6θ8θ3θ7θ4)4 + θ4

4(θ1θ5θ2θ10θ3θ7θ4)4 + θ4
4(θ1θ9θ8θ10θ3θ7θ4)4.

This allows us to define:

I2 :=
h12

h10

, I4 := h4, I6 :=
h16

h10

, I10 := h10

and we recall (5.3)

j1 =
I5
2

I10

, j2 =
I3
2I4

I10
and j3 =

I2
2I6

I10
·

18.2.4.c Computation of the class polynomial

The 3s invariants
j
(i)
1 , j

(i)
2 and j

(i)
3 , i = 1, . . . , s

allow to compute the class polynomials

HK,1(X) =
s∏

i=1

(
X − j

(i)
1

)
, HK,2(X) =

s∏
i=1

(
X − j

(i)
2

)
and HK,3(X) =

s∏
i=1

(
X − j

(i)
3

)
.

Unlike in the elliptic case the polynomials are no longer defined over the integers but over the
rationals, hence we need to control the denominator. In all practical situations the denominators
have no large prime factors and one can apply the continued fraction algorithm to the second highest
coefficients of the polynomials to obtain possible denominators dK,k. Often it is enough to multiply
the polynomial with dK,k to obtain a polynomial over the integers. There are some exceptions,
however, where the other coefficients have other factors or a higher power. Hence, one should
check with care whether the coefficients times dK,k are close enough to integers and in case of
doubt try to approximate the other coefficients, too.

In the sequel we take the integer polynomials H ′
K,k(X) ∈ Z[X ].
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18.2.5 Finding a curve

This is the step in the CM method, which needs to be done for each curve one wants to construct.
The previous sections have lead to the class polynomials HK,k corresponding to the CM field K
and the polynomials H ′

K,k defined over Z. The aim here is to find suitable primes such that the
H ′

K,k have a linear factor and that the cardinality of Pic0(C) for C/Fp has some desired property
Pr, such as having a large prime factor or being smooth. Then we can use Mestre’s algorithm to
compute an equation of such a curve C.

18.2.5.a Choosing the characteristic pppppp

In the algorithm we are required to find primes p such that (p) = (ω)(ω) with principal prime ideals
(ω), (ω).

In computational number theory there are algorithms to test whether this equation is solvable for
a given p and to compute solutions ω in the positive case (cf. [COH 2000]) and these algorithms are
implemented in computer algebra systems like Pari [PARI].

Given the factors ω, ω we obtain the possible group orders of the Jacobian as in (18.4). The CM
method is usually used in applications where one has special requirements Pr and at this point one
checks whether at least one of the candidate orders fulfills it.

If one does not want to use the heavy machinery of a computer algebra system, the inverse ap-
proach is interesting. One starts with an integer ω ∈ OK , which has NK/K0(ω) ∈ Z. This condi-
tion can be phrased via quadratic polynomials in the coefficients of ω with respect to {1, w, η, wη},
where OK = OK0 + ηOK0 .

We detail the case of η = i
√

a + bw, i.e., where the discriminant D of K0 is equivalent to 0
modulo 4. The other case is treated similarly and can be found in [WEN 2003, Sect. 8].

Let ω = c1 + c2w + c3η + c4wη. Then

NK/K0(ω) = (c1 + c2w + c3η + c4wη)(c1 + c2w − c3η − c4wη)

= c2
1 + c2

2w
2 + c2

3a + c2
4aw2 + 2c3c4bw

2 + (2c1c2 + c2
3b + c2

4bw
2 + 2c3c4a)w.

The requirement (p) = (ω)(ω) translates to

c2
1 + c2

2w
2 + c2

3a + c2
4aw2 + 2c3c4bw

2 = p

2c1c2 + c2
3b + c2

4bw
2 + 2c3c4a = 0.

This leads to all possible solutions of the norm equation. We start with a random choice of c3, c4

such that they are coprime. From the second condition we immediately get the requirement

c2
3b + c2

4bw
2 ≡ 0 (mod 2)

and have to make a different choice otherwise. By the same condition one has 2c1c2 = −(c2
3b +

c2
4bw

2 +2c3c4a) and tries for different factors c1, c2 whether c2
1 + c2

2w
2 + c2

3a+ c2
4aw2 +2c3c4bw

2

is a prime. If not, one starts with a different choice of c3, c4.

Remarks 18.9

(i) Of course, one gets by this method (up to sign and complex conjugation) only one so-
lution of the norm equation. It can happen that there is no curve of genus 2 over Fp

for which the Jacobian has the expected group order. In this case one starts with a new
choice of ω.

(ii) In applications one needs primes of a certain size. To this end one chooses c3, c4 to have
size O(

√
p).
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(iii) In this method the most expensive step consists in the primality test (cf. Chapter 25). We
note that primality tests or even factorization methods are usually needed in any case to
test for the property Pr. One should use an early abort strategy and apply trial division
first. With this method the time to find a suitable prime and its factors is usually shorter
than for the method starting with candidate primes p.

18.2.5.b Finding the invariants

By construction, the class polynomials HK,k have a linear factor modulo the primes generated in
the previous paragraph.

One can also investigate the splitting behavior for other primes p. Factors of larger degree lead
to curves defined over extension fields of Fp. For our purposes we are interested in curves defined
over a prime field, and hence refer to Weng [WEN 2003] for a complete study.

As already remarked, the denominators occurring in the polynomials HK,k are not divisible by
large primes, and hence the invariants j

(i)
k of the curves Ci correspond in a canonical way to the

roots of HK,k modulo p, which are the invariants of Ci (mod p).
At this point a further difficulty compared to the case of elliptic curves occurs, this time caused

by the more involved invariant theory. We do not know how to combine the 3 zeroes arising from
the 3 polynomials HK,k, k = 1, 2, 3 to form a triple of invariants. Hence, we have to do the steps
in Mestre’s algorithm and the final step for each of the at most s3 triples whose entries are zeroes
j′1

(i1)
, j′2

(i2), j′3
(i3) of the polynomials HK,k.

18.2.5.c Mestre’s algorithm

Let (j1, j2, j3) ∈ F3
p be a candidate triple of invariants of a curve Ci (mod p). In Section 5.1.6.b we

defined a conic Qj1,j2,j3(x1, x2, x3) and a cubicHj1,j2,j3(x1, x2, x3). As a first step one determines
a rational point (a1, a2, a3) of Qj1,j2,j3 by multivariate factorization methods. If there does not exist
such a point one rejects the triple and tries with a new one. It can happen that for none of the triples
found in Section 18.2.5.b the conic has a rational point. In this case one needs to start anew with a
different choice of the prime p.

Now assume that Qj1,j2,j3(a1, a2, a3) = 0. Then one can parameterize the conic with

Qj1,j2,j3

(
x1(t), x2(t), x3(t)

)
= 0.

We find the points of intersection between Qj1,j2,j3 and Hj1,j2,j3 by solving the equation

Hj1,j2,j3

(
x1(t), x2(t), x3(t)

)
= 0.

In general, this leads to a polynomial f(t) of degree 6 such that the roots ti give the 6 points of
intersection over Fp.

Remark 18.10 It is only possible to parameterize affine parts of the conic. If we assume that
Qj1,j2,j3 and Hj1,j2,j3 intersect only in this part we get deg(f) = 6. Otherwise, there is another
affine part on which the description works as described.

By Lemma 5.53 the curve C with invariants j1, j2, j3 is given, up to a twist, by the affine equation

Ca : y2 = f(x).

18.2.5.d The final step

Throughout this book we always assume that hyperelliptic curves have a Fp-rational Weierstraß
point. In our case that means that the polynomial f(x) has a root ξ over Fp. By the transformation
ξ → ∞ we get a new affine equation y2 = f̃(x) with deg(f̃) = 5.
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Now we have to check whether the Jacobian of the constructed curve C and of its twists has one of
the at most 4 possible numbers in N = {Nω = χω(1) | ω ∈ W} as in (18.4) of Fp-rational points.
This is done as usual:

Choose a random divisor class
__
D ∈ Pic0

C , check whether [N ]
__
D = 0 for N ∈ N . If this check

fails for all Ni one chooses a new triple (j1, j2, j3) or, if not available, another p.
In case of ambiguity one tries a different random divisor class

__
D ∈ Pic0

C .

Remark 18.11 The quadratic twist of C is defined by

Cv : vy2 = f(x),

where v is not a square in Fp. If C has order Nω then the twist Cv has order N−ω and it could be
that N−ω rather than Nω has the desired property Pr.

18.2.6 The algorithm

In the following we give the complete description of the algorithm using the theory from above.
In Sections 18.2.3 and 18.2.4 we described the choice of the CM field and the computation of the

theta constants and the class polynomials. In practice this is done as a precomputation step. So, we
shall take the CM-field and the class polynomials as given in the following algorithm.

Algorithm 18.12 Construction of genus 2 curves via CM

INPUT: A CM-field K/K0/Q, class polynomials HK,k(X), desired size of p and property Pr.

OUTPUT: A prime p, a genus 2 curve C/Fp whose group order N = |Pic0
C(Fp)| satisfies Pr.

1. while true do

2. repeat

3. repeat choose prime p of desired size [see remark below]

4. until p = ω1ω1 with ω1 ∈ OK [compute also p = ω2ω2 if possible]

5. compute the set of possible group orders N as in (18.4)

6. until at least one N ∈ N satisfies property Pr

7. for k = 1 to 3 compute all roots Jk =
n

j
(i)
k

o
of HK,k(X) (mod p)

8. for (j1, j2, j3) ∈ J1 × J2 × J3 do

9. compute the conic Qj1,j2,j3(x1, x2, x3)

10. if there exists a point (a1, a2, a3) with Qj1,j2,j3(a1, a2, a3) = 0 then

11. compute Hj1,j2,j3 and the intersection polynomial f(t)

12. if f(t) has a root in Fp then

13. find the curve C given by y2 = f̃(x) and deg(f̃) = 5

14. deduce the twist eC given by dy2 = f̃(x)

15. choose a random divisor class
__
D ∈ Pic0

C(Fp)

16. use
__
D to check if N is the group order

17. if desired group order is assumed then break

18. return the prime p, the curve C and the order N
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As for elliptic curves, examples of desired properties Pr are that the group order contains a prime
factor larger than a given bound or that the group order is smooth with a given smoothness bound.
The latter is interesting for factorization methods (cf. Chapter 25), while the prior can be used as
basis for a cryptosystem (cf. Section 23.4).

Remarks 18.13

(i) Lines 3 and 4 can be replaced as described in Section 18.2.5.

(ii) The largest complexity is introduced by the factorization of the HK,k and the following
step, which is executed in the worst case for all possible triples.

18.3 CM for larger genera

We give a short outline of possibilities and difficulties that occur when one tries to construct hyper-
elliptic curves of genus � 3 by using the CM-method.

18.3.1 Strategy and difficulties in the general case

The CM-theory of Shimura and Taniyama is valid for all CM-fields K of degree 2g. Of course the
arithmetic of K becomes more complicated for increasing degrees but for moderate g (e.g., g � 5)
it is possible to determine the period matrices of a set or representatives of all principally polarized
abelian varieties over the complex numbers with endomorphism ring equal to the ring of integers in
K . The next step, to compute the theta constants attached to the matrices as complex numbers with
high precision, causes only numerical difficulties that can be overcome if one uses enough effort.

The first theoretical problem arises when one has to decide which of the constructed abelian
varieties are Jacobian varieties of curves. Due to a theorem of Weil this is always the case for
g = 3; for g � 4 the question is unsolved (Schottky problem).

But we are interested in hyperelliptic curves and so we can say more. By results of Mumford
and Poor one has a criterion that is easily verified: let Ω be the period matrix of a principally
polarized abelian variety A. A necessary and sufficient condition for A being the Jacobian variety
of a hyperelliptic curve is that one of the even theta constants vanishes. So, one can determine the
isomorphism classes (over C) of all hyperelliptic curves whose Jacobian varieties have as ring of
endomorphisms the integers of K .

Now the next complication arises. The invariant theory of such curves becomes more complicated
and the structure of the invariant ring is not well understood at least when g > 5. So, we restrict
ourselves to g � 5 (which is of course enough for practical applications). Then we can proceed as in
Section 18.2.4 and compute class polynomials for a set of invariants that determine the isomorphism
classes of the curves. These polynomials have rational coefficients, and the possible denominators
are becoming larger but for primes p, large enough reduction theory works as in the case of g � 2.

By solving a norm equation with integers in K , one finds candidates for the Frobenius endomor-
phism modulo p and so possible orders of the group of rational points of the Jacobian. Even the last
step, to find the curve equation, can be done in reasonable time [WEB 1997].

So, in theory we can use the CM-method at least for hyperelliptic curves of genus � 5. But in
practice we meet a big difficulty: if we do not impose additional conditions on K we rarely find
hyperelliptic curves.

The reason comes from the theory of the moduli space of curves of genus g � 2. The dimension
of this space is 3g − 3, and the locus of hyperelliptic curves has dimension 2g − 1 (it has 2g + 2
Weierstraß points containing (up to projective transformations) the points P∞, (0, 0), (1, 0)). So
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already for g = 3 the hyperelliptic curves lie in an algebraic set of codimension 1. An extensive
search, cf. Weng [WEN 2001b], did not yield any example of a hyperelliptic curve of genus 3 and
CM without additional automorphism. So only very special CM-fields K can be chosen if we want
to find hyperelliptic curves.

18.3.2 Hyperelliptic curves with automorphisms

Assume that K contains the complex number i with i2 = −1. This means that K = K0(i) where
K0 is a totally real field of degree g overQ.

We get the following result.

Lemma 18.14 Let A be a principally polarized abelian variety with endomorphism ring equal to
the ring of integers of K . Assume that A is simple and that it is the Jacobian of a curve C.

Then C is hyperelliptic and has an automorphism τ(i) of order 4.

Proof. By assumption A has an automorphism τ(i) of order 4. It is a general fact that τ(i) induces
an automorphism of order 2 or 4 of C. In any case C has an automorphism of order 2. Hence the
function field of C has a subfield of index 2. The Hurwitz genus formula yields that this subfield has
genus g0 < g. The Jacobian of the corresponding curve is a factor of A and so, since A is assumed
to be simple, it is equal to {0}. Hence g0 = 0 and C is hyperelliptic.

Assume that the conditions of the lemma are satisfied and let C be given as usual by

Ca : y2 = x2g+1 + f2gx
2g + · · · + f0.

Since τ(i)2 is equal to the hyperelliptic involution ω the automorphism τ(i) induces an automor-
phism of C(x) of order 2 and hence it maps x to −x. Since w(y) = −y it follows that τ(i)(y) = iy.

This imposes conditions on the equation defining C. We must have

y2 = x2g+1 + f2gx
2g + · · · + f1x + f0 = x2g+1 − f2gx

2g +− · · · + f1x − f0

and so fi = 0, for i even.

Corollary 18.15 Let C be as in Lemma 18.14. Then C is given by an affine equation

Ca : y2 = x2g+1 +
g−1∑
j=0

f2j+1x
2j+1.

Remark 18.16 Until now, we have stated our results over the complex numbers. But of course
Lemma 18.14 and its corollary are true over any field K (of characteristic �= 2) over which A and
τ(i) are defined.

Assume now that K = Fq with q odd and let r be a nonsquare, i.e., r ∈ Fq �F
2
q .

Since C has an automorphism of order 4 it has a quartic twist C(4) of C obtained from Ca by the
transformation x 
→ r1/2x, y 
→ r(2g+1)/4 defined over Fq4 .

The equation of C(4) is

y2 = x2g+1 +
f2g−1

r
x2g−1 + · · · + f1

rg
x.

Hence either f2g−1 or f2g−1/r is a square in Fq. Now we can use a quadratic twist to get that
f2g−1 = 1.
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Corollary 18.17 Assume that the conditions of Lemma 18.14 are satisfied and that C and τ(i) are
defined over Fq. Then a twist of C is given by an equation

y2 = x2g+1 + x2g−1 +
g∑

j=2

a2jx
2g+1−2j .

18.3.3 The case of genus 333333

We now apply our results to the case that K0 is totally real of degree 3 and class number 1. Because
of the Theorem of Weil and Lemma 18.14 we know that every principally polarized abelian variety
with endomorphism ring OK is the Jacobian of a hyperelliptic curve.

In a precomputation we determine the period matrices and the theta constants of a set of repre-
sentatives of the C-isomorphism classes of such varieties. This is explained in detail in section 3
and 4 of [WEN 2001a].

As seen in the background there are 5 Shioda invariants that determine a curve up to isomorphism.
Due to the automorphisms we have a symmetry and thus it is enough to compute only 2 invariants,
j1 and j3. This is done either directly from the theta constants or via a Rosenhain model for C (cf.
[WEB 1997] and [WEN 2001a, Chap. 4]) over C for each of the representatives, and we use this to
determine the class polynomials Hjk

(X) for k = 1 and 3.
After this precomputation (which can be replaced by a look-up of tables) the algorithm proceeds

as follows.

1. Choose a prime p, solve the norm equation

p = ωω

with ω ∈ OK and test whether there is a candidate curve C (mod p) for which the
order of the rational points of its Jacobian has the desired property.

2. Compute the zeroes of Hjk
(X) over Fp.

3. At this step we use the extra structure we have.
By Corollary 18.17 we know that the curve we are looking for is (up to a twist) given by

y2 = x7 + x5 + ax3 + bx; a, b ∈ Fp.

The discriminant of x7 + x5 + ax3 + bx is

∆ = − 17280a5b2 + 9216a5b − 1024a5 − 4352a4b3 + 512a4b2 + 9216a4b4

+ 62280a6b − 13824a5b3 − 64a3b3 − 13824a6 − 1024a3b3 + 512a3b5 − 46656a7.

Define
I2 = −1/4a− 1/28b

and

I4 =
1

288
(−504b− 120)(−504a− 120b3) +

1
96

(−196a + 68b)3.

Then we have the identities
j1∆ − I5

2 = 0

and
j3∆ − I2I4 = 0,

which give two polynomial equations for possible values of a and b.
Take these equations with (j = j1, j

′ = j3) a combination of the zeroes of Hj1(X) and
Hj3(X) over Fp and compute the candidates (a′, b′) for (a, b).
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4. Test whether C′ : y2 = x7 +x5 +a′x3 +b′x or one of its twist curves has a Jacobian JC

with JC(Fp) of desired order. If not, choose another pair (a′, b′) and eventually another
pair (j, j′).

Remarks 18.18

(i) Examples and a detailed discussion of the general case of hyperelliptic curves of genus
3 can be found in [WEN 2001a].

(ii) If one wants to use curves of genus 3 for cryptographic purposes, the examples con-
structed above may have some security deficiencies compared with random curves, for
instance, caused by the existence of a nontrivial automorphism. But they are easily con-
structed and serve well if one wants to test, for example, efficiency of specific scalar
multiplications.
On the other hand, Section 15.2 shows how to use endomorphisms to speed up scalar
multiplication in Pic0

C .

(iii) One can drop the condition that C is hyperelliptic. Then one finds many curves of genus
3 with complex multiplication. Another interesting subclass of such curves consists of
Picard curves, which have an automorphism of order 3. They have as CM-field a field
K0(

√
−3). For more details see [KOWE 2005].
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This chapter is devoted to the generic methods for computing discrete logarithms in commutative
groups and group orders. There are also applications where, apart from the group order, we have
additional knowledge on the logarithm logg(h), such as a certain amount of high or low order
bits, or a probability distribution of the logarithm, or else the interval in which it lies is known
beforehand. The last kind of information is exploited, for example, by the kangaroo methods (see
Section 19.6): if we are interested in the order of an elliptic or hyperelliptic curve, this information
by Hasse’s bound (see Section 5.2.3) is an interval centered on the cardinality of the underlying
field. In general, such knowledge (especially information about certain bits) can be used to reduce
the running time for solving the DLP, so the designer of a DL system must take it into account
[NGSH 2003]. The adaptation of the methods described here to the context where one has that
particular information is often quite straightforward.

Our presentation has been influenced by Teske’s excellent survey [TES 2001b].
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19.1 Introduction

We begin our presentation with exponential time methods; we recall that this means that the com-
plexity is exponential in the logarithm of the order. For factoring an integer n, this implies that these
methods may take nC operations on integers of size comparable to n for some positive constant C.
For computing DLs, it means that they may require |G|C compositions on G.

The best methods that apply to any cyclic group provide an upper bound C = 1/2 — which is the
reason they are also called square root algorithms — and are based on only a handful of ideas: brute
force, the Chinese remainder theorem, the birthday paradox. In fact, most of the methods explained
in this section are square root methods. This explains why subexponential time algorithms (despite
their names) are in many cases better than square root methods! We first give a rigorous definition
of a generic algorithm:

Definition 19.1 An algorithm performing computations in groups is called a generic algorithm if
the only computations it performs are:

• computation of the composition of two elements
• computation of the inverse of an element, and
• checking two elements for equality.

Such an algorithm is also said to operate in black-box groups.

Shoup [SHO 1997], generalizing a result of Nechaev [NEC 1994], has shown that if p is the largest
prime dividing the group order, a generic algorithm to solve the DLP with a probability bounded
away from zero has to perform Ω(

√
p) group operations. Let G be a cyclic group of order n.

Starting with the notion of an oracle that can be queried for the result of the three above generic
group operations, Shoup computes the probability that an algorithm outputs the correct answer to a
DLP in G after m oracle invocations. The numeration of elements of G can be reinterpreted as an
encoding of the n (distinct) scalar multiples of g that are given by a map σ of Z/nZ into a set S of
binary strings representing elements of G uniquely. The problem [t]g = h in G is then rewritten as
follows: Given

(
σ(1), σ(t)

)
, find t ∈ Z/nZ. We cite Shoup’s main result concerning generic DL

algorithms.

Theorem 19.2 [SHO 1997] Let n be a positive integer whose largest prime divisor is p. Let S be a
set of binary strings of cardinality at least n. Let A be a generic algorithm forZ/nZ on S that makes
m oracle queries, and suppose that the encoding function σ of Z/nZ on S is chosen randomly. The
input to A is

(
σ(1), σ(t)

)
where t ∈ Z/nZ is random. The output of A is v ∈ Z/nZ. Then the

probability that t = v is O(m2/p).

Therefore, for achieving a nonnegligible probability of success, one needs O(
√

p) oracle calls. The
result is that a generic DL algorithm must perform Ω(

√
p) group operations. The generic algorithms

for the DLP that we shall describe provide a constructive proof of how the DLP can be solved in
time O(

√
|G|) for any cyclic group G. The ideas underlying these methods are often used for other

purposes too, for example, for factoring, as we shall see in Chapter 25, or to improve algorithms,
which in principle are completely different. Generic methods like the ones described here are often
superseded by better algorithms that have been designed for particular kinds of groups. Some of
these methods are presented in Section 20 if still “generic” enough, and are then discussed in more
detail for specific groups in the next chapters. This is the reason why ideal group-based cryptosys-
tems are based on primitives whose solution has square root complexity. For a very interesting
discussion of other types of information that can weaken the protocols, we refer to [MAWO 1998].

In the following, G can always be assumed cyclic: in fact, since the discrete logarithm problem
we want to solve is [t]g = h with h ∈ 〈g〉, we can always replace G with 〈g〉.
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19.2 Brute force (exhaustive search)

Given a group G generated by one of its elements g and a second element h ∈ G, an integer
t such that [t]g = h can be found by comparing [t]g to h for all t with 0 � t < |G|. This
takes at most ord(g) additions in G and is definitely not viable for large groups. For the integer
factorization problem this is simply trial division: see Chapter 25. Usually this method is too slow,
but, surprisingly, it has some important applications: due to its absence of overhead, it might even
be the method of election for checking whether a given element splits completely over a small, given
set of primes (smoothness test: see Section 20.1).

19.3 Chinese remaindering

Discrete logarithms in G = 〈g〉 can be computed easily if n := ord(g) has only small factors.
More precisely, the complexity of computing discrete logarithms in a group of composite order n
is (from the point of view of computational complexity) bounded from above by the complexity of
solving the DLP in a group whose order is the largest prime factor of n. This was first observed for
cryptographic applications by Silver, Pohlig, and Hellman [POHE 1978].

Assume n composite and let p | n. From [t]g = h it follows that

[t mod p]
([

n
p

]
g
)

= [t]
([

n
p

]
g
)

=
[

n
p

]
h.

Thus, t modulo each of the primes p dividing n can be found by solving the DLP in a cyclic group
of order p. If n is a product of distinct primes, then t is recovered applying the Chinese remainder
theorem (see Section 10.6.4).

If n is not squarefree, the p-adic expansion can be used as described, for example, in [LELE 1990],
to compute t modulo the highest power of p dividing n for all primes p, and then the Chinese
remainder theorem is employed. If, say, pk divides n, one first gets t mod p, then “lifts” this value
to t mod pj for j = 2, 3, . . . , k. For simplicity, suppose that G is a cyclic group of order pk and that
[t]g = h with t = t0 + t1p + t2p

2 + · · · + tk−1p
k−1 where 0 � tj < p. Now

[pk−1]h = [t]
(
[pk−1]g

)
= [t0]

(
[pk−1]g

)
,

because the pk-fold of any element of G is 0G (the unit of G), hence t0 is found by computing a
discrete logarithm in a the unique subgroup G0 of G of cardinality p. Similarly

[pk−2]h = [t]
(
[pk−2]g

)
= [t0 + t1p]

(
[pk−2]g

)
whence

[pk−2]h ⊕ [−t0]
(
[pk−2]g

)
= [t1]

(
[pk−1]g

)
in G0.

In general

[pk−j ]h ⊕ [−(t0 + t1p + · · · + tj−1p
j−1)]

(
[pk−j ]g

)
= [tj ]

(
[pk−1]g

)
in G0

allowing us to find tj for j = 3, 4, . . ., until t is completely determined.
If k is not too large (as in the cryptographic applications) we can precompute and store the scalar

multiples [pj ]g and [pj]h for j = k − 1, k − 2, . . . , 1 in order to speed up the determination of
t0, t1, . . . , tk−1.

If p is itself not too large, there is the following efficient strategy for computing t: first precompute
a table with the elements of G0 (one is attained with high probability as r := [pm−1]x for a random
x ∈ G, the other ones as multiples of r), then solve the above equations by means of table lookups.

The general setting for p-adic lifting is described in Chapter 12
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Remark 19.3 The algorithms in the following sections are the “serious” generic methods to solve
the DLP. Of course, in order to avoid this weakness one has to assume that the group order is
known. In some cases, however, this is not the case. In particular, many algorithms can be adapted
to this case simply by using them to solve logg(1), i.e., to compute the order of g. In most cases
simplifications and optimizations are just obvious.

19.4 Baby-step giant-step

The baby-step giant-step algorithm was first published by Shanks in [SHA 1971]. According to
Nechaev [NEC 1994] it was known to Gelfond in 1962. See also [KNU 1997, Ex. 5.17]. The first
application of this method was order computation: in fact Shanks used it to compute ideal class
numbers of quadratic number fields. It can be used for discrete logarithm computation and we shall
present it in this form, which is more general. Order computation is then done solving [t]g = 0 with
for t �= 0 (and of course with unknown order). The baby-step giant-step method is based on the
following observation:

Lemma 19.4 Let n be a positive integer. Put s :=
⌊√

n
⌋

+ 1. Then for any t with 0 � t < n there
are integers 0 � U, V < s with t = U + V s.

Suppose now n = ord(g). Then [t]g = h implies

h ⊕ [−U ]g = [V s]g

for some U, V, s as in Lemma 19.4.

Algorithm 19.5 Shanks’ baby-step giant-step algorithm

INPUT: A generator g of a group G of order n and h ∈ G.

OUTPUT: An integer t with [t]g = h.

1. s ← �√n� + 1

2. for j = 0 to s store (βj ← h ⊕ [−j]g, j) in a hash table [the ‘baby steps’]

3. i ← 0 and γ ← 0G [γ holds the ‘giant steps’ [is]g]

4. while true do

5. if (γ = βj for some j) then return (is + j) [hash table lookup]

6. i ← i + 1 and γ ← γ ⊕ [s]g

This method is very important because it is the first generic deterministic method requiring at most
2
√

n compositions in G, thus matching the order of magnitude of Shoup’s lower bound. Its main
drawback is that it has to store O(

√
n) group elements.

What happens if we do not know the group order? We can work with an assumed bound n on
t and compute a set of baby steps. Then we compute giant steps until the solution is found. The
numbers of compositions required is about

√
n + t/

√
n � 2

√
n if the bound is correct. This works

even if n < t but, when t is much larger than n, we observe that
√

n + t/
√

n becomes linear in t,
turning this algorithm into a “sophisticated” brute force method. The same can be done to compute
the group order: we just want to solve t = logg(1) discarding the trivial solution t = 0. Usually we
have some loose bounds on the cardinality of the group by construction or by its representation (for
instance, if the elements of the group are represented by strings of at most b bits, it can be assumed
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that the group order is � 2b). But there are better alternatives for these cases, which also allow an
easier solution if t is much smaller than n (it happens for the DL systems that use small exponents
for performance reasons). We see these in the next section.

19.4.1 Adaptive giant-step width

A different approach allows us to obtain results relative to the discrete logarithm itself rather than
relative to an upper bound on it. It can also be used to compute unknown group orders with-
out the complexity becoming possibly linear in the group order itself. Buchmann, Jacobson, and
Teske [BUJA+ 1997] suggested starting with a conservative, moderate assumption on the order of
magnitude of t = logg(h) and doubling the giant step width at certain intervals. Their method is
based on the following result:

Lemma 19.6 [BUJA+ 1997, Lemma 2.1] For every integer t > 1 there are uniquely determined
integers k, c and j such that

t = 2k+1c + j with
(
2k−2 − 1

2

)
� c < 2k+1, k � 0 and 1 � j � 2k+1.

The lemma implies the correctness of the following algorithm.

Algorithm 19.7 BJT variant of the baby-step giant-step algorithm

INPUT: A generator g of a group G of unknown order and h ∈ G and an initial estimate t of an
integer t > 1 with [t]g = h.

OUTPUT: An integer t with [t]g = h.

1. k ← �lg(
√

t)�
2. for j = 0 to 2k+1 − 1 store (βj ← h ⊕ [−j]g, j) in a hash table [initial ‘baby steps’]

3. while true do

4. for c = �2k−1� to 2k+1 − 1 do

5. γ ← [2k+1c]g [the ‘giant steps’]

6. if (γ = βj for some j with 1 � j � 2k+1) then return (2k+1c + j).

7. k ← k + 1

8. for j = 2k to 2k+1 − 1 insert (βj ← h ⊕ [−j]g, j) in the baby step hash table

In Line 5, γ should not be computed anew each time as [2k+1c]g, as this would be too expensive.
Instead, [2k+1c]g and [4k]g = [2k+12k−1]g (where 2k−1 is the first value of c unless k is zero) are
computed before the while loop and updated as k increases. The values [2k+1c]g in the internal for
loop are obtained upon adding repeatedly [2k+1c]g to a variable initially containing [4k]g. As in the
original baby-step giant-step method, the search in Line 6 should be performed using a hash table.

The complexity of this variant is O(
√

t).
Another approach is to increment the width of the giant steps after each baby step [TER 2000]. It is
based on the following way of representing integers:

Lemma 19.8 For every nonnegative integer t there are uniquely determined integers j and k with
0 � k < j such that t = Tj+1 − k, where Tj is the j-th triangular number, i.e., T1 = 0, Tn+1 =
Tn + n for n � 1.

To compute t = logg(h) we need to find the correct value of j in the representation above. This
is done alternating baby steps and giant steps as follows: first, we compute the baby step β0 =
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h ⊕ [0]g = h and the giant step [T1]g = [0]g = 0G; the baby steps are always stored, only
the last giant step is kept in memory. For j � 1, the j-th iteration consists of computing the
giant step [Tj+1]g = [Tj ]g ⊕ [j]g. If j � 2, we check whether [Tj+1]h is in the baby step set
for some s with 0 � s < j: if this is the case, then t = Tj+1 − s, otherwise the baby step
βj = h⊕ [j]g = h⊕ [j − 1]g⊕ g is computed, j increased by one and the next iteration performed.

Algorithm 19.9 Terr’s variant of the baby-step giant-step algorithm

INPUT: A generator g of a group G of unknown order and h ∈ G.

OUTPUT: An integer t with [t]g = h.

1. β0 ← h, γ ← [T1]g = 0G, δ ← 0G and j ← 0

2. while true do

3. j ← j + 1

4. δ ← δ ⊕ g and γ ← γ ⊕ δ [γ = [Tj+1]g]

5. if j � 2 then

6. if (γ = βs for some s with 0 � s < j) then

7. return (Tj+1 − s) [Tj+1 = j(j + 1)/2]

8. βj ← βj−1 ⊕ g [equivalently βj ← h ⊕ δ]

This variant has complexity O(
√

t), exactly as in the previous variant, but the implied constants are
smaller.

19.4.2 Search in intervals and parallelization

Sometimes it is known beforehand that the discrete logarithm t or the group order lies in the interval
[a, b]. This is in fact the situation for the group orders of elliptic and hyperelliptic curves. The
modifications to Algorithm 19.5 to take advantage of this information are straightforward. The time
and storage complexities of the modified algorithm become O(

√
b − a). Put s =

⌈√
b − a

⌉
. The

baby steps βj are given by h ⊕ [−a − j]g for 0 � j < s. The giant steps are [is]g for 0 � i < s.
When a match h ⊕ [−a − j∗]g = [i∗s]g is found we get t = a + i∗s + j∗.

Algorithm 19.10 Baby-step giant-step algorithm in an interval

INPUT: A generator g of a group G, an element h ∈ G and an interval [a, b].

OUTPUT: An integer t ∈ [a, b] with [t]g = h or failure.

1. s ← ˚√
b − a

ˇ

2. for j = 0 to s − 1 store (βj ← h ⊕ [−a − j]g, j) in a hash table [the ‘baby steps’]

3. γ ← 0G [γ holds the ‘giant steps’ [is]g]

4. for i = 0 to s − 1 do

5. if (γ = βj for some j) then return (a + is + j) [hash table lookup]

6. γ ← γ ⊕ [s]g

7. return fail

Upon application of the baby-step giant-step method on m processors, a speedup by a factor of
√

m
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is easily achieved. It suffices to divide the interval to be searched into m approximately equally
wide subintervals and to apply the algorithm independently on each of them. In order to get a bet-
ter speedup one would presumably need a parallel machine with shared memory with unrestricted
access. Furthermore it seems at least very intricate to combine parallelization with dynamically
expanding giant step width. The conclusion is that the baby-step giant-step method cannot be par-
allelized in an efficient way.

19.4.3 Congruence classes

In other contexts the order is known to lie in one or more congruence classes modulo a given integer.
For simplicity, assume that we know that n ≡ n0 (mod m). This can happen, for example, if we
used a Schoof-like algorithm (cf. Section 17.2) to compute the order of the curve or of the Jacobian,
but because of computational limitations we stop earlier and compute the order only modulo m. In
this situation we usually also know the interval [a, b] in which the order t lies, where we can assume
a ≡ n0 (mod m), and clearly b − a > m, otherwise the result is already uniquely determined. In
this case we choose s to be the smallest integer �

√
(b − a)/m which is divisible by m. The baby

steps βj are given by h⊕ [−a − jm]g for 0 � j < s. The giant steps are [is]g for 0 � i < s. When
a match h ⊕ [−a − j∗m]g = [i∗s]g is found we get t = a + i∗s + j∗m. The algorithm is nearly
identical to Algorithm 19.10. The complexity is O(

√
(b − a)/m).

The generalization to more congruence classes is just more complex from the technical point of
view. The complexity of the corresponding method is O(

√
(b − a)r/m) where r is the number of

the given congruence classes modulo m.

19.5 Pollard’s rho method

The methods which are presented here have been originally proposed for F∗p (see [POL 1978]) and
are based on the birthday paradox. Draw elements at random from a group G, always putting the
element back after each draw: when an element is drawn that has already been drawn before we say
we have a match or a collision.

Theorem 19.11 If elements are drawn at random from G = 〈g〉 then the expected number of draws
before a collision occurs is

√
πn/2 where n = |G| = ord(g).

The basic idea is that we make a “random” walk {wi}∞i=0 in the considered group or semigroup until
a match is found. If we remember how we computed the elements of the walk from w0 then we
hope to be able to recover some information about w0. In order to do this we must pick elements in
a deterministic way, but which in practice behaves randomly with respect to the structure in which
we are working.

This can be achieved by a random mapping Φ of G to itself, i.e., a mapping that is chosen uniformly
at random from the set of the maps from G to itself. Suppose then that wi+1 = Φ(wi) where Φ
is a random mapping. A pictorial description of the sequence {wi}∞i=0 is given by the Greek letter
ρ: starting at the tail of the ρ at some point the sequence will meet itself at some earlier point and
loop from there on. In other words there exist positive integers µ and τ such that wi = wi+τ for all
i � µ. According to [HAR 1960], the expected values for µ and τ are around

√
πn/8. In practice,

however, Φ is not a true random mapping, but such a behavior can be approached, as we shall see.
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19.5.1 Cycle detection

Cycle detection algorithms in general do not exploit the group structure of G in which the function
Φ defines a random walk (the map Φ, on the other hand, must be defined in terms of the group law).
As a result, the methods described here in fact apply to any set G on which an iterated map Φ is
used to make random walks, and their utilization goes beyond DL and group order computations.

19.5.1.a Floyd’s algorithm

It is not necessary to compare each new wi to all previous ones, which would make the method as
slow as exhaustive search: for instance, according to Floyd’s cycle-finding algorithm it suffices to
compare wi to w2i for all i (see [KNU 1997, §3.1, Ex. 6]). In fact, if i is any multiple of τ that is
larger than µ, then wi = w2i, so any cycle will be detected. To avoid storing all the wi the algorithm
is in fact implemented as follows, where only two intermediate values need to be stored.

Algorithm 19.12 Floyd’s cycle-finding algorithm

INPUT: An initial value w0 and an iterating function Φ : G → G.

OUTPUT: An index i > 0 such that Φi(x) = Φ2i(x).

1. x ← Φ(w0), y ← Φ(x) = Φ2(w0) and i ← 1

2. while (x �= y) do

3. i ← i + 1, x ← Φ(x) and y ← Φ2(y)

4. return i

Let the length of the prefix and of the loop be µ and τ respectively, as above. If τ � µ the first
collision will happen after τ iterations. If τ < µ the match will be found after τ

⌈
µ
τ

⌉
iterations,

which lies between µ and 2µ: the precise distribution depends on the group and on the mapping.
Under the assumptions that Φ is a random mapping, and thus that the expected values of µ and τ are√

πn/8 and with good probability relatively close, we estimate the expected number of iterations
by 3

2

√
πn/8 ≈ 0.94

√
n, and thus about 2.82

√
n evaluations of Φ.

19.5.1.b Gosper’s algorithm

Gosper’s algorithm is item number 132 of the HAKMEM list [BEGO+ 1972]. It has been designed
to be used in the very specific context where it is difficult to recompute former values of the sequence
Φk(w0), because of the way the system is constructed. Such an example could be a pseudorandom
number generator based on an iterative “black box” with a very limited interface. This context is
quite far from that of order and discrete logarithm computations, but the beauty and ingenuity of the
algorithm persuaded us that it should be popularized. It is a nice exercise to try to understand how
it works and why.

Let w0 be the initial value of the sequence, L be an upper bound for the length of the cycle, and
T a table to keep m := 	lg L
 old values of Φk(w0). Let i be a counter of the number of times
Φ has been applied. For each i compare Φi(w0) for equality with the first s entries in the table T ,
where s = 	lg i
 (the number of bits necessary to represent i). If there is no match increment i and
(using this new value of the counter i) store Φi(w0) into T [r], where r is the exponent to which 2
divides i (the number of trailing zero bits in the binary representation of i). A match with the entry
in position e means the loop length is 1 more than the low e + 2 bits of i − 2e+1. Note that if the
bound L is too small, then the algorithm will fail to find a loop. Otherwise, it will detect repetition
before the third occurrence of any value, guaranteeing that the correct length of the loop is found
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and not a multiple of it.

Algorithm 19.13 Gosper’s cycle finding algorithm

INPUT: An initial value w0, an iterating function Φ : G → G and a bound L on the period of the
sequence {Φi(w0)} that is to be found.

OUTPUT: Indexes i �= j > 0 such that Φi(x) = Φj(x).

1. m ← 	lg L
 and create the table T [0, . . . , m − 1]

2. T [0] ← w0, i ← 1 and z ← Φ(w0)

3. while (i � |G|) do

4. s ← 	lg i

5. for k = 0 to s − 1 do

6. if (z = T [k]) then

7. τ ← 1 +
`
(i − 2e+1) mod 2e+2

´

8. return (i, i + τ )

9. else

10. i ← i + 1

11. z ← Φ(z)

12. let r be the 2-adic valuation of i

13. T [r] ← z

14. return fail

19.5.1.c Brent’s algorithm

An obvious problem with Floyd’s cycle-finding algorithm lies in the fact that wi must be recomputed
twice at least for large i or, in other words, at every iteration step we have to evaluate Φ thrice.
Brent [BRE 1980] improved on Floyd’s cycle-finding algorithm. Brent’s algorithm uses an auxiliary
variable z, which holds w�(i)−1, �(i) being the largest power of two contained in the current index
of the walk i, i.e., �(i) = 2�lg i�. For each newly computed step of the walk, we check whether
z = wi. Whenever the index i equals a power of two minus one, we assign z = wi. This is repeated
until a match is found.

Algorithm 19.14 Brent’s cycle-finding algorithm

INPUT: An initial value w0 and an iterating function Φ : G → G.

OUTPUT: Integers i and j such that Φi(w0) = Φj(w0).

1. z ← w0, w ← w0, i ← 0 and � ← 1 [� is always a power of two]

2. while true do

3. w ← Φ(w) and i ← i + 1 [compute next step]

4. if w = z then break

5. if i � (2� − 1) then z ← w and � ← 2�

6. return (i, j ← � − 1)
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Under the assumption that Φ is a random mapping, the first match is expected to occur after√
πn/2 ≈ 1.25

√
n iterations. Brent analyzes his algorithm running time. He finds that the first

match is found after an expected number of ≈ 1.9828
√

n iterations. This is a higher number of
iterations than with Floyd’s algorithm, in fact about twice as much, but in Floyd’s algorithm Φ is
evaluated three times per iteration, and only once in Brent’s. The price for this reduction (of about
one third) in evaluations of Φ before finding a match is a much higher number of comparisons,
which can offset the advantages in some circumstances. The following observation yields a variant
that performs much better in practice as it reduces the number of comparisons:

Proposition 19.15 Let i be the smallest index with wi = w�(i)−1. Then i satisfies 3
2�(i) � i �

2�(i).

For a proof, see [COH 2000, Prop. 8.5.1].
We can now give the improved version of Brent’s algorithm.

Algorithm 19.16 Brent’s improved cycle-finding algorithm

INPUT: An initial value w0 and an iterating function Φ : G → G.

OUTPUT: Integers i and j such that Φi(w0) = Φj(w0).

1. z ← w0 w ← w0 i ← 0 and � ← 1

2. while true do

3. w ← Φ(w) and i ← i + 1

4. if w = z then break

5. if i � (2� − 1) then

6. z ← w and � ← 2�

7. while i <
`

3
2
� − 1

´
do w ← Φ(w) and i ← i + 1

8. return (i, j ← � − 1)

Variations of Brent’s algorithm requiring slightly more storage and comparisons but less iterations
can be found in [LESC 1984] and [TES 1998a]. The general idea is as follows: We have r cells
A1, . . . , Ar. Start with the element w0 in each cell. At the i-th step of the algorithm, after we have
computed wi we check whether this point lies in one of the r cells. If it does, then we have found
a match, otherwise suppose the element in A1 is wj . If i � αj, for a fixed parameter α � 1, shift
the contents of Ak to Ak−1 for k = 2, . . . , r and place wi into cell Ar. Teske found that with the
choice of parameters r = 8 and α = 3 the expected number of iterations before a match is detected
is about 1.13 times the expected number of iterations before a match occurs. Under the assumption
that Φ is a random mapping, this is about 1.412

√
n. The cells A1, . . . , Ar should be implemented

as a circular buffer. There are however better strategies, which we will describe now.

19.5.1.d Sedgewick–Szymanski–Yao algorithm

Sedgewick, Szymanski, and Yao [SESZ+ 1982] address the problem of optimizing worst-case per-
formance with bounded memory. Their algorithm uses a table T of size m, where m is a free
parameter. Another parameter g is used.

Initially put d = 1. At the i-th iteration, if i mod gd < d, search for wi = Φ(wi−1) in T . If i is a
multiple of d, store the pair (wi, i) in T . When there are no more free entries in T , before inserting
another element double d and erase from the table all entries (wj , j) where j is not a multiple of
the new value of d. The table T should be implemented so as to asymptotically reduce the worst-
case search time. (For example, as a balanced tree or using hashing.) Let ts be the time needed



§ 19.5 Pollard’s rho method 487

to perform one search in T , and let tΦ be the time needed to evaluate Φ once. Then, the authors
show, g can be chosen as a function of ts, tf , and M , such that the algorithm’s worst-case running
time is tΦ(µ + λ)

(
1 + (ts/MtΦ)

(
1 + o(1)

))
. They also show that this worst-case performance is

asymptotically optimal.
The next algorithm has worse worst-case performance, but better running time on average.

19.5.1.e Nivash’s stack-based cycle detection

Nivash algorithm is introduced in [NIV 2004]. It is probably the most efficient known cycle detec-
tion algorithm on single processor machines.

The basic method

This algorithm requires that a total ordering < be defined on the set G, and works as follows: keep
a stack of pairs (wj , j), where, at all times, both the j’s and the wj ’s in the stack form strictly
increasing sequences (with respect to the usual ordering of the natural integers and, for the wi ∈ G,
with respect to the ordering <). The stack is initially empty. At each step i, remove from the stack
all entries (wj , j) where wj > wi. If a match wi = wj is found with an element in the stack, the
algorithm terminates successfully: the cycle length is equal to i− j. Otherwise, push (wi, i) on top
of the stack, compute wi+1 = Φ(wi), increase i by one and continue.

We easily see that this algorithm always halts on the second occurrence of the element z of the
periodic part of the sequence that is minimal with respect to the given orderings. Let wimin be
the first occurrence of z. This element is added to the stack the first time it appears, and is never
removed. On the other hand, any other element in the cycle belongs to a pair that is greater than
(wimin , imin), so it will be removed (with probability that depends on the relative “magnitude” of
the elements with respect to wimin according to the ordering in G, and at latest when wimin is
encountered for the second time) before it has a chance to appear again.

Let h be the number of evaluations of Φ of the algorithm before it terminates. Under the as-
sumption that the Φ is a random mapping, the expected value of h is µ + τ

(
1 + 1

2 ) = 5
2

√
πn/8 ≈

1.5666
√

n. Under the same assumption, Nivash proves also that the expected size of the stack is
ln h + O(1). Therefore, the algorithm only requires a probabilistic logarithmic amount of memory.
Note that the search in the stack for the first element wj � wi can be done via a binary search. The
size of the stack can be estimated, as we just saw, and therefore it can be implemented by an array,
handling the unlikely situation when it overflows by resizing and relocating it. There is therefore
no need to explicitly erase or deallocate popped stack entries: they will simply be overwritten and
only the stack size (i.e., the number of entries in it) needs to be kept. If the magnitudes of the ele-
ments of the sequence with respect to the ordering in G present some regularities, Nivash suggests
“randomizing” them by applying a fixed hash function to the values before comparing them.

A partitioning technique

The basic stack algorithm halts at a uniformly random point in the second loop through the se-
quence’s cycle. In order to increase its probability of halting closer to the beginning of the second
loop, which is especially important if loops may be quite long, while adding virtually no extra time
penalty per step, we introduce the following partitioning technique: For some integer m, we divide
G into m disjoint classes. This can be done, for example, according to the values of some bits in the
internal representation of the elements of G. Ideally, the classes should have the same cardinality.
We keep m different stacks, one for each class of elements of G. Any new element in the sequence
is compared only to the element in its corresponding stack, and pushed onto it; in particular any min-
imal element of a class, on its second occurrence, will collide with the first occurrence of the same
element because they are pushed in the same stack. This method is called the multi-stack algorithm.
The algorithm halts whenever the first of all the stacks detects a match. Each class contains its own
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cycle minimum, which is distributed uniformly and independently at random in the cycle. It follows
that the expected number of evaluations of Φ before the algorithm halts is µ + λ

(
1 + 1/(m + 1)

)
.

The size of each stack is about ln h − ln m + O(1), hence the memory usage is roughly multiplied
by m with respect to the basic version.

Algorithm 19.17 Nivash’ cycle-finding algorithm

INPUT: An initial value w0, an iterating function Φ : G → G, a number of stacks K and a class
function χ : G → [0, . . . , K − 1].

OUTPUT: Integers i and j such that Φi(w0) = Φj(w0).

1. create stacks S[0], . . . , S[K − 1] containing pairs (element, index)

2. initialize stack indexes p0, . . . , pK−1 to −1

3. x ← w0

4. while true

5. κ ← χ(x)

6. find smallest index t � pk such that element (S[t]) � x or put t = −1

7. if t �= −1 and element(S[t]) = x then break

8. i ← i + 1 and pk ← t + 1

9. if pk is too large then resize k-th stack

10. S[pk] ← (x, i)

11. x ← Φ(x)

12. return
`
i, index(S[t])

´

Remark 19.18 In Line 1, the element of the pair is in G and the index is a natural number. The
initial depth of the stacks should be about 1

2 ln n.

The multi-stack algorithm is especially useful on single processor computers with large memory.
The distinguished point technique (see Section 19.5.4) can be used to find collisions early in the
loop on multiple processors and, as Nivash himself observes, it offers in that situation a somewhat
better time/memory trade-off. The multi-stack algorithm is also suited to the situations where the
mapping Φ is not a random mapping and its cycles are short compared to the aperiodic part of
the sequence. The (multi-)stack algorithm does not seem applicable to Pollard’s rho factorization
method (see Section 25.3.1).

19.5.2 Application to DL

The walk on G is given by
{
wi = [ai]g ⊕ [bi]h

}
i�0

for known integers ai and bi. A collision has
the form [ai]g ⊕ [bi]h = [aj ]g ⊕ [bj ]h, so that

logg(h) =
ai − aj

bj − bi

,

computed modulo the group order. According to [POL 1978], one way to create a ‘random-ish’
walk is the following. First, partition G into three subsets G1, G2, and G3 of approximately equal
cardinality. This can be done fairly accurately and in a ‘random’ way exploiting the representation
of the elements of G, for instance, using some fixed bits in the internal machine representation, in
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other words hashing the elements of G. Take w0 = g (so a0 = 1, b0 = 0), and define wi+1 as a
function of wi as follows:

wi+1 = Φ(wi) :=

⎧⎪⎨
⎪⎩

h ⊕ wi if wi ∈ G1

[2]wi if wi ∈ G2

g ⊕ wi if wi ∈ G3

⇒ (ai+1, bi+1) =

⎧⎪⎨
⎪⎩

(ai, bi + 1)
(2ai, 2bi)
(ai + 1, bi)

respectively.

(19.1)
Of course one can choose any other random mapping that allows an easy computation of the scalars
ai and bi.

19.5.3 More on random walks

As observed in [SASC 1985, TES 1998b] partitioning G into only three sets does not in general lead
to a truly random walk. This is reflected in the fact that the collision occurs on average later than
expected. A truly random walk is difficult to achieve, but as the number of partitions is substantially
increased, performance is improved and approaches the ideal one. One method is to use r-adding
walks.

Definition 19.19 Let r > 1 be a small integer and assume we have a partition G1 ∪. · · · ∪. Gr of G
into subsets of approximately equal cardinality. For any x ∈ G let v(x) be the index with x ∈ Gv(x).
An r-adding walk is generated by an iterating function of the form wi+1 = Φ(wi) = Mv(wi) ⊕ wi,
where the elements M1, . . . , Mr are of the form Ms = [ms]g ⊕ [ns]h with ms and ns chosen
(possibly at random) in [1, . . . , n − 2].

Usually 3 � r � 100 and v(x) is a hash function. From the definition it follows immediately that

wi = [ai]g ⊕ [b1]h with ai+1 = ai + mv(wi) and bi+1 = bi + nv(wi).

These addings (whence the name) are defined modulo n. It is not strictly necessary to reduce ai

and bi modulo n — which is relatively inexpensive anyway — since their increase is only linear in
the number of iterations and they will be therefore bounded by a constant times

√
n. This means

that r-adding walks can be computed even if the group order is not known, by taking ms and ns

bounded by some hopefully well-guessed large number. Since in some practical instances the group
order is known to lie in an interval (for example, for elliptic and hyperelliptic curves), this can be
done. Note that this would not be meaningful with mappings like (19.1) where the numbers ai and
bi would grow exponentially with i. In particular, by taking h = 0G one can get a multiple of the
logarithm t = logg(0G) which is at most off by a factor around

√
t, then one adjusts the result. This

has been done by Sattler and Schnorr [SASC 1985] using 8-adding walks. Teske’s investigations
[TES 1998b] (the results have been slightly updated in [TES 2001a]) in elliptic curve (sub)groups
allowed her to obtain matches after ≈ 1.452

√
n iterations using 20-adding walks. She also used a

mix of 16 addings and 4 doublings, with similar performance.

19.5.4 Parallelization

The above methods can be run on m processors in parallel, each starting with a different point w
(t)
0

for t = 0, 1, . . . , m − 1. A speedup of a factor
√

m can be expected.
A better parallelization is described in [QUDE 1990] — where it is actually used to find the first

collisions in DES reported in the literature — and in [OOWI 1999]. The idea is to have a set D of
rarely occurring distinguished points.
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There is a central server and m client processors. The clients start with different points w
(t)
0 for

t = 0, 1, . . . , m− 1, which may be computed, in the DL case, as [at]g ⊕ [bt]h for integers at and bt

which are different for each processor.
When a processor hits some element in D, it reports this fact to a central server, together with

the element and the corresponding values of the scalars of g and h. Then, the same processor starts
afresh with a new trail. The starting points must of course always be different. Two strategies are
possible:

1. Each client generates new starting points as [at]g⊕ [bt]h for integers at and bt generated
randomly, and the random number generator of each client is initialized with a different
seed. The likelihood that the same point is reused is in practice negligible.

2. The server produces the unique starting points, to guarantee that they are all different.
The points are generated either in packets, which are sent to each client when the client
has used all the points in the previous batch (this can induce too much network traffic)
or one by one (less network traffic, but the clients must wait until the server replies by
delivering a new starting point after the finding of a distinguished point is reported).

In this way some collisions between trails can be detected. The central server applies a brute force
approach to detect whether two of the distinguished points are in fact a match — usually aided by
hashing. Nivash [NIV 2004] suggests using a partitioning technique (see Section 19.5.1).

One way of defining the set D is to fix an integer f and to define that x ∈ D if and only if the
f least significant bits in the internal machine representation of x are zero. This definition allows a
fast test, and the size of D can be easily monitored. By the theoretical analysis in [OOWI 1999] a
speedup of a factor m with m processors can be expected.

The cardinality of D is crucial for the performance. The more distinguished points there are,
the easier it will be to detect collisions, but, on the other hand, the client processors will spend
more time reporting the points to the server. Let n = |G| and θ be the proportion of distinguished
points. Further let τg and τr denote the costs of a group composition and of reporting the arrival
on a distinguished point to the server, respectively. The expected running time (cf. [OOWI 1999])
on each processor is ≈ (

√
π
2 n/m + 1/θ)τg + n0θτr where n0 is the expected length of the trails

(which shall also depend on D). We do not enter into details, but observe that Schulte–Geers
[SCH 2000d] concludes that the cardinality of D must be proportional to

√
|G|.

The DLP in subgroups of elliptic curves of about 2108 elements has been successfully solved by
Pollard’s parallelized rho algorithms distributed over the Internet. See http://www.certicom.com
for the most recent successes. The extensive experimental work related to this challenge (see
[ESSA+ 1998]) confirms the theoretically predicted linear speedup for the parallelized rho method.
These implementations, whenever possible, also made use of automorphisms of the group (see the
next section) to further speed up the computation.

19.5.5 Automorphisms of the group

In certain types of groups, a speedup up to a factor of
√

2 is obtained by means of the so-called
inverse-point strategy. This strategy applies if the inverse of any group element can be computed
very efficiently. Each group element is paired with its inverse: the iterating function must be defined
with the property that if Φ(a) = b then Φ(−a) = −b. If we use a distinguished point set D, this must
fulfill the property that if a ∈ D then also −a ∈ D. Further, we require from the representation of
the group elements that it can be detected if the inverse of a previously submitted point is submitted.
Of course the method would not work if such a collision would not help in revealing the discrete
logarithm.

The inverse-point strategy has been successfully applied to groups of elliptic curves over finite
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fields [ESSA+ 1998, WIZU 1998]. It applies essentially unchanged to Jacobian varieties of hyper-
elliptic curves, but also to some groups that are outside the scope of the present book, like the XTR
subgroup in the natural (i.e., not trace-based) representation [STA 2003, STLE 2003] (note that for
the latter, which is a subgroup of a finite field, better algorithms belonging to the family of Index
Calculus attacks (see Chapter 20) may apply). The fundamental fact here is that a → −a is an auto-
morphism of the elliptic curve. In fact, let ψ be an automorphism of the group G with the following
properties:

• Almost all orbits of the elements of the group under ψ have order m, say.
• It is easy (i.e., computationally negligible) to check whether two group elements belong

to the same orbit.
• The automorphism acts like the multiplication by a known scalar s, say (coprime to the

group order).

Usually, such a group automorphism is induced by an easily computable endomorphism of the alge-
braic variety underlying the considered group, said endomorphism satisfying a known polynomial
equation. Suppose that the iterating function has been constructed in such a way that if Φ(a) = b
then Φ

(
ψ(a)

)
= ψ(b). Then we can use such Φ to make the random walk and detect collisions

between orbits, and not only between elements. Suppose we want to solve the DLP [t]g = h. If
the random walk is given by the sequence

{
wi = [ai]g ⊕ [bi]h

}
i�0

, then a collision wi = ψk(wj)
means that wi = [sk]wj , hence

[ai]g ⊕ [bi]h = [skaj ]g ⊕ [skbj]h

and the discrete logarithm is computed as

logg(h) =
ai − skaj

skbj − bi
mod |G|.

The theoretical speedup with this technique is up to a factor of
√

m. This claim is obvious, since the
search for collisions is in fact made on the quotient of the group (as a set) modulo the equivalence
relation induced by the orbits under the automorphism. The speedup is, however, in practice some-
what smaller, because the test for same orbit membership is not completely free, and it might be
difficult to find an iterating function that acts almost like a random mapping on the orbits. Further
difficulties (which are, however, in general not unsurmountable) include:

• If a distinguished point set is used, then it must be invariant under ψ in order for the
technique to be applicable

• If we want to use a (multi-)stack method a la Nivash, then the ordering should be on the
group modulo the equivalence relation induced by ψ.

The Frobenius endomorphism and other automorphisms have been used for computing the DL in
some classes of elliptic curves over fields of characteristic 2 [GALA+ 2000, WIZU 1998], such
as Koblitz curves, and of hyperelliptic curves [DUGA+ 1999]. In particular, it is quite easy to
set up an improved attack on elliptic and hyperelliptic Koblitz curves when the definition field of
characteristic 2 is implemented using normal bases. In this particular case, distinguished point sets
can be defined, for example, using the Hamming weight of some coordinates.

19.6 Pollard’s kangaroo method

We have seen that there are variants of Shanks’ baby-step giant-step method to solve the DLP or
compute the order of an element when we know that the answer lies in a given interval, exploiting
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this information to get lower running times. We describe here a method due to Pollard [POL 1978,
POL 2000] that achieves the same purpose while at the same time retaining the space efficiency
advantages of Pollard’s rho methods. The fundamental idea of this method is to have more random
walks at the same time, and to watch when these collide. Since they are “deterministically” random
as in Pollard’s rho method (cf. Section 19.5), there is no need to check whether each element of
each random walk collides with some element of the other walks: as with the rho method, checking
for each possible collision would in fact slow down the approach and render it useless. Since the
walks can be viewed as “jumping” inside the considered group, Pollard depicted them as if done by
kangaroos jumping in that immense unknown expanse, which is the group where we want to solve
the DLP. The first version of Pollard’s kangaroo method, sometimes called the lambda method, is
serial and works with a tame kangaroo T and a wild kangaroo W with respective starting points
w0(T ) = [b]g and w0(W ) = h. The first kangaroo is called tame because, in a figurative sense,
we know where it starts, whereas we do not know where the wild kangaroo comes from. They
will start jumping inside the group, and both will remember exactly the path they have followed.
When a collision between the paths of the tame and the wild kangaroo happens, we say that the
tame kangaroo has captured the wild one. If the paths of the two kangaroos cross, they will coincide
after that event, because the next jump of each kangaroo is determined only by the current position.
Usually, the tame kangaroo sets a trap after a certain number of jumps, then waits for the wild one:
if the two paths cross, the wild kangaroo will fall in the trap. If the tame kangaroo successfully
captures the wild kangaroo, then we can use the information from both about their travel to find
“where” h is, i.e., its discrete logarithm with respect to g.

19.6.1 The lambda method

Let r > 1 be an integer and v : G → {1, . . . , r} be a hash function. The kangaroos follow r-adding
walks of the form

wi+1(K) = wi(K) ⊕ M
(
v
(
wi(K)

))
, with K = T or W

with multipliers M(j) = [sj ]g for jump lengths sj > 0 of size O(
√

b − a) for all j. The traveled
distances for each kangaroo

d0(K) = 0 and di+1(K) = di(K) + sv(wi(K)), with i ∈ N

are recorded. Note that wj(T ) = [b + dj(T )]g and wj(W ) = h⊕ [dj(W )]g. The tame kangaroo is
set off first and after a certain number of jumps, say M , it stops and installs a trap at the final spot
tM (its distance from the start is then dM (T )). Then W is freed and starts jumping: after each jump
of W we check to see if it has fallen into the trap, i.e., if wM (T ) = wN (W ) for some N . If this
happens, a solution to [t]g = h is computed immediately, namely t = dM (T ) − dN (W ). After a
certain number of steps the wild kangaroo is halted — because we may assume it has gone too far
and is now in safe territory (in other words it has probably entered a cycle that does not include the
trap) — and a new wild one starts jumping. Its starting point is w0(W ) = hgz , with z small and
increasing with each new wild kangaroo. This fact about z is important: we can imagine that the
wild kangaroos start with “parallel” trails and we hope that at least one shall be caught. If W falls
into T ’s trap, the paths of the two kangaroos have with high probability met earlier during the travel,
from which point on the paths coincided. A graphical representation of this phenomenon resembles
the Greek letter λ, whence the alternative name of this basic version of the kangaroo method.

Put ξ =
√

b − a. Van Oorschot and Wiener [OOWI 1999] show that the expected number of
group operations is minimal if

1. The average of the sj is ≈ ξ/2, and
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2. The tame kangaroo T makes about 0.7ξ jumps before installing the trap; and the maxi-
mal number of jumps done by each wild kangaroo is ≈ 2.7ξ.

At that point either W has fallen into T ’s trap or is safe in the sense already described. The latter
outcome happens on average 0.33 times, whereas the former has probability 0.75 after an expected
number of ≈ 1.7ξ jumps. From this they get the expected value of (0.7 + 0.33 × 2.7 + 1.7)ξ ≈
3.3

√
b − a group operations. The algorithm needs storage only for the jump set and for the current

positions of the two kangaroos. Using a set of distinguished points and slightly more storage one
can obtain an algorithm with an expected total running time of ≈ 2

√
b − a group operations.

19.6.2 Parallelization

One can employ a distinguished point set D to realize a parallel kangaroo algorithm in the same
way as for the rho method [OOWI 1999].

Suppose then that we have 2m processors, each processor being the “home” to a kangaroo. There
are two kangaroo herds, one consisting of m tame kangaroos {T1, . . . , Tm} and the other of m wild
ones {W1, . . . , Wm}. We use a global multiplier set, defined as in the serial variant, whose jump
distances sj have mean value β = m

2

√
b − a. Let σ ≈ 1

mβ be an integer corresponding to the
spacing between kangaroos of the same herd. The starting points of the kangaroos are given by

w0(Ti) =
[

a+b
2 + (i − 1)σ

]
g and w0(Wi) = h ⊕ [(i − 1)σ]g, for 1 � i � m/2.

Observe that the tame kangaroos start near the middle of the interval rather than its end b, as this
leads to lowest average running times. The initial traveled distances are thus

d0(Ti) =
a + b

2
+ (i − 1)σ and d0(Wi) = (i − 1)σ, for 1 � i � m/2.

Each kangaroo starts jumping and after each jump it is tested whether the kangaroo landed on a dis-
tinguished point, in which case a packet is sent to the central server consisting of: the distinguished
point, the type (tame/wild) of kangaroo that has just landed there, and its traveled distance. The
central server checks whether that point has already been previously submitted in order to detect a
collision between a tame and a wild kangaroo, and otherwise stores it. Let τg , respectively τr, be the
costs of a group composition and of reporting the arrival on a distinguished point, and n0 the average
length of trails before the algorithm terminates. Let, as usual, θ be the proportion of distinguished
points. The expected running time (on each processor) is ≈ (

√
b − a/m + 1/θ)τg + n0θτr . As for

the rho method, the proportion of distinguished points must be chosen carefully.
With respect to the size of D, remarks similar to those of Section 19.5.4 apply here, in the sense

that |D| must be proportional to
√

b − a (see [TES 2003, §6.4]).
Kangaroos of the same herd might collide, and such collisions are useless as they do not help

recovering the discrete logarithm. Pollard [POL 2000] has developed a parallelized version where
useless collisions cannot occur. He writes m = A + B with A, B coprime and ≈ m/2. There are
A tame and B wild kangaroos. The jump lengths for the multiplier set are multiples of AB of the
form kiAB where the ki’s have average β =

√
(b − a)/(AB)/2. The starting points of the tame

and wild kangaroos are

[a+b
2 + (i − 1)B]g with 1 � i � A and h ⊕ [(j − 1)A]g with 1 � j � B,

respectively. Observe that the congruence

a + b

2
+ (i − 1)B ≡ t + (j − 1)A (mod AB)
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has only one solution in i and j whence, for any residue class modulo AB, there is exactly one pair
of kangaroos, one tame and one wild, which both travel in that class and thus can collide.

Pollard’s variant avoids useless collisions at the price of preventing collisions from more than
one tame/wild pair. Therefore the fact that the expected running time is about the same as for van
Oorschot and Wiener’s variant is not surprising. A big problem with Pollard’s variant occurs with
searches distributed over the Internet: if one of the players retires, the only possible tame/wild match
might disappear. This makes the approach infeasible for such attacks. A running time analysis is
found in [POL 2000].

The jump lengths si and the jump length factors ki in the two versions should be chosen with
some care. Randomly chosen integers in {1, 2, . . . , β} with no common factors are quite good,
slightly better performance is obtained by picking different small powers of 2 including 1. Note
further that kangaroos can enter in loops: in this case cycle recognition clearly does not help in
recovering the discrete logarithms, so, ideally, this situation should be avoided. We can use a very
inexpensive cycle-finding method like Brent’s, or let the kangaroos start again with a new trail if
after a certain number of jumps no distinguished point has been met, or use a distinguished point
set that is dense enough to allow the server computer to detect most of the cycles by the clients. The
exact values of these parameters must be chosen carefully for each case, by heuristic arguments or
by doing some smaller experiments before the longer computation takes place.

19.6.3 Automorphisms of the group

Exactly as with Pollard’s rho method we can use an efficiently computable automorphism ψ: all the
kangaroos will in fact jump in the quotient set of G modulo the equivalence relation determined by
ψ. The expected speedup is about

√
k where k is the average size of the orbits.
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20.1 Introduction

In view of Shoup’s Theorem 19.2, methods that have lower time complexity than the methods
explained in Chapter 19 cannot be generic. This applies not only to subexponential time methods,
but also to methods whose complexity is still exponential and of the form O(|G|C) with C < 1/2.

In practice, we always work with a concrete representation of a given group, and many differ-
ent types of groups share some common traits. As a consequence, there are methods that can be
described in some generality for groups with additional properties and which attain much better
complexity than the best generic algorithms. For some types of groups, these methods yield subex-
ponential time algorithms, and for others, such as the Jacobians of hyperelliptic curves of moderate
genus, the resulting methods are exponential with C < 1/2. These algorithms belong to the family
of index calculus algorithms.

The idea behind index calculus is quite old: [ODL 1985] ascribed it to Western and Miller, but,
as McCurley pointed out [MCC 1990], the idea goes back a few decades earlier to the work of
Kraitchik [KRA 1922, KRA 1924]. Index calculus stems from the observation that if

r⊕
i=1

[ei]gi = 1 (20.1)

holds for some elements gi of a group G (of order N ) generated by an element g, and suitable
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scalars ej , then
r∑

i=1

ei logg(gi) ≡ 0 (mod N) . (20.2)

If we are able to obtain many equations of the form (20.1) with at least one of them involving an
element for which the discrete logarithm is known, for example g itself, and the number of the gi’s
is not too large, then we can solve the system (20.2) by linear algebra for the logg(gi)’s. The set
{g1, . . . , gr} is called the factor base. If we include an element h in the factor base for which we
know that h = [t]g, but t itself is unknown, then we might hope to recover t.

Finding enough equations of the form (20.1) is equivalent to computing the structure of G as
Z-module: If Zr is the free abelian group generated by base elements {X1, . . . , Xr} and L is the
lattice in Zr generated by the relations

∏r
i=1 Xei

i = 1 corresponding to the equations (20.1), then

Φ : Zk → G (20.3)

(e1, . . . , ek) �→ [ei]g1 ⊕ · · · ⊕ [ek]gk

is a homomorphism with kernel L so that Zk/L � G.
Ideally, one has to prove that for a suitable choice of the factor base, given a randomly chosen

element of G there is a high probability that it can be written as a linear combination of a small
number of elements of the factor base and with small coefficients. The index calculus methods
achieve a subexponential complexity depending on the ability to efficiently generate such relations,
which is often the dominant part of these algorithms.

Subexponential index calculus algorithms have been developed for a variety of discrete logarithm
problems, for instance finite fields and Jacobians of hyperelliptic curves of large genus. Notable
examples where they have not been made to work are elliptic curve discrete logarithms and discrete
logarithms in Jacobians of genus 2 hyperelliptic curves.

20.2 Arithmetical formations

We follow here the presentation of Enge and Gaudry [ENGA 2002].

Definition 20.1 [KNO 1975] Let P be a countable set, whose elements are called primes. An ad-
ditive arithmetical semigroup is a free abelian monoid M over P together with an equivalence
relation ∼ that is compatible with its composition law, such that G is isomorphic to M/∼.

Each element g of G is represented by an unique element ı(g) of M such that the isomorphism
G → M/∼ is given by g �→ ı(g)/∼.

A size map is a homomorphism of monoids norm : (M,⊕) → (R, +), and as such it is com-
pletely determined by its values at the primes of M. We shall always assume that all primes p ∈ P
have positive size. The size map is also applied to the elements of G via ı. The size of an element
g ∈ G (respectively m ∈ M) is denoted by |g| (respectively |m|).

Such a group G, together with the monoid M, the equivalence relation ∼, the representation
map ı and a size map — in other words the quintuple

(
G, (M, ·),∼, ı, | · |

)
— is then called an

arithmetical formation, or formation for short.

We assume that the elements of G are represented by bit-strings associated to the corresponding
elements of M and of length bounded by some constant r and that all generic operations in G (i.e.,
the operations listed in Definition 19.1) are performed in time polynomial in r.

Definition 20.2 A smoothness bound B is a positive integer and we denote by MB (respectively
PB) the set of elements of M (respectively P) of size not larger than B.
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We denote by nB the cardinality of PB and by n′
B the cardinality of MB . An element of G is called

B-smooth if the decomposition of its representation in M involves only primes in PB.

When possible, the factor base is defined by a smoothness bound and is denoted PB . In some
cases, however, (see Sections 21.2.2 and 21.3), the factor base cannot be defined only in terms of a
smoothness bound. In these cases, the factor base will be denoted B.

In our context, we require that n′
B is finite and of cardinality polynomial in B, and that the

elements of MB can be enumerated in a time polynomial in B and linear in n′
B . We also require

that an element m ∈ M can be tested for being prime in time polynomial in |m| and linear in
n′
|m| (by trial division by all elements of norm smaller than |m|, for instance). Thus, PB can be

constructed in time polynomial in B and quadratic in n′
B .

It should be possible to test elements of G for B-smoothness and decompose them into primes in
timeÕ(n′

B) (in practice, this can be done even faster).

20.2.1 Examples of formations

Prime fields

The multiplicative group G = F∗p can be represented as (Z,×)/∼ where n1 ∼ n2 if and only if
n1 ≡ n2 (mod p) and P is the set of rational prime numbers. The size of an element of G is the
logarithm of the element of N by which it is represented. In practice, the bit length �lg n	 of the
integer n is used.

Nonprime finite fields

The multiplicative group G = F∗pd with d > 1 can be represented by the polynomials of degree
less than d over Fp. Let f be a monic irreducible polynomial over Fp and let M be the multi-
plicative monoid of the ring of polynomials over Fp under the usual polynomial multiplication as
composition. There exists a field isomorphism

ψ : Fpd
∼−→ Fp[X ]/

(
f(X)

)
such that for each element g ∈ Fpd there is a unique u ∈ Fp[X ] of degree less than d with ψ(g) =
U + (f). Write ı(g) = U : the map ı can be restricted to a map G → M, because the inverse
image of 0 ∈ Fp[X ] under ı consists of the zero of Fpd alone. We can then represent G as M/∼
where U1 ∼ U2 if and only if U1 ≡ U2 (mod f). The set P of primes consists of the set of monic
irreducible polynomials over Fp together with a multiplicative generator for F∗p, embedded in the
obvious way in the Cartesian product. The size of an element g ∈ Fpd is now defined as deg ı(g).

Jacobians of hyperelliptic curves

Let C be a hyperelliptic curve of genus g over a finite field K of characteristic p, and consider the
group G = Pic0

C(K) of the divisor classes of C over K . Here, P is the set of irreducible divisors.
It is known that each element of G can be represented by a K-rational divisor of degree at most g.

The set of primes is defined as the set of principal divisors whose effective divisors are irreducible
over K . The latter can be single K-rational points, or sums of all Galois conjugates over K of a
non-K-rational point: In other words, if a divisor D has Mumford representation [uD, vD], D is
prime if and only if the polynomial uD is irreducible over K . The size of a divisor D is the degree
of uD.
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20.3 The algorithm

One possible way of describing the basic form of the index calculus method is the following one.
There are in fact a few variants, but they differ only in minor details.

Algorithm 20.3 Index calculus

INPUT: A group G of order N , two elements g, h ∈ G with h ∈ 〈g〉.
OUTPUT: An integer t with h = [t]g.

1. Construction of the factor base
Choose a smoothness bound B and let the factor base be the set PB = {π1, . . . , πnB}
of the B-smooth primes of G.

2. Produce relations
They are equalities of the form

[ai]g ⊕ [bi]h =

nBM

j=1

[ei,j ]πj , for i = 1, 2, . . .

Put c = nB . Construct a matrix A with c rows defined as the row vectors

(ei,1, ei,2, . . . , ei,c), for i = 1, 2, . . . , c.

Store the vectors a = (a1, a2, . . . , ac) and b = (b1, b2, . . . , bc).
Put

v = (ec+1,1, ec+1,2, . . . , ec+1,c).

Possibly, process the matrix and the vectors a, b and x to make c smaller.

3. Linear algebra
Compute a solution to xA ≡ v (mod N) or find an element x of the kernel of A, i.e.,
xA ≡ 0 (mod N).

4. Extract solution
The matrix A and the vectors a, b satisfy by construction the following formal relation in
G (where the apex t denotes transposition):

`
at bt´×

2

6

4

g

h

3

7

5
= A × Π where

`
at bt´ =

2

6

6

6

6

6

6

6

6

4

a1 b1

a2 b2

...
...

ac bc

3

7

7

7

7

7

7

7

7

5

and Π =

2

6

6

6

6

6

6

6

6

4

π1

π2

...

πc

3

7

7

7

7

7

7

7

7

5

.

Let x = (x1, . . . , xc) be the vector found in Line 3. Let α, respectively β be equal to the
inner product xat, respectively β = xbt.
if xA = 0 then

xAΠ = 0 and we obtain (α, β) ×
2

6

4

g

h

3

7

5
= 0, i.e., [α]g ⊕ [β]h = 0.

Therefore logg(h) = −α

β
mod N provided that gcd(β, N) = 1.

if xA = v then
[α]g ⊕ [β]h = xAΠ = vΠ = [ac+1]g ⊕ [bc+1]h.

Therefore logg(h) = −α − ac+1

β − bc+1
mod N
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Remark 20.4 If we want to solve a discrete logarithm problem in a proper subgroup G0 of order
N0 of G, we can perform all the computations involving integers modulo N (keeping track of ai

and bi, the linear algebra step, the final division) modulo N0 instead — this is clear because the
final result should be reduced modulo N0 anyway — hence all the operations that take place in the
ring Z/NZ can be replaced with operations in the ring Z/N0Z. If N0 is, as in most applications,
prime, then all the computations, including the linear algebra, take place in the finite field with N0

elements.

When analyzing an index calculus variant, several problems have to be addressed. If B is too small,
the time to find relations will probably be too large; on the other hand, if B is too large, the linear
algebra step will be too expensive. The construction of the factor base has running time at most
Õ
(
(nB)2

)
� Õ

(
(n′

B)2
)

(by enumerating the elements of norm at most B and checking them for
primality).

20.3.1 On the relation search

For the second step of the algorithm, we must take into account the probability of finding a relation.
This probability is about |GB |/|G| where GB denotes the set of B-smooth elements of G. Candidate
relations can be generated by random walks of the form [a]g⊕ [b]h in the group G and they all must
be tested for smoothness, which takes an expected time τs per test. All random walk techniques
seen in Section 19.5.3 can be of course adopted here.

Avanzi and Thériault [AVTH 2004] have a strategy that can be very efficient in many situations.
It is often much faster to compute several group operations simultaneously than to compute them se-
quentially. For example, on elliptic and hyperelliptic curves using affine coordinates, Montgomery’s
trick (Section 11.1.3.c) can be used to perform the (independent) inversions in parallel. The obvious
application is to perform several random walks simultaneously on a single processor, but several
simultaneous group operations can be sped up further if one of the arguments is the same in all
operations.

As in the r-adding walk method (Section 19.5.3), a set {M1, . . . , Mr}, with Ms = [ms]g⊕ [ns]h
fixed and r registers z1, . . . , zr, which are initialized, for example, as zi = Mi for all i. One index
s with 1 � s � r is picked, for example, by taking the value of a hash function from the group
into the index set {1, 2, . . . , r} on the element z1, and a single processor puts w = zs and computes
z1 = M1 ⊕w, z2 = M2 ⊕w, . . . , zr = Mr ⊕w. These elements are then checked for smoothness,
and, if the corresponding relation is smooth, it is added to the relation set. After one such step,
if squarings (doublings) are cheaper than multiplications (additions), then all the elements zi can
be squared (doubled) one or more times, and the results checked for smoothness. It is understood
that these squarings (doublings) are also performed in parallel. Because of the seemingly random
behavior of the smoothness property with respect to the group operations, this method will bring
a noteworthy speedup (the factor is r/r′, where r′ is the time to compute M1 ⊕ w, . . . , Mr ⊕ w
for 1 � i � r relative to the time to compute just one element alone). If squarings or doublings
are faster than multiplications or additions, then the speedup due to this strategy is even faster.
If multiplying (respectively adding) and multiplying by the inverse (respectively subtracting) have
similar costs, and the simultaneous computations of ab and ab−1 (respectively of a + b and a − b)
share some partial results, one can keep 2r registers z1, . . . , z2r and compute z1 = M1 ⊕ w, z2 =
M2⊕w, . . . , zr = Mr⊕w together with zr+1 = M1
w, zr+2 = M2
w, . . . , z2r = Mr
w. By
means of this we can compute more candidate relations in the same amount of time — and therefore
find relations more quickly.

In general, regardless of how the relations are sought, one can choose to find kc relations for
a suitable k = Õ(lg c) and observe that there is an appreciable probability that c − 1 relations
are linearly independent [ENGA 2002]: This means that Õ(n′

B|G|/|GB|) candidates have to be
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tested. Another approach for generating relations is due to Dixon: All relations but one are found
upon checking for smoothness multiples [a]g of g, for several values of a, which can be chosen at
random. The last relation is of the form h ⊕ [v]g for a suitable, possibly also randomly chosen, v.
This has the additional advantage that the relations involving only g and not h can be used later to
compute the logarithms of other elements.

20.3.2 Parallelization of the relation search

Relation search can be done in parallel by several machines, since the linear independence of the re-
lation is not checked after each new relation is found. This has the advantage that, with n machines,
the total amount of time to find the desired number of relations is reduced by a factor n. Of course,
at some point the relations must be sent to a central server, and time spent in network traffic must
be taken into account too.

20.3.3 On the linear algebra

20.3.3.a Complexity

In the third step of the algorithm, the linear dependency is found modulo prime divisors of |G|
(but usually this number is just a large prime). The matrix A is sparse, because the elements of G
have bounded norm, so there are O(lg c) = O(lg n′

B) (recall that c is the dimension of the matrix)
nonzero entries in each row for c large enough. Sparse matrix techniques such as Wiedemann’s or
Lanczos’ (described in the next sections) can be used: In this case, the running time of this step is
O(c2 +cω), where ω is the total number of nonzero entries among all the ei,j and ai, bi, i.e., Õ

(
c2
)
.

The complexity of the algorithm, apart from the time required to factor the order of G (which we
assume to be known and factored) is then

Õ

(
(n′

B)2 + n′
B

|G|
|GB |τs

)
. (20.4)

In particular, the smoothness bound B and the complexity τs play an important role in determining
the overall complexity of an index calculus algorithm for a specific type of group. These consider-
ations lead to the following result:

Theorem 20.5 (based on [ENGA 2002]): Assume that the following smoothness result holds for
the group G: The bound B can be chosen such that

n′
B = L|G|

(
1/2, ρ + o(1)

)
and

|G|
|GB | = L|G|

(
1/2, σ + o(1)

)
for some constants ρ, σ > 0.

Also, suppose, that the smoothness test in G can be done in timeÕ
(
(n′

B)τ
)

for a constant expo-
nent τ . Then, solving the discrete logarithm problem in G requires

Õ
(
L|G|

(
1/2, max{2ρ, 1 + (1 + τ)ρ + σ} + o(1)

))
operations in G.
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20.3.3.b Methods

We now review the linear algebra methods that can be used for index calculus. Recall that we have
a large matrix A with c columns and rows. The goal is to find an element of the kernel of A, i.e.,
a vector x such that xA = 0 (more precisely xA ≡ 0 (mod |G|), but we assume that our group
has prime order N = p, and therefore we obtain a linear system over Fp). This is a very well-
investigated problem and a complete treatment would definitely be outside the scope of this book.
The matrix obtained is sparse, and in most cases the number of nonzero entries in the matrix is very
small. We observe two very typical matrix types that arise in this context:

1. For the index calculus in extension fields (respectively prime fields), the number of en-
tries per row is the number of factors in the polynomial over the base field that represents
the field element (respectively the number of prime factors in the integer representing
the field element).
The “smaller” primes appear more often, and usually with higher multiplicities, hence
the matrix is “denser” in the first columns. This is clearly true in the prime field case.
In the extension field case we note that the case of binary fields has been investigated
in more detail, and since the factor base must contains polynomials over F2 of several
degrees, those of smaller degree will appear more often. Under these conditions, the
well-known structured Gaussian elimination can reduce the size of the system by a con-
siderable amount.

2. For hyperelliptic curves of small genus g and the version of index calculus presented in
Algorithm 20.3, the nonzero entries are scattered in a rather homogeneous way in the
matrix. In this case, the structured Gaussian elimination has only a limited impact.

To complete the solution of the system, several algorithms can be used. For each type of discrete
logarithm problem to be solved, a careful comparison of the algorithms by Lanczos and Wiedemann,
along with their “block” variants, is necessary, and the best algorithm must be considered. This is
not a trivial task. We will describe the basic versions of these two methods below. Further methods
to be taken into account are the conjugate gradient method (which can be viewed as two pipelined
Lanczos algorithms) and Lambert’s variant (see [LAM 1996]).

The “block” variations try to minimize scattered memory reads and to replace them with consec-
utive reads as much as possible, and are also used in numerical analysis. They replace vector-matrix
multiplications by multiplications of several vectors by the same matrix at once, thus also improv-
ing cache locality and in fact greatly reducing accesses to the main memory. We will not enter
into details in their description, just as we will not deal with the parallelization of such methods.
In the context of discrete logarithm computation, see [LAM 1996], [THO 2001], [THO 2003], and
references therein for more details and literature on the subject.

20.3.3.c Wiedemann’s method

This method [WIE 1986] solves a system xA = v by building a Krylov subspace generated by the
vectors

v, vA, vA2, vA3, . . . (20.5)

Such a sequence is eventually recurrent, which is evident from the Cayley–Hamilton formula, which
says that a matrix satisfies its characteristic polynomial. Let the minimal polynomial for this se-
quence be f(T ). In order to determine f(T ), Wiedemann’s method picks a random vector u and
feeds the sequence

vut, vAut, vA2ut, vA3ut, . . . (20.6)

into the Berlekamp–Massey algorithm [MAS 1969], which determines the minimal polynomial of
the sequence. When applied to the sequence (20.6) the polynomial resulting from the Berlekamp–
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Massey algorithm must divide the minimal polynomial of the sequence (20.5) and also the minimal
and characteristic polynomials of A. Hence by computing the minimal polynomials of sequences
with various u’s, some information on the factors of the minimal polynomial of the sequence (20.5)
is discovered.

Under the assumption that u is randomly chosen, Wiedemann shows that it is quite likely that
after a certain number of factors f (i)(T ) of the minimal polynomial f(T ) have been found, f(T )
itself can be reconstructed as the least common multiple of these factors. More precisely, the success
probability is 70% with just three factors.

In practice, the following accumulation procedure is used to determine f(T ):

1. Put v0 = v and let f (0)(T ) be the minimal polynomial of the sequence

v0ut
0, v0Aut

0, v0A
2ut

0, v0A
3ut

0, . . .

2. If v0f
(0)(A) �= 0, then put v1 = v0f0(A), select another vector u1, compute the

minimal polynomial f (1)(T ) of the sequence

v1ut
1, v1Aut

1, v1A
2ut

1, v1A
3ut

1, . . .

3. Repeating this, various factors f (i)(T ), i = 0, 1, 2, . . . of f(T ) are found and f(T ) is
just their product.

If the degree of f (0)(T ) is smaller than that of f(T ), then the first pass, suitably pipelined with
Berlekamp–Massey’s algorithm, will terminate earlier. The computation of f (1)(T ) will be faster
because we have an easy bound on its degree, i.e., c−deg f (0)(T ), and the sequence {v1A

jut
1}j�0

must be at most twice that degree for the Berlekamp–Massey algorithm to determine f (1)(T )
uniquely. Similar considerations and bounds hold for the successive factors f (i)(T ).

Once f(T ) has been determined, the solution x or an element of the kernel of A can be computed
as follows:

• If the constant term of this minimal polynomial f(T ) is zero, v times f(T )/T evaluated
with T = A yields an element of the kernel. This null vector is not trivial because of the
minimality of f(T ).

• If f(0) �= 0, then put g(T ) =
f(T )− f(0)

f(0)T
· It is immediate to verify that z = −vg(A).

Wiedemann’s algorithm will, at best, be completed in a single pass, requiring 2c multiplications by
A, where c is the dimension of A, before the Berlekamp–Massey algorithm determines the (factor
of the) minimal polynomial. The time required by the Berlekamp–Massey algorithm is negligible
with respect to the time necessary to form the generating vectors of the Krylov subspace. The
vectors Aib cannot be stored, so they must be recomputed in the last phase. Hence, at best 3c
multiplications by A are required. As a consequence of the remarks after the description of the
accumulation approach for determining f(T ), the worst case cost is not much worse than the best
case. Upon closer analysis, one sees that the Wiedemann method needs to store, apart from the
matrix and the scalar quantities, only four vectors.

20.3.3.d Lanczos’ method

Lanczos’ method solves an equation xS = y for x where S is a symmetric matrix. To use it for
solving xA = v with A nonsymmetric we set S = AAt and y = vAt, then solve xS = y. The
solution obtained may actually differ from the desired solution by an element of the kernel of At.

In applying this method to finding a vector in the kernel of A, as in the index calculus method,
the matrix will have more columns (relations) than rows (primes). If it has full column rank c, then
the solution of the system xS = 0 with S = AAt will be a solution to the original system Az = 0,
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If the rank is not full, this becomes unlikely, hence in practice one adds more relations to increase
the likelihood that the column rank is in fact maximal.

Put

w0 = y, v1 = w0S, w1 = v1 −
〈v1,v1〉
〈w0,v1〉

w0

and define the following iterations

vi+1 = wiS, wi+1 = vi+1 −
〈vi+1,vi+1〉
〈wi,wi+1〉

wi −
〈vi+1,v1〉
〈wi−1,vi〉

wi−1.

Note that the matrix S is in general not sparse and it is therefore never computed explicitly: vi+1 =
wiS is in fact computed by two multiplications of a vector by a sparse matrix as vi+1 = wiAAt.

The algorithm stops when wj is found to be self-conjugate, i.e., 〈wj ,wjS〉 = 0: this expression
appears in fact already as the first denominator of the above iterative formula.

If wj = 0, then a solution is

x =
j−1∑
i=0

〈wi,y〉
〈wi,vi+1〉

wi

which is accumulated partially as the algorithm progresses.
Over the reals, if S is positive definite and wj is self-conjugate, then wj must be 0, but this is not

necessarily the case in finite characteristic where there exist nonzero self-conjugate vectors. If this
happens, then the algorithm fails. When the Lanczos algorithm is used to find a solution modulo 2,
such as in the number field sieve for factorization (see Section 25.3.4.g), Montgomery [MON 1995]
proposed to keep subspaces instead of vectors, thus deriving a block version of the Lanczos algo-
rithm. This has the dual advantage of greatly reducing the risk of zero denominators in the iteration
above and of speeding up the algorithm by making use of the fact that most processors can operate
on a block of elements modulo 2.

When p is large, the zero denominator problem can be dealt with simply by restarting the algo-
rithm with a different system.

The Lanczos algorithm uses seven vector variables, but in fact only the storage for six is required.
Each iteration of the algorithm requires one matrix-vector product (which in the case of S = AAt

costs as two matrix-vector products of the “simple” type used in Wiedemann’s method — we multi-
ply by A and At separately because it is faster than multiplying by S, which is, in general, too large
to store anyway), and three inner product calculations (one calculation is preserved for the next
iteration). Since the Lanczos method will terminate in at most c iterations where c is the dimension
of A, this will be at most 2c “simple” matrix-vector products and 3c inner products. Compared
with the Wiedemann method, the Lanczos method requires c less matrix-vector products, 3c inner
products where the Wiedemann algorithm required only one, and roughly 50% more storage. Since
matrix-vector products will likely dominate the computation, if the storage is available, it would be
easy to draw the conclusion that Lanczos’ method seems preferable over Wiedemann’s for finding
solutions modulo large primes. In fact, if the system is very large, there might be big problems in
constructing and storing the transpose matrix At. Therefore the use of Wiedemann’s algorithm must
be seriously considered in some circumstances.

20.3.4 Filtering

An important step that can be included between the relation search and the linear algebra is filtering.
Its aim is to reduce the size of the linear system without losing the fact that it is overdetermined.
This is particularly successful with the type of systems obtained in the index calculus of finite fields.
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The most common filtering strategies can be divided into two types: removing useless and unneces-
sary relation, or pruning; and merging two (respectively r) relations to build one (respectively r−1)
relation(s), removing one variable in the process.

Before entering into details, we should also briefly mention the removal of duplicate relations,
which applies mainly to factorization problems. In factoring, relations are usually obtained by
different means: two sieves are commonly used, the line-by-line siever and the lattice siever, and
this may cause some overlap. Duplicate relations are removed using hashing techniques.

20.3.4.a Pruning

Suppose that a relation of the form [a]g ⊕ [b]h =
⊕nB

j=1 [ej ]πj is found, and after the relation
collection stage we can determine that one of the primes πj appears in this relation with a nonzero
coefficient, but its multiplicity is zero in all other relations. It is clear that this relation is useless
for the purpose of solving the discrete logarithm, and can be purged from the system, decreasing
dimension of the matrix and number of variables both by one. We also reduce the total weight of
the matrix.

Since at some point during pruning, the system might have more relations than absolutely nec-
essary to have a kernel of dimension bigger than zero, it may be possible to remove relations that
contribute to the kernel. A natural approach to do this is to choose a variable that has a nonzero coef-
ficient in only two relations (doublets) and remove one of these two relations. Since the variable now
has nonzero coefficient in only one relation, that relation becomes useless and it is purged from the
system, along with the variable. This is particularly successful if chains of doublets can be found,
i.e., sequences of pairs of doublets that have nonzero coefficients in the same relation. Furthermore,
closed cycles of doublets can be removed without affecting the dimension of the kernel.

In order to use this approach, a database with the total multiplicities of all the primes in the factor
base is created as relations are collected.

20.3.4.b Merging

Merging is based on the structured Gaussian elimination as described in [POSM 1992]. This takes
advantage of both the sparsity of the matrix, and (when possible) the “unbalanced” shape of its
rows. It is in principle the usual Gaussian elimination, but it works from “right to left” in order
to eliminate the elements that appear less frequently, i.e., the larger primes first, and is only done
partially. This reduces the size of the system while attempting to preserve the sparse character of
the matrix.

The present description of merging follows Avanzi and Thériault [AVTH 2004], who build upon
the strategies developed for the number field sieve method for factorization, such as, for example,
those described in [CAV 2000] and in the references therein.

Suppose we have two relations

[ai]g ⊕ [bi]h =
nB⊕
j=1

[ei,j]πj

for i = 1, 2, and, for simplicity, assume that e1,1 = e2,1 = 1, but that the coefficient of π1 is zero in
all other relations. If we replace the two relations with the single relation

[a1 − a2]g ⊕ [b1 − b2]h =
nB⊕
j=1

[e1,j − e2,j ]πj =
nB⊕
j=2

[e1,j − e2,j ]πj

then, clearly, the prime π1 does not appear in the system any longer, therefore we in fact reduce
both the dimension of the matrix and the number of variables by one. It is clear that the first system
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is solvable if and only if the merged system is solvable, and finding an element of the kernel of the
system before the merging is equivalent to finding an element of the kernel of the new system.

If the prime π1 belongs to more than one relation we can, in the same way, merge the first relation
to the other ones where π1 appears, thus eliminating one variable and one relation once again.

Note that the total weight of the matrix usually increases when one relation is merged to more than
one other relation. One should always pick the relation of smallest weight among those containing a
given variable and merge that one to the other ones. The implementor of the filtering stage must take
particular care to merge only if this actually does not increase the complexity of the linear algebra
solution step that follows. Usually a given sparse linear algebra algorithm takes time k1c

2 + k2cω
where ω is the weight of the matrix and k1, k2 are time constants that depend on the algorithm
and on the computing architecture chosen (in practice, due to the extreme complexity of today’s
computer architectures, the latter can be correctly determined only experimentally). This means
that this quantity, at least in principle, should not increase after a merging step.

In principle, one determines a threshold t and then merges the relations containing variables that
appear at most t times in the whole system. But there might be rather complicated networks of
relations, where two relations are adjacent if they both contain a variable to be merged, and it is
therefore not clear in which order they should be removed. This cannot be considered on a case-by-
case basis, hence the most common situations have to be analyzed beforehand and “hardwired” in
the code for a specific application, taking into account the impact on the total running time of the
linear algebra step.

Note also that, due to the particular shape of the matrices arising from finite field discrete loga-
rithm or integer factorization problems, filtering is usually much more effective in those cases than
for the hyperelliptic curve index calculus method.

20.3.5 Automorphisms of the group

The presence of an automorphism ψ for the group G has a great impact on index calculus methods,
as remarked by Gaudry in [GAU 2000b, GAU 2000a]. We restate his result in the context of index
calculus methods for generic groups:

Theorem 20.6 Let G be an abelian group for which there exists an index calculus variant, with set
of primes P and smoothness bound B, and which admits an automorphism ψ of order m with the
following properties:

(i) Almost all orbits under ψ of the elements of the group have order m. The automorphism
ψ acts transitively on the set of primes PB , also with almost all orbits of order m.

(ii) The computation of ψ can be performed in reasonable time: a computation in polynomial
time of ψ and of the verification that two elements belong to the same orbit is enough for
our purposes.

(iii) The automorphism acts like the multiplication by a known scalar s, say (coprime to the
group order).

The automorphism can be exploited to improve the index calculus to make:

(i) The search for relations up to m times faster.

(ii) The linear algebra phase up to m2 times faster.

Gaudry’s idea, originally formulated only for the Jacobians of hyperelliptic curves, is to include in
the factor base only one element for each orbit under ψ. Let PB be the original factor base, and let
P̂B be the factor base containing only one element per orbit. P̂B has cardinality n̂B ≈ nB/m, Let
the elements of P̂B be denoted by π̂i.
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The size of the factor base is then reduced by a factor m, and so is the number of relations to be
found. The relations with respect to PB are of the form

[ai]g ⊕ [bi]h =
nB⊕
j=1

[ei,j ]πj .

Now for all i we can write an element of PB as πi = ψηi(π̂γi) where π̂i is in the factor base P̂B

and ηi and γi are suitable integers. Hence

[ai]g ⊕ [bi]h =
nB⊕
j=1

[ei,js
ηi ]π̂γj =

bnB⊕
k=1

[ ∑
j : γj=k

ei,js
ηi

]
π̂k.

The matrix Â of the resulting, reduced, linear algebra system is m times smaller than A, so the
result about the speedup of the linear algebra phase is immediate.

The important consequence of Theorem 20.6 is that in groups with automorphisms the index
calculus can be sped up much more than Pollard’s rho method. The theorem claims a speedup up to
a factor m2, but we expect it to be somewhat smaller for the following two reasons:

1. The nonzero elements of A are, as integers, usually very small (almost always just +− 1),
whereas those of Â are often rather large numbers modulo |G|. Multiplications by small
numbers can be done by repeated additions, but generic multiplications are more expen-
sive, hence influence the performance of the linear algebra in the small system.

2. The automorphism ψ introduces small overheads in the relation collection phase as well.

20.4 An important example: finite fields

We now outline a realization of the index calculus algorithm in the case G is the group F∗pd . The
expected running times are given for p → ∞ and d fixed or for p fixed and d → ∞.

According to Definition 20.2 and the usual definition of rational primes, a positive integer is B-
smooth if all its prime factors are � B.

Lemma 20.7 [CAER+ 1983, BRU 1966] Let α, β, r, s ∈ R>0 with s < r � 1. Then a random
positive integer � Lx(r, α) is Lx(s, β)-smooth with probability Lx(r−s,−α(r−s)/β) for x → ∞.

A polynomial in Fp[X ] is B-smooth if it factors as a product of irreducible polynomials in Fp[X ]
of norm � B.

Lemma 20.8 [ODL 1985] Let α, β, r, s ∈ R > 0 with r > 1 and r
100 < s < 99r

100 · Then a random
polynomial in Fp[X ] of norm � Lx(r, α) is Lx(s, β)-smooth with probability

Lx(r − s,−α(r − s)/β) for x → ∞.

Remember that if d = 1 the ‘norm’ of a field element is simply the integer representing the field
element, and an element is ‘prime’ if that integer is prime. Also, if d > 1 the ‘norm’ of an element
g is given by pdeg h where h is the polynomial representing g, and an element is ‘prime’ if its
representation is an irreducible polynomial over Fp.

We see now that the assumptions of Theorem 20.5 hold for the multiplicative group of finite
fields (provided that p and d satisfy the conditions made at the opening of this section) so the index
calculus approach yields subexponential algorithms for them.
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Let B be a smoothness bound, and let the factor base S be the subset of F∗pd of primes of norm � B.
We can now apply the index calculus Algorithm 20.3.

With B = L(pd−1)

(
1/2,

√
1/2
)

and Dixon’s approach (cf. end of Section 20.3.1) the relation
collection stage takes expected time Lpd

(
1/2,

√
2
)
. This follows from the smoothness proba-

bilities given above, the running time of the elliptic curve factoring method if d = 1, and, if
d > 1, the fact that polynomials over Fp of degree k can be factored in expected time poly-
nomial in k and ln p [BER 1967, MCE 1969, CAM 1981, CAZA 1981, CAM 1983, SHO 1990,
SHO 1991, GASH 1992]. Solving the system of linear equations takes the same expected run-
ning time Lpd(1/2,

√
2) because the matrix is sparse. This results in an expected running time

Lpd

(
1/2,

√
2
)
.

There are two important variants of the index calculus method for general finite fields Fpd . One is
based on the number field sieve (cf. Section 25.3.4) and, given that d <

√
ln p, it attains an expected

running time Lpd(1/3, 1.923), similar to that of the number field sieve for factoring [SCH 2000b].
The other method, due to Coppersmith, is called the function field sieve and applies only to

d > (ln p)2. It actually predates the number field sieve and was the first cryptanalytic method
to break through the Lx(1/2, c) barrier, but only for fields of small fixed characteristic, such as
F2d : For such fields it attains a complexity L2d(1/3, 1.588). Observe that the constant 1.588 is
substantially smaller than 1.923, making DL systems in groups F∗2d even less desirable than RSA
systems. It has been applied to F2503 [GOMC 1993] and F2607 [THO 2003].

Remark 20.9 For finite fields in the “gap”
√

ln p < d < (ln p)2 there is currently no algorithm
known with proved subexponential running time. The conjectured running time for some index
calculus variants that apply to specific fields is Lx(1/2, c). A survey of the number and function
field sieve methods and on the current status concerning the gap can be found in [SCWE+ 1996].

All these variants can be seen in more generality from the unitary perspective of computations
in Brauer groups of local and global fields and explicit class field theory. Under this optic these
methods can probably be generalized further. See Nguyen’s Ph.D. Thesis [NGU 2001] for details.

20.5 Large primes

The present section is devoted to the technique of using “large primes” in order to increase the
amount of relations found. This technique mimics the one described in Section 25.3.4.e for factor-
ing; Incidentally, the latter technique is described in a later chapter because of the ordering of the
parts of the present book, even though from an historical perspective it predates the application to
discrete logarithms in algebraic groups. Despite the fact that we usually cannot order the points
and divisors on the curve in such a way that we can establish which of two points or divisors is
“largest,” we borrow the name of the method used for the integers and employ it also in the present
context. It comes at the price of increasing the average weight of the relations, and thus of reducing
the sparseness of the matrix.

20.5.1 One large prime

We now describe how to use a “large prime” to increase the amount of relations collected. Relations
of the type

[ai]g ⊕ [bi]h =
nB⊕
j=1

[ei,j ]πj + Li, (20.7)
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where Li does not belong to the factor base, are collected at the same time as the B-smooth ones.
The Li are larger than B, but are usually bounded in size, too. For example, the condition might
be Li ∈ PB1 where B1 is larger than B: that’s why these Li’s are called large primes. Relations
like (20.7) are called almost-smooth relations (or 1-almost-smooth relations) or partial relations
(1-partial relations), and are of course in far greater number than the B-smooth ones, called full
relations. With this terminology, partial relations are used to construct full ones as follows: If two
partial relations with the same large prime have been found, subtracting the second relation from
the first (exactly as we did for merging) gives a smooth relation. Such relations are usually a bit
heavier than the normal ones, and thus using large primes will create a matrix that is less sparse. On
the other hand, the search becomes much faster, reducing the total running time.

Large prime matches are found using a hash table. When two relations are merged, one of them
must be removed from the list of partial relations, otherwise we might merge both relations with a
third one containing the same large prime, giving rise to three linearly dependent full relations.

Large prime variants have been used since the beginning of the development of factoring methods
such as that of Morrison and Brillhart [MOBR 1975] (see Section 25.3.4) or in the first implementa-
tion of the quadratic sieve (see Section 25.3.4.b) by Gerver [GER 1983] as well as of index calculus
methods (see Odlyzko’s survey paper [ODL 1985]). In all these cases, relations obtained by merg-
ing partial relations with one large prime account for the majority of the relations found, and the
usage of large primes brought a speedup of a factor 2 to 2.5.

20.5.2 Two large primes

A natural extension of the large prime idea is to use two or more large primes. Although the
original concept of using two large primes can be traced back to ideas of Montgomery and Silverman
from the mid 1980s, the classic paper on the subject is that of Lenstra and Manasse [LEMA 1994].
Merging in the single large prime case is a trivial task, but dealing with more than one large prime
is more difficult.

One way of using two large primes is typical of factoring applications, and is related to the so-
called “Waterloo variant” of searching smooth relations. The Waterloo variant has been developed
by Blake et al. in [BLFU+ 1984] (see also [BLMU+ 1984]) and consists in the following: instead
of testing values b = ga mod p for smoothness, the extended Euclidean algorithm is used to find
integers u, v, w with w = ub + vp where both u and w are smooth. Instead of stopping when, as
is more usual, w = 1 and u, v are the Bezout coefficients with u ≡ b−1 (mod p), the algorithm
will be interrupted when u ≈ √

p, in which case w ≈ √
p too. Then u and w are checked for

smoothness: if they are both smooth we get a relation b = ga ≡ wu−1 (mod p). It is more likely
that two integers of size about

√
p are both smooth than a single integer of size about p. Clearly,

since we are actually building a single relation from two “halves,” we can admit one (or more) large
primes in w independently from the large prime in u. This method has also been used by Thomé
in his successful computation of a discrete logarithm in F2607 [THO 2003] — but it does not seem
adaptable to the solution of DLPs in groups arising from geometric constructions. Note that, by
admitting negative exponents, we can consider either b ≡ ga (mod p) or b−1 ≡ g−a (mod p)
for our purposes, according to the way we couple the large primes in “half relations” arising from
different b’s. An analysis of the Waterloo variant can be found in Holt’s PhD. Thesis [HOL 2003].
Another variant has been developed for the number field sieve with two factor bases [LELE 1993]
and has not been adapted to the discrete logarithm case.

How are full relations built from partial relations with up to two large primes? During the relation
search, a graph is built whose vertices are the large primes. Two vertices are connected by an edge
if there exists at least one partial relation involving them both. There is a special vertex referred to
as “0” (alternatively “1”), to which all primes that appear alone in a partial relation are connected.
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For the purposes of factoring a cycle in the graph it is sufficient to “eliminate” the large primes
by simply multiplying together all the partial relations corresponding to the edges, since each large
prime will appear an even number of times in a cycle.

For solving DLPs, all cycles containing the special vertex “0” can be used to produce a full
relation, but only about half of all other cycles are useful. Let us see why: Let

ρi = [ai]g ⊕ [bi]h = Li − εiLi+1 + {smooth primes}

for i = 1, 2, . . . , n where the Li are large primes with Ln+1 = L1, and εi = +− 1 (this is always
possible by suitably replacing some ρi’s with their opposites). All the large primes are pairwise
different and, with the only possible exception of L1, all different from the special prime “0”. Then

ρ = ρ1 + ε1ρ2 + ε1ε2ρ3 + · · · + ε1ε2 · · · εn−1ρn

is a relation involving smooth primes and (1 −
∏n

i=1 εi)Li. If Li is “0,” then ρ is always a full
relation; otherwise ρ is a full relation if and only if

∏n
i=1 εi = 1: Such a cycle is called an even cycle.

This problem does not occur in factoring applications where all the multiplicities are considered
modulo 2, hence all cycles produce full relations in these situations.

To find relations, one must therefore detect cycles containing “0” as well as even cycles in the
connected components of the graph. Cycle detection involves only a relatively small overhead, but
it must be implemented with care as the graph can be very large (for example, more than 108 edges
among 2 × 109 vertices) and managing it is not a trivial task.

Note, however, that long cycles may not be very effective because they tend to generate very
heavy relations and using them can lead to a denser matrix.

20.5.3 More large primes

Here the landscapes for factoring and discrete logarithms start to be very different. Using more
than two large primes (and up to 4) with the Waterloo variant of factorization is in fact just using
up to two large primes for both “half relations.” See [DOLE 1995] for a four large primes variant
of the number field sieve. In general, and always for discrete logarithms, one needs to consider
higher-dimensional generalizations of graphs, where the “edges” connect more than two vertices
(still corresponding to primes), as in [HOL 2003], or follow Cavallar’s [CAV 2000] method inspired
from structured Gaussian elimination.

While the multi-large-prime schemes have been very efficient for factoring, it is not clear how
more than two large primes can be used for computing discrete logarithms in groups arising from
geometric constructions.
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21.1 General algorithm

As stated in Section 20.2.1, the index calculus algorithm can be applied to compute discrete loga-
rithms in the Jacobian of hyperelliptic curves. For groups of this type, the set of primes are prime
divisors or, in terms of the ideal class group, prime ideals. These divisors can be single Fq-rational
points or the sums of all Galois conjugates over Fq of a non-Fq-rational point: In other words, if a
divisor D has Mumford representation [u(x), v(x)], D is prime if and only if the polynomial u(x)
is irreducible over Fq .

Algorithm 21.1 Divisor decomposition

INPUT: A semi-reduced divisor D = [u(x), v(x)].

OUTPUT: Prime divisors P1, . . . , Pk and coefficients e1, . . . , ek such that D =
Pk

j=1 ejPj .

1. find the factorization
Qk

i=1 ui(x)ei of u(x)

2. i ← 1

3. while i � k do

4. vi ← v(x) mod ui(x)

5. Pi ← [ui(x), vi(x)]

511
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6. i ← i + 1

7. return
Pk

j=1 ejPj

As is common for index calculus algorithms, the prime decomposition does not require a divisor to
be reduced and two divisors in the same class will have two different decompositions.

Remark 21.2 For the remainder of this chapter, once the prime decomposition of a divisor has been
computed it will be assumed that both the Mumford representation and the prime decomposition
can be used when required and the two representations will not be explicitly distinguished.

21.1.1 Hyperelliptic involution

As stated in Section 20.3.5, using group automorphisms can have a significant impact on the speed of
the index calculus algorithm, although this impact is in the size of the constants involved and not in
the asymptotic form of the resulting algorithm. In the case of hyperelliptic curves, the automorphism
used is the hyperelliptic involution.

Definition 21.3 Let C be a hyperelliptic curve given by the equation y2 + h(x)y = f(x). The
hyperelliptic involution of a divisor D = [u(x), v(x)] is the divisor [u(x), ṽ(x)], denoted −D,
where ṽ(x) := −v(x) − h(x) (mod u(x)).

Since the hyperelliptic involution is an automorphism of order two, it can be used to make the
relation search twice as fast and the linear algebra four times faster (more if the sparse linear algebra
algorithms of Section 20.3.3 cannot be used).

In order to take advantage of the hyperelliptic involution, we act as if for every prime P ∈ PB , its
image under the involution were also in PB , but at most one copy of P and −P is actually included
in PB . The prime decomposition is rewritten to reflect that fact, i.e., if P is in the factor base and
the prime decomposition of a divisor D would call for the prime (−P ), then we replace e(−P ) by
(−e)P .

21.1.2 Adleman–DeMarrais–Huang

With the exception of some special cases, the first general description of an index calculus algorithm
for Jacobians of hyperelliptic curves is due to Adleman, DeMarrais, and Huang [ADDE+ 1999].

The algorithm can be used for curves over any finite field, but describing in full generality the
various sub-algorithms would only make things unnecessarily confusing, so only the case curves
defined over fields of odd characteristic and defined by equations of the form y2 = f(x) will be
described in this section.

Factor base

Just as the factor base is chosen such that it contains primes with a small norm when we are dealing
with the index calculus algorithm for finite fields, we attach a notion of “size” to prime divisors.
For a given smoothness bound B, the factor base will then be composed of all the prime divisors of
degree at most B, where the degree of a prime divisor is the degree of its polynomial u(x) in the
Mumford representation [u(x), v(x)].

Definition 21.4 A divisor is said to be B-smooth if all the prime divisors in its decomposition have
degree at most B.
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To find all the prime divisors of a given degree, it suffices to test all the irreducible polynomials
u(x) of that degree, checking to see if there exists a polynomial v(x) satisfying v(x)2 ≡ f(x)
(mod u(x)). If we also take advantage of the hyperelliptic involution, we get the following method
to find all the elements of the factor base:

Algorithm 21.5 Computing the factor base

INPUT: A hyperelliptic curve C and a smoothness bound B

OUTPUT: A set PB of B-smooth prime divisors

1. PB ← {}
2. for every irreducible monic polynomial u(x) ∈ Fq[x], deg u � B do

3. if u(x) � f(x) and f(x) ≡ square (mod u(x)) then

4. find v(x) such that deg v < deg u and v(x)2 − f(x) ≡ 0 (mod u(x))

5. P ← [u(x), v(x)]

6. add P to PB

7. return PB

Relation search

Given a reduced divisor, the approach used by Adleman, DeMarrais, and Huang to obtain a smooth
divisor consists of adding randomly chosen principal divisors (of degree at most d) to the reduced
divisor until the semi-reduced divisor created is smooth. Because this can be applied separately to
each of the prime divisors in the decomposition of a divisor, we consider only the case of unramified
prime divisors and the divisor 0.

Algorithm 21.6 Smoothing a prime divisor

INPUT: An unramified prime divisor D = [u(x), v(x)], a factor base PB , and a parameter d.

OUTPUT: The prime decomposition of an equivalent B-smooth divisor eD = [ũ(x), ṽ(x)].

1. if D is B-smooth then

2. return D

3. else

4. repeat

5. repeat

6. choose a random A(x) ∈ Fq[x] of degree � d

7. B(x) ← −A(x)v(x) mod u(x)

8. until gcd
`
A(x),B(x)

´
= 1

9. ũ(x) ← `
B(x)2 − A(x)2f(x)

´
/u(x)

10. ṽ(x) ← B(x)A(x)−1 mod ũ(x)

11. eD ← [ũ(x), ṽ(x)]

12. eD ←Pr
i=1 eiPi

h
decomposition of eD into prime divisors

i
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13. until eD is B-smooth

14. return eD

Algorithm 21.7 Finding smooth principal divisors

INPUT: A factor base PB and a parameter d.

OUTPUT: The prime decomposition of a B-smooth principal divisor eD = [ũ(x), ṽ(x)].

1. repeat

2. repeat

3. choose random A(x),B(x) ∈ Fq[x] of degree � d

4. until gcd
`
A(x),B(x)

´
= 1

5. ũ(x) ← B(x)2 − A(x)2f(x)

6. ṽ(x) ← B(x)A(x)−1 mod ũ(x)

7. eD ← [ũ(x), ṽ(x)]

8. eD ←Pr
i=1 eiPi

h
decomposition of eD into prime divisors

i

9. until eD is B-smooth

10. return eD

Since the smoothing algorithm does not work for ramified primes (i.e., primes of the form [u(x), 0]),
it may be necessary to find an equivalent divisor that does not contain any ramified prime in its
decomposition. This is done as follows:

Algorithm 21.8 Decomposition into unramified primes

INPUT: A semi-reduced divisor D = [u(x), v(x)].

OUTPUT: The decomposition of an equivalent divisor eD into unramified primes.

1. d(x) ← gcd
`
u(x), f(x)

´

2. if d(x) = 1 then

3. find the decomposition of [u(x), v(x)] into prime divisors
Pr

i=1 eiPi

4. return eD =
Pr

i=1 eiPi

5. else

6. u1(x) ← u(x)/d(x)

7. v1(x) ← v(x) mod u1(x)

8. u2(x) ← `
d(x)2 − f(x)

´
/d(x)

9. v2(x) ← d(x) mod u2(x)

10. find the decomposition of [u1(x), v1(x)] into prime divisors
Pr

i=1 eiPi

11. find the decomposition of [u2(x), v2(x)] into prime divisors
Ps

j=1 fjQj

12. return eD =
Pr

i=1 eiPi −Ps
j=1 fjQj
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Algorithm

The index calculus algorithm presented by Adleman, DeMarrais, and Huang [ADDE+ 1999] differs
somewhat from Algorithm 20.3. The idea behind the algorithm is to consider the kernel of the map
between the free abelian groupZn generated by the factor base and the Jacobian of the curve. Since
this kernel is a lattice of Zn, working out the structure of the lattice makes it relatively easy to find
the relationship between two smooth divisors in the Jacobian.

We first find smooth representations of the pair of divisors for which we want to compute the
discrete logarithm. To obtain the structure of the lattice, we must find enough smooth principal
divisors (which correspond to points in the lattice) and decompose the linear system obtained from
these relations. It may not be necessary to completely work out the structure of the lattice, and the
search for smooth principal divisors is ended once the discrete logarithm is found.

The resulting algorithm can be written as follows:

Algorithm 21.9 Adleman–DeMarrais–Huang

INPUT: A hyperelliptic curve C, two divisors g and h with h ∈ 〈g〉, a smoothness bound B, and
a parameter d.

OUTPUT: An integer t with [t]g = h.

1. compute the factor base PB [use Algorithm 21.5]

2. n ← |PB|
3. g ←Pr

i=1 eiPi [decompose g into unramified primes]

4. i ← 1

5. while i � r do

6. smooth the prime divisor Pi and put the result in ePi [use Algorithm 21.6]

7. i ← i + 1

8. g̃ ←Pr
i=1 ei

ePi

9. write g̃ as a 1 × n vector denoted by vg

10. h ←Ps
j=1 fjQj [decompose h into unramified primes]

11. j ← 1

12. while j � s do

13. smooth the prime divisor Qj and put the result in eQj [use Algorithm 21.6]

14. j ← j + 1

15. h̃ ←Ps
j=1 fjQ̃f

16. write h̃ as a 1 × n vector denoted by vh

17. M ← 0 × n matrix

18. j ← 0

19. repeat

20. j ← j + 1

21. find a smooth principal divisor Dj [use Algorithm 21.7]

22. write Dj as a 1 × n vector denoted by vj

23. add vj to M as the j-th row
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24. find matrices L ∈ GL(j,Z) and R ∈ GL(n,Z) such that LMR = C where C
is a m× n matrix with all nonzero entries on the diagonal and with diagonal entries
satisfying ci | ci+1 and ci > 0

25. c ←Qj
i=1 ci

26. if c > (
√

q + 1)2g then [upper bound of the group order]

27. ṽg ← vgR

28. ṽh ← vhR

29. if ṽh = tṽg for some t ∈ Z then

30. return t

31. until t is found

By setting B = �logq Lq2g+1(1/2, 1/
√

2k)� and d = �logq Lq2g+1(1/2,
√

2k)� where the constant
k depends on the speed of the linear algebra, we get:

Theorem 21.10 [ADDE+ 1999] Let C be a hyperelliptic curve of genus g over the finite field Fq .
If ln q � (2g+1)1−ε, then there exists a constant c � 2.181 such that discrete logarithms in JC(Fq)
can be computed in expected time Lq2g+1 (1/2, c).

The constant c is in fact dependent on the value of k coming from the linear algebra, with

c =
k + 1√

2k
·

The value c = 2.181 is obtained when no sparse linear algebra arithmetic is assumed (with k =
7.376). Although the algorithms described in Section 20.3.3 cannot be applied in this context,
sparse arithmetic might still be used, giving a value of c = 4/

√
6 (assuming k = 3 is possible).

21.1.3 Enge–Gaudry

The algorithm can be adapted to fit more closely with the index calculus as described in Chapter 20
(and used in the remainder of this chapter). Using results by Enge, Gaudry, and Stein [ENG 2002,
ENGA 2002, ENST 2002] we get:

Theorem 21.11 [ENGA 2002, Theorem 1] Let C be a hyperelliptic curve of genus g defined over
Fq and let logg denote the logarithm in base g. For g/ logg q > t, the discrete logarithm in the
divisor class group of C can be computed with complexity bounded by

Lqg

(
1
2

,
√

2

((
1 +

1
2t

)1/2

+
(

1
2t

)1/2
))

.

21.2 Curves of small genus

Although Algorithm 21.9 is very efficient when g > logg q, it must be modified in order to be
applied for hyperelliptic curves of “small” genus, i.e., such that g < logg q.

In the remainder of this chapter, we will assume that q > g! (which implies g < logg q) and
running times can be viewed in terms of a fixed genus and a varying field size.
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21.2.1 Gaudry’s algorithm

There are three major differences with the Algorithm 21.10 when adapting the index calculus algo-
rithm to curves of small genus:

• The approach of Algorithm 20.3 is used.
• The only primes considered for the factor base are those coming from Fq-rational points,

i.e., we are looking for 1-smooth divisors.
• Rather than smoothing divisors, smooth relations are found by repeatedly looking at

different reduced divisors until a smooth one is found.

Using these ideas, Gaudry [GAU 2000b] obtained an algorithm that is more efficient when the genus
of the hyperelliptic curve is small. The second step of Algorithm 20.3 is done as follows:

Algorithm 21.12 Relation search

INPUT: A hyperelliptic curve C, two divisors g and h with h ∈ 〈g〉, and a factor base P1.

OUTPUT: A system of r 1-smooth divisors of the form [αi]g ⊕ [βi]h.

1. choose random α, β ∈ {1, . . . , |JC(Fq)|}
2. D ← [α]g ⊕ [β]h

3. i ← 1

4. while i � r do

5. D ← Φ(D)

6. update α and β

7. decompose D into prime divisors

8. if D is 1-smooth then

9. Di ← D

10. i ← i + 1

11. return {D1, . . . , Dr}

Remark 21.13 To take into account the various linear algebra methods of Section 20.3.3, the desired
number of smooth relations produced by Algorithm 21.12 (and by the remaining algorithms in this
chapter) is denoted by r. In most cases, r can be assumed to be close to the size of the factor base:
If Wiedemann’s method is used, we need r = |B|+1, while if Lanczos’ method is preferred, r may
be chosen somewhat larger (to get a system with higher rank).

Since approximately 1 in g! divisors in the Jacobian is 1-smooth, obtaining enough relations is quite
fast and takes time O

(
g2g! q1+ε

)
. The other steps of Algorithm 20.3 are dominated by the linear

algebra, which has running time O
(
g3q2+ε

)
. These running times combine to give the result:

Theorem 21.14 [GAU 2000b] Let C be a hyperelliptic curve of genus g over the finite field Fq. If
q > g! then discrete logarithms in JC(Fq) can be computed in expected time O(g3q2+ε).

21.2.2 Refined factor base

Because the running time for Gaudry’s algorithm is dominated by the cost of solving the linear
algebra, a natural approach to improving the speed of the algorithm is to reduce the cost of the
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linear algebra part. Unless new sparse linear algebra algorithms are developed, the only option is to
reduce the size of the system, which means reducing the size of the factor base (since we need at
least as many relations as factor base elements).

To do this, we choose the factor base B as a subset of P1. Since reducing the size of the factor
base makes it less likely that a random reduced divisor is smooth (or B-smooth), this increases the
cost of the relation search. If the factor base is reduced too much, the relation search will eventually
become the dominant part of the algorithm as smooth relations become rarer. This brings us back to
the usual situation for index calculus algorithms, where optimizing the running time is a balancing
act between the relation search and the linear algebra.

By choosing the factor base B such that |B| = O(g2qg/(g+1)+ε), we get the following result:

Theorem 21.15 [THÉ 2003a, Theorem 2] Let C be a hyperelliptic curve of genus g over the fi-
nite field Fq. If q > g! then discrete logarithms in JC(Fq) can be computed in expected time
O(g5q2− 2

g+1+ε).

21.2.3 Harvesting

For the index calculus of hyperelliptic curves, Avanzi and Thériault [AVTH 2004] introduce a “dras-
tic” extension of pruning they call harvesting. The idea behind harvesting is to start with a very
overdetermined system, in fact of k times as many relations as variables for k relatively large (even
k � 100 can be useful), and then remove as many relations as possible while at the same time
reducing as much as possible the numbers of variables present in the system, in order to find a small
subsystem that is still overdetermined.

How are we going to choose the equations that can be removed to obtain the smallest possible
system after the filtering? We remove all relations that contain “rare” variables, i.e., the variables
that appear less frequently with nonzero coefficients in the equations of the system. If this process
is repeated until the system has only a few more relations than variables, we can reasonably expect
that the result is almost as small as possible.

At the end, we can obtain a system that is still overdetermined, but with much less variables
than the elements in the original factor base. Of course there might exist a smaller subsystem of
the original system, but that subsystem cannot be found efficiently, hence the construction by an
approximation method.

Such a harvesting step, just like pruning, has the nice side effect of decreasing the multiplicities
of all other variables that appeared in the removed relations. This means that one can see if the new
system can be harvested again, until it reaches the desired size or it can no longer be harvested.

After harvesting has been performed and the desired level of overdetermination has been reached,
we can still perform merging. In fact, merging after harvesting will be, in comparison, more efficient
than if it had been performed before.

Harvesting can also be viewed as a redefinition (reduction) of the factor base a posteriori (i.e., af-
ter the relation search has been done). Since harvesting requires more smooth relations but produces
a smaller linear system, which leaves the relation search and linear algebra unbalanced (compared
to an optimized algorithm with k ∼ 1), it is only natural to readjust the original size of the factor
base to re-balance the algorithm. If, for a given k, the reduction factor of harvesting is large enough,
the running time for the new optimized algorithm will be smaller than the running time with k ∼ 1.

With the approach of Section 21.2.2, harvesting can be used to reduce the running time of the in-
dex calculus algorithm by a non-negligible factor (although only the constant term in the asymptotic
running time is affected). In Jacobians of genus 6 curves for example, a total saving of close to 45%
can be obtained using k = 100. Harvesting can also be applied to the algorithm in Section 21.3.1
and Section 21.2.1 (although there is no re-balancing of the choice of the factor base in that case),
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but it is not yet known how well it can be adapted to the other algorithms of this chapter and of
Chapter 20.

Parallelization

Although it is not clear how to perform pruning and merging in parallel with a non shared-memory
computer, such as a cluster, some distribution is possible (and relatively easy) for harvesting.

We proceed by repeated steps as follows: Each node keeps track of its own part of the system
and lets the server know how many times each variable is used. The server can then decide which
variables will be removed from the system and tells the nodes. The nodes then look for the relations
containing the variables removed (and remove those equations from the system) and update the
number of times variables are used.

In order to reduce latency, variables are not removed one by one but in groups (still with the
“rarest” variables first). Since removing “blocks” of variables together is likely to have a detrimental
impact on the effectiveness of harvesting, one must be careful and choose these blocks as small as
possible without getting too much latency.

Once the system is reduced to the point where harvesting is no longer possible or distributing the
work is no longer advantageous, the remaining relations are collected and the filtering is completed
on a single processor. If this is implemented carefully, the total amount of information transmitted
is not much more than what would be transmitted to collect the full system (certainly much less than
twice that amount) while most of the work is distributed among the nodes. A major advantage of
this approach is the distribution of the system pre-harvesting, potentially making it possible to work
with systems that would be too big to be handled by a single processor.

If the expansion factor k is very large (and larger than the number of client computers involved in
the filtering), then some harvesting may be done locally by each node (and independently of other
nodes), reducing the number of relations but not the number of variables (since a variable removed
on one node can still be used on another). The harvesting can then be done distributively on the
reduced system or the relations can be collected together and the filtering (including harvesting) can
be done on a single computer. This will reduce network traffic (as no information is communicated
on the relations that were removed locally) but will also (presumably) reduce the effectiveness of
the filtering.

21.3 Large prime methods

As was described in Section 20.5, using large primes to decrease the time required to find relations
can have a significant impact on the running time of the index calculus algorithm.

The main difference when using large primes for Jacobians of hyperelliptic curves is in their
definition. Whereas large primes are usually defined as all the primes not included in the factor
base, in this situation we only consider all the primes in P1 not included in the factor base (in other
words, we ignore large primes of degree greater than one). This restriction is not strictly speaking a
necessary one, but more one of convenience.

In essence, this is because a large prime must appear in at least two different divisors found during
the relation search before it can be of any use in building smooth relations. Although almost-smooth
divisors with a large prime of degree at least 2 are more common than almost-smooth divisors with
a linear large prime, the low probability that a specific prime of higher degree appears more than
once far offsets the large number of these primes.

Even if all primes outside the factor base were to be considered, the number of smooth rela-
tions obtained due to the use of the primes of degree larger than one would be almost insignificant
compared to what is obtained using only P1. In practice, restricting the definition of large primes
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does increase the running time of the relation search, but not in any meaningful way. The main
reason to restrict the definition of large prime is to reduce the amount of memory required to run the
algorithm, the set P1 being much more manageable than the set of all primes.

At the time this book was written, methods using relations with one or two large primes had been
described, but no effective way had yet been found to use relations with more than two large primes.
The algorithms described here will therefore be limited to single and double large prime variants.

21.3.1 Single large prime

In order to take advantage of the high number of almost-smooth divisors, we must find pairs of these
divisors with the same large prime (up to sign, using the hyperelliptic involution). The approach
relies on the birthday paradox, since the large primes in almost-smooth divisor are uniformly dis-
tributed among the set of linear large primes. In order to identify these pairs, we use a list P of the
large primes encountered during the search and a list R of the almost-smooth divisors in which they
appeared. To avoid producing redundant relations, only the first copy of a large prime is included
in the list, and subsequent copies are used to produce smooth relations (using the corresponding
divisors to cancel the large primes).

Algorithm 21.16 Single large prime

INPUT: A hyperelliptic curve C, two divisors g and h with h ∈ 〈g〉, and a factor base B.

OUTPUT: A system of r B-smooth divisors of the form Di = [αi]g ⊕ [βi]h.

1. P ← {} and R ← {}
2. choose random α, β ∈ {1, . . . , |JC(Fq)|}
3. D ← [α]g ⊕ [β]h

4. i ← 1

5. while i � r do

6. D ← Φ(D), update α and β

7. decompose D into prime divisors

8. if D is B-smooth then

9. Di ← D

10. i ← i + 1

11. if D is almost-smooth with large prime P then

12. if P = Pj ∈ P then

13. R ← almost-smooth divisor containing Pj

14. Di ← D � R

15. i ← i + 1

16. else if P = −Pj ∈ P then

17. R ← almost-smooth divisor containing Pj

18. Di ← D ⊕ R

19. i ← i + 1

20. else

21. add P to P
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22. add D to R [almost-smooth divisor containing P ]

23. return {D1, . . . , Dr}

By choosing the factor base B such that |B| = O(g2q(g− 1
2 )/(g+ 1

2 )+ε), we get the following result:

Theorem 21.17 [THÉ 2003a, Theorem 3] Let C is a hyperelliptic curve of genus g over the fi-
nite field Fq. If q > g! then discrete logarithms in JC(Fq) can be computed in expected time

O(g5q2− 4
2g+1+ε).

In practice, smooth relations coming from smooth divisors are used, but they are not taken into
account to obtain this result. Since only a small number of smooth divisors are found during the
relation search, they do not have a significant impact on the time required for the relation search.

21.3.2 Double large primes

Since almost-smooth divisors can be used to produce relations so much faster, it is natural to also
consider 2-almost-smooth divisors. The idea is to produce chains of 2-almost-smooth (and almost-
smooth) divisors where two consecutive divisors have a common large prime. To each such chain,
we associate a relation where the divisors of the chain are added to the first one in such a way that
the common large primes between consecutive divisors are canceled.

The chain produces a smooth relation if all large primes are canceled. This can happen in two
ways: The first and last divisors in the chain are almost-smooth, or the first and last divisors in
the chain are 2-almost-smooth with a common large prime and the cancellation of the other large
primes in the chain also cancels that one. It is important to notice that even if the divisors at the
extremities of the chain are 2-almost-smooth with a common large prime, that large prime need not
be canceled in the relation associated to that chain. On average, the large prime common to the first
and last divisor will only cancel out in half of these chains.

In order to find chains of divisors producing smooth relations, we use a graph G where the
vertices are the large primes and an edge between two vertices correspond to a 2-almost-smooth
divisor containing those two large primes. Since we also want to take advantage of almost-smooth
divisors, the graph G contains an extra vertex denoted 1 and an almost-smooth divisor is associated
to the edge between its large prime and 1. The search for chains of divisors producing smooth
relations can then be viewed as a search for cycles in the graph G corresponding to the random
walk.

The general algorithm for the relation search using divisors with up to two large primes can be
given as follows:

Algorithm 21.18 Double large primes

INPUT: A hyperelliptic curve C, two divisors g and h with h ∈ 〈g〉, and a factor base B.

OUTPUT: A system of r B-smooth divisors of the form Di = [αi]g ⊕ [βi]h.

1. G ← empty graph

2. choose random α, β ∈ {1, . . . , |JC(Fq)|}
3. D ← [α]g ⊕ [β]h

4. i ← 1

5. while i � r do

6. D ← Φ(D), update α and β
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7. decompose D into prime divisors

8. if D is B-smooth then

9. Di ← D

10. i ← i + 1

11. if D is almost-smooth or 2-almost-smooth then

12. update G

13. if a smooth divisor S is created then

14. Di ← S

15. i ← i + 1

16. return {D1, . . . , Dr}

Obviously, the graph must be updated in such a way that no redundant relations are created. For
example, it may be possible to break down a cycle into distinct subcycles, but even if all the relations
obtained from each subcycle and from the original cycle itself are smooth, it would be undesirable
to use them all since they are clearly not linearly independent.

The main difference between the various double large prime algorithms is how the graph G is
updated, i.e., how edges are added to the graph. In the following sections, we will describe three
ways of constructing the graph and produce only good relations. We will call these the full graph,
simplified graph, and concentric circles method.

21.3.2.a Full graph method

The first, and more natural, approach to building the graph is to use every almost-smooth and 2-
almost-smooth divisor to add an edge to the graph, giving us the full graph.

To avoid producing redundant relations, edges that would close a cycle are used to produce re-
lations but are not added to the graph, which means that the graph G never actually contains any
cycles. Since not all cycles produce smooth relations, the non-smooth relations that may be obtained
from these cycles (which are in fact almost-smooth relations) are used to produce an edge between
1 and the non-canceled large prime.

Algorithm 21.19 Full graph method

INPUT: A graph G, a set of relations R = {Re} corresponding to the edges of G, and a new
almost-smooth or 2-almost-smooth relation R.

OUTPUT: Updated G and R and (if possible) a smooth relation S.

1. if R is almost-smooth then

2. P ← large prime in R

3. if P is connected to 1 then

4. (e1, . . . , ei) ← path from 1 to P in G

5. use R and Re1 , . . . , Rei to cancel the large primes

6. S ← smooth divisor obtained

7. leave G and R untouched

8. else

9. add the edge (1, P ) to G
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10. add R(1,P ) = R to R
11. if R is 2-almost-smooth then

12. P1, P2 ← large primes in R

13. if (P1, P2) would create a loop in G then

14. if the loop would contain the vertex 1 then

15. (e1, . . . , ei) ← path from 1 to P1 in G

16. (f1, . . . , fj) ← path from 1 to P2 in G

17. use R and Re1 , . . . , Rei and Rf1 , . . . , Rfj to cancel the large primes

18. S ← smooth divisor obtained

19. leave G and R untouched

20. else

21. (e1, . . . , ei) ← path from P1 to P2 in G

22. use R and Re1 , . . . , Rei to cancel the large primes other than P1

23. if P1 is also canceled then [smooth relation]

24. S ← smooth divisor obtained

25. leave G and R untouched

26. else [almost-smooth relation]

27. R(1,P1) ← almost-smooth relation obtained

28. add the edge (1, P1) to G

29. add R(1,P1) to R
30. else

31. add the edge (P1, P2) to G

32. add R(P1,P2) = R to R
33. return G, R and if possible S

Remark 21.20 This method is heuristically faster than the methods in next sections but its running
time is (at the time of this writing) still unproven. Although the relation search is faster with the full
graph method, there is no proven bound on the weight of the system generated using this method,
hence the cost of solving the linear system is unclear. If the system can be proven to be sparse
enough (and its weight is not significantly greater than with the other graph methods), this is the
method that should be favored.

The other methods described in the next two sections look for cycles in specific subgraphs of G
instead of the entire full graph and limit themselves to the connected component of the vertex 1.

21.3.2.b Simplified graph method

In order to make the analysis more accessible, Gaudry, Thériault, and Thomé [GATH+ 2004] in-
troduce a more restrictive approach to the graph construction. The idea is to discard edges that fall
completely outside of the connected component of the graph containing the vertex 1.
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Algorithm 21.21 Simplified graph method

INPUT: A graph G, a set of relations R = {Re} corresponding to the edges of G, and a new
almost-smooth or 2-almost-smooth relation R.

OUTPUT: Updated G and R and (if possible) a smooth relation S.

1. if R is almost-smooth then

2. P ← large prime in R

3. if P is connected to 1 then

4. (e1, . . . , ei) ← path from 1 to P in G

5. use R and Re1 , . . . , Rei to cancel the large primes

6. S ← smooth divisor obtained

7. leave G and R untouched

8. else

9. add the edge (1, P ) to G

10. add R(1,P ) = R to R
11. if R is 2-almost-smooth then

12. P1, P2 ← large primes in R

13. if P1 and P2 are both connected to 1 then

14. (e1, . . . , ei) ← path from 1 to P1 in G

15. (f1, . . . , fj) ← path from 1 to P2 in G

16. use R and Re1 , . . . , Rei and Rf1 , . . . , Rfj to cancel the large primes

17. S ← smooth divisor obtained

18. leave G and R untouched

19. else if one of P1 or P2 is connected to 1 then

20. add the edge (P1, P2) to G

21. add R(P1,P2) = R to R
22. else

23. leave G and R untouched

24. return G, R and if possible S

This approach has the following advantages compared to the full graph method:

• The algorithm as proven bounds on both the relation search and the linear algebra.
• All the cycles found in the graph produce a smooth relation since they correspond to

chains of divisors with first and last divisors almost-smooth.

Obviously the bound on the relation search with the simplified graph methods automatically gives
an upper bound on the relation search for the full graph method. However, the bound on the linear
algebra may not hold true for Algorithm 21.19, which is why Algorithm 21.21 is still important.

There are some significant disadvantages, however:

• Cycles in the full graph that are not connected to 1 cannot be found.
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• When looking at an edge during the search, if neither of the vertices have already been
connected to 1 then the edge is not used. But it can happen that the edge would be in the
connected component of 1 in the full graph (because of edges that are found later in the
search or other edges that were not used). This will most likely destroy some cycles.

• The relation search is slower (because of the previous points).

By choosing the factor base PB such that |PB| = O(g2q(g−1)/g+ε), we get the following result:

Theorem 21.22 [GATH+ 2004, Theorem 2] Let C be a hyperelliptic curve of genus g over the
finite field Fq . If q > g! then discrete logarithms in JC(Fq) can be computed in expected time

O(g5q2− 2
g +ε).

Remark 21.23 The ε in the exponents of Theorems 21.14, 21.15, 21.17, and 21.22 are due to ln q
factor in the running times. These ε hide the fact that the double large prime algorithm contains an
extra ln q factors compared to the three other variants.

21.3.2.c Concentric circles method

The approach described in this section is a modification of an algorithm by Nagao [NAG 2004].
Like the simplified graph method, we are looking for cycles in the connected component of the

full graph containing 1. Instead of building the graph bit by bit as almost-smooth and 2-almost-
smooth relations are found, the random walk is completely done first and then the graph is con-
structed.

To make it possible to keep the weight of the smooth relations low enough (and give a bound on
the linear algebra), the random walk is prolonged so that the connected component of 1 contains
more cycles than necessary. The shortest relations are found by looking at the large primes in
concentric circles centered at 1, i.e., in terms of their distance to the vertex 1.

In order to reduce the total cost of the index calculus algorithm as much as possible, the factor
base is again chosen with size O(g2q(g−1)/g+ε), giving the same running time of O(g5q2(g−1)/g+ε)
as the simplified graph method (possibly with a slightly different constant). To make notation easier,
three sets are constructed during the random walk:

• the set F contains the smooth divisors found,
• the set G contains the almost-smooth divisors, and
• the set H contains the 2-almost-smooth divisors.

For each concentric circle, we build a list Ln of the large primes at distance n from the vertex 1 (and
their corresponding almost-smooth relations) and a subset Hn of the divisors in H that have not yet
been used to built smooth or almost-smooth relations.

Algorithm 21.24 Concentric circles method

INPUT: Sets F ,G,H of respectively smooth, almost-smooth, and 2-almost-smooth divisors.

OUTPUT: A system of r smooth relations.

1. i ← 1

2. while i � |F| and i � r do

3. Di ← i-th divisor in F
4. L1 ← {}
5. j ← 1

6. while j � |G| and i � r do
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7. R ← j-th divisor in G
8. P ← large prime in R

9. if +−P ∈ L1 then

10. R0 ← almost-smooth relation for +−P

11. use R and R1 to cancel the large prime

12. Di ← smooth divisor obtained

13. i ← i + 1

14. leave L1 untouched

15. else

16. almost-smooth divisor for +−P ← R

17. add P to L1

18. j ← j + 1

19. H1 ← H
20. n ← 1

21. while i � r do

22. Ln+1 ← {}
23. Hn+1 ← {}
24. j ← 1

25. while j � |Hn| and i � r do

26. R ← j-th divisor in Hn

27. P1, P2 ← large primes in R

28. if +−P1 and +−P2 ∈ Ln ∪ Ln+1 then

29. R1 ← almost-smooth relation for +−P1

30. R2 ← almost-smooth relation for +−P2

31. use R, R1 and R2 to cancel the large primes

32. Di ← smooth divisor obtained

33. i ← i + 1

34. leave Ln+1 and Hn+1 untouched

35. else if +−P1 ∈ Ln, +−P2 
∈ Ln ∪ Ln+1 then

36. R1 ← almost-smooth relation for +−P1

37. use R and R1 to cancel P1

38. almost-smooth divisor for +−P2 ← almost-smooth divisor obtained

39. add P2 to Ln+1

40. leave Hn+1 untouched

41. else if +−P2 ∈ Ln, +−P1 
∈ Ln ∪ Ln+1 then

42. R2 ← almost-smooth relation for +−P2

43. use R and R2 to cancel P2

44. almost-smooth divisor for +−P1 ← almost-smooth divisor obtained
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45. add P1 to Ln+1

46. leave Hn+1 untouched

47. else

48. add R to Hn+1

49. leave Ln+1 untouched

50. j ← j + 1

51. n ← n + 1

52. return {D1, . . . , Dr}

Parallelization

Contrary to Algorithms 21.19 and 21.21, Algorithm 21.24 can be easily adapted to work distribu-
tively even on non-shared memory computers. The sets F ,G, and H are constructed independently
on each node. At the beginning of every layer of concentric circles, each node has its own Hn and
the server sends Ln and the corresponding partial relations to the nodes. Each node computes its
Hn+1 and its part of Ln+1. All the partial Ln+1’s and corresponding partial relations (as well as
the smooth relations produced) are collected by the server and combined, keeping at most one copy
of each large prime (and using supplementary appearances to produce more smooth relations).
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In this chapter we give three different methods of how to transfer the discrete logarithm problem
on the Jacobian of a curve to the discrete logarithm problem on a different group where it might be
easier to solve. The cryptographic implications on the security of the DL systems are discussed in
Chapter 23.

We briefly show the transfer to the additive group of a finite field in the exceptional case where
� = p. The next section shows how the pairings introduced in Chapter 6 can be used to transfer the
discrete logarithm problem. Then we explain in detail how the methodology of Weil descent can be
used to transfer the discrete logarithm problem from one variety to another.

22.1 Transfer of discrete logarithms to FqFqFqFqFqFqFqFq-vector spaces

Let C/Fq, q = pd be a hyperelliptic curve of genus g and assume that p | |Pic0
C |. For this case, it

is shown in Section 4.4.3.a that there exists a map from Pic0
C [p] to Ω0(C), the Fq-vector space of

holomorphic differentials on C. This space is isomorphic to F2g−1
q . Even though computing the

map involves some effort, the complexity of computing it is in O(lg q).
This means that the discrete logarithm problem in Pic0

C [p] can be transferred efficiently to F2g−1
q ,

where it can be solved by methods generalizing the Euclidean algorithm (for g = 1) and linear
algebra techniques in general. These methods run in O

(
(2g−1) lg(q)k

)
, where k is a small constant.

Note that this transfer is only interesting if one considers the discrete logarithm problem in
Pic0

C [p] and, hence, if p is sufficiently large. For a random curve this situation will not occur.
The general case for this transfer is presented in [RÜC 1999], for elliptic curves this method was

discovered by several authors [SAAR 1998, SEM 1998, SMA 1999a].

529
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For applications this case can be easily identified. So far only destructive consequences of this
transfer are known, namely breaking of the discrete logarithm problem in Pic0

C [p] by transfer to the
easier problem.

22.2 Transfer of discrete logarithms by pairings

As usual, let C/Fq, q = pd be a hyperelliptic curve of genus g. We consider the discrete logarithm
problem in a subgroup of Pic0

C of prime order �. Let k be such that � | qk − 1.
In Chapter 6, the Tate–Lichtenbaum pairing was defined. For our purposes the following version

is most useful. As in Chapter 16 we interpret the Tate–Lichtenbaum pairing as the pairing

T� : JC(Fq)[�] × JC(Fqk) → F∗qk [�],

(
__
D,

__
E ) �→

(
f __

D(E)
) qk−1

�

where
__
D and

__
E are elements of JC(Fq)[�] respectively JC(Fqk) and F∗qk [�] are the �-th roots of

unity. We let
__
D and

__
E be represented by the divisors D and E such that no point P ∈ C occurs in

both E and D.
The original Tate–Lichtenbaum pairing is not degenerate. In our version this is expressed by the

following fact: for randomly chosen
__
E ∈ JC(Fqk) and

__
D �= 0 we get T�(

__
D,

__
E ) �= 1. Chapter 16

deals with the efficient implementation of this map showing that computing T� is polynomial in qk.
The implications on the discrete logarithm problem are immediate. Consider the subgroup of

order � of Pic0
C and let

__
D be the base point. The degree of extension k can be obtained from q and

�. Choose
__
E randomly in JC(Fqk). One can expect that T�(

__
D,

__
E ) = ζ, where ζ is an �-th root of

unity. Then the discrete logarithm problem
__
F = [n]

__
D can be transferred to F∗qk [�] by computing

T�(
__
D,

__
E ) and T�(

__
F ,

__
E ) and observing that

T�(
__
F ,

__
E ) = T�(

__
D,

__
E )n.

If k is small, the pairing can be efficiently computed and the discrete logarithm problem can be
solved in the group of �-th roots of unity in Fqk by methods explained in the examples of Chapter 20.
For elliptic curves this transfer was pointed out in [MEOK+ 1993]. The general case is considered
in [FRRÜ 1994, FRMÜ+ 1999].

We like to stress that the transfer is possible in any case. Negative implications are that for small
k a cryptosystem built on Pic0

C can be attacked using the pairing (cf. Chapter 23) while the positive
applications of the transfer are dealt with in Chapter 24. As shown in Section 24.2.2, the embedding
degree k is always small for supersingular curves.

22.3 Transfer of discrete logarithms by Weil descent

The principle of transfers by Weil descent is that one transfers the discrete logarithm problem from
JC(Fqk) to the discrete logarithm problem of its Weil descent and then uses additional structures on
this higher dimensional variety. Here, we present 3 variants that have been proposed in the literature.
The mathematical background is explained in Chapter 7.

Note that for security considerations it is not enough to exclude these cases as Weil descent is
a far more general concept. It is applicable in composite fields. We start with a finite field Fqk ,
q = pd, and assume k > 1.

With the main applications in mind (see Chapter 23) we are especially interested in the case that
Pic0

C contains a large subgroup of prime order �. This is needed in some places and mentioned
there, but we would like to stress here that this is no real restriction, just the most interesting case.
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22.3.1 Summary of background

We recall that the Weil descent WF
qk /Fq

(A)(Fqk ) of an abelian variety A/Fqk has the property

WF
qk /Fq

(A)(Fq) = A(Fqk).

By the construction (either by using affine pieces or by Galois theory cf. Chapter 7) this identi-
fication can be made explicit and realized computationally. So, obviously, the discrete logarithm
problem can be transferred from A(Fqk ) to WF

qk /Fq
(A)(Fq). It can happen that WF

qk /Fq
(A)(Fq)

is a factor of the Jacobian variety of a curve D/Fq. Equivalently this means that we can embed
D into WF

qk /Fq
(A). Then the discrete logarithm problem in WF

qk /Fq
(A)(Fq) is transferred to the

discrete logarithm problem in the Jacobian of D.
This situation can be realized by covers for A = JC . A curve D/Fq is called a cover of C/Fqk

if there exists a nonconstant morphism

ψ : DF
qk

→ C

defined over Fqk . Under this condition the transfer can be made explicit by norm and conorm maps
of divisor classes. As usual we denote by ψ∗ the induced map from Pic0

C to Pic0
DF

qk
. It corresponds

to the conorm map of divisors in the function fields ψ∗(Fqk(C)
)
⊂ Fqk(D).

Next we use the inclusion Fq(C) ⊂ Fqk(D) to define a correspondence map on divisor classes

φ : Pic0
C → Pic0

D

given by

φ := NF
qk /Fq

◦ψ∗.

We assume that both D and the cover map ψ are explicitly given and that ψ can be computed
quickly.

Of course, the efficiency of the transfer depends heavily on the genus g′ of D. As JD needs
to contain the considered subgroup of WF

qk /Fq
(A)(Fq) the genus cannot be too small as by the

Hasse–Weil Theorem 5.76 and its corollary we have |JD(Fq)| = O(qg′
). If the subgroup under

consideration has size O(qgk) we have

g′ � gk. (22.1)

22.3.2 The GHS algorithm

In this section we want to explain the (until now) most successful applications of the idea to use
Weil restriction to get a transfer of discrete logarithms. Building on [GASM 1999] Gaudry, Hess,
and Smart [GAHE+ 2002b] developed it for C an elliptic curve E defined over binary fields,
q = 2d. For this reason we shall call it the GHS algorithm. This section contains material
from [DIE 2003], [GAL 2001b],[GAHE+ 2002a], [HES 2003], [JAME+ 2001], [MAME+ 2002],
[MEQU 2001], and [THÉ 2003b].

We describe the more general setting of starting with a hyperelliptic curve C of genus g.
Let C/Fqk be given by the usual equation

C : y2 + h(x)y = f(x), f(x), h(x) ∈ Fqk [x],

where f is monic of degree 2g + 1 and deg(h) � g (cf. 4.3).
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Remark 22.1 To use Artin–Schreier theory we make a change of variables and write

C : v2 + v = f̃(x),

where v = y/h(x) and f̃(x) = f(x)/h2(x). Note that in general f̃(x) is not a polynomial. By
abuse of notation, from now on we write the equation as

C : y2 + y = f(x), f(x) ∈ Fqk(x).

The crucial ingredient for the algorithm is a careful choice of an extension of the Frobenius auto-
morphism φq : Fqk → Fqk to an isomorphism on Fqk(C) into its algebraic closure. We extend φq

to an automorphism of Fqk(x)/Fq by requiring φq(x) = x and φq(y) = y(1) such that the following
equation is satisfied

Cφq : y(1)2 + y(1) = φq

(
f(x)

)
.

The field Fqk(Cφq) := Fqk(x)[T ]/
(
T 2 + T − φq

(
f(x)

))
is the function field of a hyperelliptic

curve Cφq with rational subfield Fqk(x).

We repeat this construction to get Fqk

(
Cφi

q
)

= Fqk

((
Cφi−1

q
)φq
)

and note that Fqk

(
Cφk

q
)

=
Fqk(C).

Take F ′ as composite of the fields Fqk(C),Fqk

(
Cφq

)
, . . . ,Fqk

(
Cφk−1

q
)
. It is a Galois extension

of Fqk(x) with a two-elementary Galois group of order 2m with m � k. The algebraic closure of
Fqk in F ′ has degree at most 2. To simplify the exposition we assume from now on that the degree
is equal to 1 and so F ′ is the function field of an absolutely irreducible nonsingular curve D′ defined
over Fqk . The inclusion Fqk(C) ↪→ F ′ induces a cover

ψ : D′ → C

of degree 2m.
We assume k is either equal to 2 or odd. Then one has that the Frobenius automorphism φq on

Fqk(C) has an extension to an automorphism φq
′ of F ′ of order k. Define F = F ′φq

′
as fixed field

of φq
′.

Lemma 22.2 The field F is a function field in one variable with field of constants Fq containing
Fq(x) as subfield of index 2m.

The projective curve D corresponding to F has the property that

D · Fqk = D′.

Hence, we are in the situation described at the beginning and the cover ψ induces a homomorphism

φ : Pic0
C → Pic0

D, φ = NF
qk /Fq

◦ψ∗.

The map φ is useful if the subgroup we are interested in is mapped injectively to Pic0
D. For the most

interesting cases Diem [DIE 2003, Theorem 1] shows that this requirement is satisfied.

Proposition 22.3 Assume that k is a prime and that C cannot be obtained by constant field exten-
sion from a curve defined over Fq. Then the kernel of φ contains only points of order 2.

This encourages us to go further and study explicitly the construction of D. In the sequel we assume
k to be prime. We give an affine part of D as an intersection of hyperplanes. Therefore, we take a
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basis (α0, α1, . . . , αk−1) of Fqk as Fq-vector space, where we additionally require
∑k−1

i=0 αi = 1.
We introduce the variables xj , yj for j = 0, . . . , k − 1 by

x =
k−1∑
j=0

αjxj and y =
k−1∑
j=0

αjyj .

By Proposition 7.1, we get a system of equations defining an open affine part Wa of the Weil
restriction WF

qk /Fq
(C) in the affine space A2k by plugging in these expressions for x, y into the

equation defining C.
Define the hyperplanes

Hj : xj = x0

for j = 1, . . . , k − 1, then

Da := Wa ∩
k−1⋂
j=1

Hj

is an affine nonempty open part of the curve D. Thus D can be computed in principle.

Remark 22.4 Up to this point of discussion we did not use that q is even. From now on this will
become crucial.

We have defined the function fields Fqk(Cφq
i

) and their composite field F ′. To determine m we
use Artin–Schreier theory and get that the Galois group of F ′/Fqk(x) is isomorphic to a subspace
U generated by the classes of {f, φq(f), . . . , φk−1

q (f)} of the F2-vector space Fqk(x)/P(Fqk(x)),
where P : z �→ P(z) = z2 + z is the Artin–Schreier operator. Thus m is equal to dimF2(U)

m = dim
{
spanF2

{
f, φq(f), . . . , φk−1

q (f)
}}

.

The genus of the resulting curve will depend heavily on m. In fact we will show that for elliptic
curves and some hyperelliptic curves one has g′ = g2m−1 − 1 or g′ = g2m−1.

To compute m under the additional assumption gcd(d, k) = 1 we observe that U is not only a
vector space over F2 but even a F2[Gal(Fqk/Fq)]-module. The assumption that C is not defined
over Fq implies that U is nontrivial. As φq(y) = y(1) we get that m depends on the length of the
orbit of y.

Hence,
m = κϕ2(k) or m = κϕ2(k) + 1 (22.2)

with some natural number κ = 1, . . . , (k − 1)/ϕ2(k), where ϕ2(k) is the multiplicative order of 2
modulo k.

For Mersenne primes, i.e., primes k of the form 2a − 1, ϕ2(k) = a is minimal. If κ = 1 then the
genus of D can be as low as g2ϕ2(k) = gk which is minimal according to (22.1).

The Mersenne primes in the cryptographically important range are

3, 7, 31, and 127.

For these primes some curves may allow κ = 1 and, hence, the transfer will lead to a probably
easier problem. For k = 3 it is possible to find curves with g′ = 3g.

A further class of primes k leading to a small ϕ2(k) are the Fermat primes given by k = 22a

+ 1.
In the cryptographically important range they are

3, 5, 17, and 257.
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Explicitly, if k = 5 and g = 1, the minimal genus one can obtain is 7; if k = 17, the minimal genus
is 127, and for k = 257, it is 32768. For the latter two cases, g′ is already quite high in relation to
k.

In the literature [DIE 2001, GAHE+ 2002b, MEQU 2001, THÉ 2003b] one finds examples of
curves C and fields Fqk with small κ and ϕ2(k) and, hence, of examples where the transfer leads to
a curve of relatively small genus.

The integer m was determined such that F ′ is defined by Fqk(C), . . . ,Fqk

(
Cφm−1

q
)
. An interest-

ing special case is that D is hyperelliptic. In this case one can use the highly optimized arithmetic in
its divisor class group, and the index-calculus methods for computing the discrete logarithm in these
groups are well analyzed. (But see Remark 22.8.) So it seems worthwhile to look for conditions
which yield that D is hyperelliptic.

We recall that we have to find a subfield L of F ′ of degree 2 such that L is rational over Fqk .
We give a sufficient condition for this and show how the proof works. An additional benefit is

that one can also easily compute the genus of D′ and hence of D by using the explicit generation of
the rational subfield. The field F is then obtained as the fixed field of the Frobenius.

Proposition 22.5 Let C/Fqk with k odd be a nonsingular hyperelliptic curve of genus g given by
an equation

C : y2 + y = f(x) (22.3)

with f(x) = (αx + β) +
u(x)
v(x)2

, β ∈ Fqk , α ∈ Fqk �Fq, u(x), v(x) ∈ Fq[x], deg(u) � 2g + 1
and deg(v) � g.

Then D′ is hyperelliptic of genus g2m−1 − 1 or g2m−1.

Remarks 22.6

(i) Note that these conditions are always satisfied for elliptic curves. The original paper
[GAHE+ 2002b] gives an explicit description of the equation that is a special case of
the result given below.

(ii) Thériault [THÉ 2003b] shows which genus is assumed depending on conditions on u
and v.

The crucial step for establishing this result is the explicit construction of L. This field is constructed
as composite of fields Li of index 2 in Fqk(C) ·Fqk

(
Cφi

q
)
. Since Fqk

(
Cφi

q
)

is a quadratic extension
of Fqk(x) with equation

y(i)2 + y(i) = φi
q(αx + β) +

u(x)
v(x)2

we get by Artin–Schreier theory that Li is defined by

t2i + ti = (αx + β) +
u(x)
v(x)2

+ φi
q(αx + β) +

u(x)
v(x)2

= (αx + β) + φi
q(αx + β)

for ti = y + y(i) and, hence, has genus 0.
Taking the composite L of these L1, . . . , Lm−1 and following the same procedure we obtain that

L is a rational extension of Fqk with [L : Fqk(x)] = 2m−1. This dependence can be made explicit
by expressing L = Fqk(c) with x(c) = λ−1 +

∑m−1
i=0 λic

2i

, with λi ∈ Fqk , λ0, λm−1 �= 0.
Inserting this expression for x in the definition of Fqk(C), we get an equation

y2 + y = f̃(c)

from which one can read off the genus. As k is assumed to be odd, the fixed field under the Frobenius
has the same genus and one can obtain F from F ′.
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For curves C given by an equation of the type (22.3) we can explicitly give the equation of the
resulting curve. Let minα(z) be the minimal polynomial of α in φq , i.e., minα(φq)(α) = 0 and one
additionally requires minα(φq)(1) = 0. Furthermore, let µ ∈ Fqk be such that TrF

qk /Fq
(µ) = 1

and let Fqk = F2(θ). We now give the algorithmic description taken from [THÉ 2003b] of how to
obtain D explicitly.

Algorithm 22.7 Weil descent of C via GHS

INPUT: The curve C : y2 + h(x)y = f(x) + (αx + β)h(x)2, of genus g with f(x), h(x) ∈
Fq, β ∈ Fqk , α ∈ Fqk �Fq, deg(f) � 2g + 1, deg(h) � g, and Fq = F2d .

OUTPUT: The curve D : ỹ2 + h̃(c)ỹ = f̃(c).

1. for i = 0 to k compute φi
q(α) as expression over F2

2. compute minα(z) and m ← deg
`
minα(z)

´

3. ν ← `
minα(θ2d)/(θ2 − 1)

´
(β)

4. if TrF
qk /F2(β) = 0 then νβ ← ν

5. else u(φq) =
φk

q−1

minα(φq)
and νβ ← ν −

TrF
qk /F2

(β)

u(φq)(1)

6. find 0 � i � k − 1 with TrF
qk /Fq (θi) �= 0 and set µ ← θi

TrF
qk /Fq

(θi)

7. for i = 1 to m − 1 do γi ← φi
q(α) − α and δi ← φi

q(β) − β

8. for i = 1 to m − 1 do

9. εi ← γi and ρi ← δi

10. for j = i + 1 to m − 1 do γj ←
“

γj

εi

”1/2

−
“

γj

εi

”
and δj ← δj − ρiγj

εi

11. sm−1 ← c

12. for i = m − 2 down to 0 do

13. si ← 1
εi+1

`
s2

i+1 − si+1 − ρi+1

´

14. express s0(c) = λ−1 +
P

λic
2i

15. λ̃ ←Pk−1
i=0 φi

q(µ)
Pi−1

j=0 φj
q(φq(λ0)νβ) and c ← 1

λ0
(c̃ − λ̃)

16. x(c̃) ← s0(c̃) and z(c̃) ← s1(c̃), h̃(c̃) ← h(x(c̃))

17. f̃(c̃) ← f
`
x(c̃)

´
+
`
TrF

qk /Fq (µ2α)x(c̃) + TrF
qk /Fq (µ2β)

´
h̃(c̃)2

18. f̃(c̃) ← f̃(c̃) +
`Pk−1

i=0 φi
q(µ

2 − µ)
Pi

j=0 φj
q(s1(c̃))

´
h̃(c̃)2

19. return D : ỹ2 − h̃(c̃)ỹ = f̃(c̃)

To actually transfer the discrete logarithm problem from JC(Fqk) to JD(Fq) one first uses x = x(c̃)
to embed Fqk(C) into F ′ = LFqk(C) and then the norm down to Fq(D).

Remark 22.8 If one gives up the restriction that the resulting curve D should be hyperelliptic,
one does not need curves of the form (22.3). Nevertheless the transfer of the discrete logarithm
problem can be very efficient. In fact, new results of Diem [DIE 2005] motivate that in many cases
the index-calculus method will be more effective if D is not hyperelliptic. The reason is that its
efficiency depends on the degree of plane models of D, and this degree is � g + 1 for generic
curves but for hyperelliptic curves in canonical form it is 2g + 1 or 2g + 2.

Menezes and Qu [MEQU 2001] give a complete study of all fields F2d for primes d ∈ [100, 600]
stating the minimal m that could occur for an elliptic curve over F2d . Furthermore, they also con-
sider the finite field F2155 , which had been proposed to offer computational advantages for the field
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arithmetic (cf. Chapter 11). The genus of the resulting curve D is given by 2m or 2m − 1. This
study is extended in [MAME+ 2002] to composite d in the same interval.

Galbraith, Hess, and Smart [GAHE+ 2002a] extend the GHS method to more curves over the
same field by additionally applying isogenies of small degree. This shows that more curves allow D
to have comparably small genus but still the fraction is negligible (about 233 out of the 2156 isogeny
classes for elliptic curves over F2155). Hess [HES 2003] considers Weil descent to nonhyperelliptic
curves and bounds the genus of the resulting curve. Especially for the field F2155 he shows that
around 2123 isogeny classes of elliptic curves E/F2155 lead to a curve D such that the discrete
logarithm in JD(F25) can be computed faster than on JC(F2155 ).

In [METE+ 2004] the authors consider Weil descent as a transfer of the discrete logarithm prob-
lem of an elliptic curve over a composite field F2d where d is divisible by 4 or 5. Furthermore, they
look at F2161 = Fq7 with q = 223.

Remark 22.9 Hess [HES 2003] and Thériault [THÉ 2003b] study Weil descent on general Artin–
Schreier curves defined by an affine equation of the form

yp − y = f(x), f(x) ∈ Fqk(x) and q = pd.

In fact, most results stated here for p = 2 hold in more generality.

22.3.3 Odd characteristic

In principle the same approach can be taken in the case of odd characteristic. However, the resulting
field F ′ will rarely have a subfield rational over Fqk . The background of the generalization is
presented in [DIE 2001] and [DIE 2003]. Thériault [THÉ 2003c] studies for which fields and types
of equation one obtains that D is of the same type as the original curve C.

For our exposition we concentrate on the case that Fq = Fpd with p odd and that C/Fqk is
hyperelliptic of genus g given by an affine equation of the form

C : y2 = f(x), f(x) ∈ Fqk [x] and deg(f) = 2g + 1.

Like for even characteristic one needs a suitable extension of the Frobenius automorphism φq from
Fqk/Fq to an isomorphism on Fqk(C) into its algebraic closure. We extend φq to an automorphism
of Fqk(x)/Fq by requiring φq(x) = x and φq(y) = y(1) such that the following equation is satisfied

Cφq : y(1)2 = φq

(
f(x)

)
.

The field Fqk(Cφq) := Fqk(x)[T ]/
(
T 2 − φq

(
f(x)

))
is the function field of a hyperelliptic curve

Cφq with rational subfieldFqk(x). Let F ′ be the composite of Fqk(C),Fqk

(
Cφq

)
, . . . ,Fqk

(
Cφk−1

q
)
.

One obtains that

[F ′ : Fqk(x)] = 2m with m = dimF2(U),

where U is an F2-vector space generated by the images of φi
q(f), 0 � i < k in F∗qk(x)/F∗qk(x)2. In

odd characteristic we are working in a Kummer extension and, hence, the Artin–Schreier operator
is replaced accordingly by considering functions up to squares. It is possible to obtain upper and
lower bounds on the genus g′ of the function field F ′. We denote by F the subfield of F ′ fixed
under the operation of φq .
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Let r be the number of places in Fq(x) that ramify in FqF . Since all ramification orders are equal
to 2, and hence the ramification is tame, the Hurwitz genus formula 4.110 yields

2g′ − 2 = −2 × 2m + r × 2m−1

and so
g′ = 2m−2(r − 4) + 1. (22.4)

For prime k and elliptic curves E it is shown in [DIE 2003]:

• If k = 2, 3, 5, 7 there exists an elliptic curve E over Fqk such that g = k. If k = 2 or 3,
E can additionally be chosen such that F is hyperelliptic.

• If k � 11 and qk � 2160, then qg � 25000 and thus the discrete logarithm problem in
JE(Fqk) is transferred to a far larger group.

It follows that the GHS algorithm in odd characteristic transfers the discrete logarithm problem to
one that is harder to solve if the extension degree is different from 3, 5, or 7.

Extending this work, it is shown in [THÉ 2003b] that k = 2 and k = 3 are the only degrees of
extension leading to a hyperelliptic curve D. Explicitly the following theorem is shown:

Theorem 22.10

1. Let

C : y2 = (x − a)h(x) = (x − a)
2g∑

i=0

hix
i, hi ∈ Fq and a ∈ Fq2 �Fq.

Then the Weil descent gives rise to a hyperelliptic curve of genus 2g

D : v2 = (a − φq(a))2g+3s(u)
2g∑

i=0

hi

(
a
(
u − φq(a)

)2 − φq(a)(u − a)2
)i

s(u)2g−i,

where s(u) =
(
u − φq(a)

)2 − (u − a)2.

2. Let
C : y2 = (x − a)h(x), h(x) ∈ Fq[x] and a ∈ Fq3 �Fq.

Then the Weil descent gives rise to a hyperelliptic curve over Fq of genus 4g + 1, which
can be computed explicitly in the coefficients of h and depending on the class of q
modulo 12.

3. Let
C : y2 = (x − a)(x − φq(a))h(x), h(x) ∈ Fq[x] and a ∈ Fq3 �Fq.

Then the Weil descent gives rise to a hyperelliptic curve over Fq of genus 4g − 1, which
can be computed explicitly in the coefficients of h and depending on the class of q
modulo 12.

We refer to the paper for details and proofs. If one is willing to give up the hyperellipticity of the
resulting curve, the transfer is useful for a larger class of curves. In [DIE 2003] one finds that for

C : y2 = (x − a1)(x − aq
1)(x − a2)(x − aq

2) · · · (x − ag+1)(x − aq
g+1), (22.5)
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where the a1, a
q
1, . . . , ag+1, a

q
g+1 ∈ Fq3 �Fq are pairwise distinct, the resulting function field

F ′/Fq3 has genus 3g. It does not contain a rational subfield but the fixed field of the Frobenius
φq has degree 4 over Fq(x).

22.3.4 Transfer via covers

In Section 7.4.3 we have described a method of transferring the discrete logarithm from a subgroup
of the Jacobian of a curve C over Fqk to the Jacobian of a curve D defined over Fq by using covers
in a more general way than is done in the GHS algorithm. In particular, it is not necessary that the
curve C is not defined over Fq; the “twist,” which ensures that the transfer map is injective on the
interesting part of the divisor group is obtained by the cover map, which is not defined over Fq.

Instead of following the Weil descent strategy as extended from the GHS method, we take a more
theoretical approach and study which genera g′ could occur for D/Fq, a cover of C/Fqk , depending
on k and g. It may then be possible to construct a curve C that actually assumes these parameters.
In fact, the example presented at the end of the previous section was constructed this way.

We first show how this method works in the GHS situation for curves defined over Fqk that are
not defined over a subfield. Then we consider transfers via covers for trace zero varieties. Here, it
is important that the method applies also to curves defined over a subfield.

22.3.4.a The GHS situation

As in the previous section, we assume that the curve C/Fqk is not defined over a subfield. We use
the notions developed in the GHS method. Our main objective is to study systematically how the
Galois group Gal(Fqk/Fq) operates on the branched places of FqkF ′/Fqk(x), where like before F ′

is the composite of Fqk

(
Cφi

q
)
, 0 � i < k. As C is not defined over a proper subfield of Fqk , at least

for one root of f(x) less than the whole orbit is contained in the branch points. Let r � 2g + 3 be
the number of branched places over the algebraic closure. The dimension m is as defined above and
can be explicitly obtained from the information on the orbits of the branch points.

Example 22.11 To demonstrate the method we prove the claim stated about curve (22.5). The cycle
pattern is given by

(110)(110) . . . (110),

stating that ai and φq(ai) are contained as branch points while φ2
q(ai) is not. Here, r = 3g + 3

while the matrix ⎡
⎣ 1 0 1

1 1 0
0 1 1

⎤
⎦

obtained for each of the orbits has rank m = 2. Therefore, by (22.4) one obtains

g′ = 2m−2(r − 4) + 1 = 20(3g + 3 − 4) + 1 = 3g

as stated.

A systematic study of all possible factorization patterns depending on k and g results in the follow-
ing table, which states minimal r and m and hence (lower) bounds on g′.
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g k Tuples r m g′

1 2 (1)(1)(1)(10) 5 2 2
3 (110)(110) 6 2 3
4 (1)(1110) 5 4 5
5 (11110) 5 4 5
7 (1110100) 7 3 7

2 2 (1)(1)(1)(1)(1)(10) 7 2 4
3 (110)(110)(110) 9 2 6
4 (1110)(1110) 8 3 9
5 (1)(111110) 7 5 25
7 (1111110) 7 6 49

3 2 (1)(1)(1)(1)(1)(1)(1)(10) 9 2 6
3 (110)(110)(110)(110) 12 2 9
4 (1)(1)(1)(1)(1)(1110) 9 4 21
5 (11110)(11110) 10 4 25
7 (1110100)(1110100) 14 3 21

By these methods and extensions to the case of k = 4, [DIE 2001, DISC 2003] derive the following
table. With the exception of the entry g = 2, k = 4 (marked by ∗) one finds curves C attaining the
bounds.

g\k 2 3 4 5 7 11

1 2 3 5 5 7 � 1793
2 4 6 9∗ 25 49 � 1793
3 6 9 21 25 21 � 1793

22.3.4.b Transfer by covers for trace zero varieties

In Section 7.4.2 and Section 15.3 we introduced trace zero varieties of elliptic and hyperelliptic
curves. Let C be a hyperelliptic curve of genus g defined over Fq and k be a positive integer. The
Fq-rational points of the trace zero variety JC,0 of the Jacobian of C with respect to the extension
Fqk/Fq is isomorphic to the kernel G of the trace map from Pic0

C·F
qk

−→ Pic0
C , i.e.,

G := {
__
D ∈ Pic0

C·F
qk

|
__
D + φq(

__
D) + · · · + φk−1

q (
__
D) = 0}.

For applications it is especially interesting to study the case that k is small and q is a prime p.
The difference to the GHS method lies in the fact that C is defined over Fq and thus the original

method fails. The way to overcome this problem is to construct a twist of C that is defined over Fqk

but not over Fq.

Construction of the twisted cover

Let ψ : D → C be a cover defined over Fq, and suppose that D has an automorphism τ of order
k, such that ψ ◦ τ �= ψ. Let Dτ denote the twist of D over the extension Fqk/Fq with respect to
τ . (Note that D · Fqk � Dτ · Fqk .) In [DIE 2001, Theorem 9] it is proved that under some mild
conditions the kernel of the map

JC,0(Fq) ↪→ Pic0
C·F

qk

ψ∗
−→ Pic0

Dτ

NF
qk /Fq

−→ Pic0
Dτ
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does not contain a subgroup of large prime order. If the genus of D is not much bigger than (k − 1)
times the genus of C, then index calculus algorithms on Pic0

Dτ are more efficient than square root
algorithms on G for solving the discrete logarithm problem.

To find such curves D we again use the theory of covers of the projective line with given rami-
fication type. For simplicity assume from now on that k is a prime number. Assume that there is
a rational function f on C of degree k. Take the Galois closure F of the function field of C over
Fq(f). The corresponding curve D covers C and has the Galois group of F/Fq(f) as its group of
automorphisms. By construction this group has cycles τ of length k with τ ◦ ψ �= ψ, as required.

So, we have to find suitable functions f such that the genus of D is small. The first step is
to do this over Fq . One looks for tamely ramified covers and uses again the theory of Hurwitz
spaces as in the classical case over the complex numbers. The background is delivered by the
theory of monodromy groups. This allows us to study whether “geometrically” suitable covers
exist. It remains to find the definition fields for these covers and, last but not least, to construct them
explicitly. This is done in [DISC 2003].

Results for small extension degrees

Here we consider small degrees of extension as proposed in Section 15.3 to give a complete study
of which genera can occur depending on properties of the curve.

Example 22.12 (Case k =k =k =k =k =k = 3 and g =g =g =g =g =g = 2) Take k = 3 and let C be any curve of genus 2. Take a
point P ∈ C(Fq), and take f as function on C, which has a pole at P of order 3, and which is
holomorphic everywhere else. The Galois group is the symmetric group S3, D covers C of degree
2, and the genus of D is 6.

It is interesting to note that there is a kind of converse to this statement following from results in
[HOW 2001, Theorem 3.3].

Let C/Fq be a curve of genus 2 and assume that 3 does not divide Pic0
C·Fq6

. Then by the cover
approach the discrete logarithm in JC,0 is transferred to discrete logarithms in Jacobians of curves
of genus at least 6, except for very special cases.

Now we specialize the (arithmetical) conditions for C. Let w : C → C denote the hyperelliptic
involution. If Pic0

C has a divisor class
__
D of order 3 with representative P1 + P2 − 2P∞, where P1

and P2 are in C(Fq), then P1−w(P2) has order 3 in Pic0
C . Hence, there is a function f with divisor

3P1 − 3w(P2). Generically, this f has the required ramification. The corresponding cover curve D
has genus 5.

By replacing C by a quadratic twist one can do this construction in the case that the point
__
D is

defined over Fq6 .
Diem and Scholten construct an explicit family of curves C, for which the covering curve C of

genus 5 is hyperelliptic.
Specializing even more and using Kummer theory one can construct in an explicit way a family

of hyperelliptic curves of genus 2 such that the cover curve D has genus 4.

Example 22.13 (Elliptic curves) We are now interested in covers of elliptic curves E, which can
be used to transfer the discrete logarithm of the trace zero varieties to Jacobian varieties of small
dimension. For k = 3 the dimension of E0 is 2 and so generic methods of computing discrete
logarithms have complexity O(q) (cf. Chapter 19), and, hence, a transfer cannot lead to a variety in
which the DLP is easier to solve.

The first interesting case is k = 5. One would like to get a cover curve of genus 4. By the
described method this can be done only for the curve

E : y2 = x3 + 3165x− 31070.

Next assume k = 7. Assume moreover that q is prime to 6. Then one can show that there exists a
cover D of genus 8 for all elliptic curves E defined over the algebraic closure of Fq . Until now, no
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explicit example is known, but for many q and many elliptic curves E/Fq this cover will be defined
over Fq. In these cases there is a very effective transfer of discrete logarithms on E0, the trace zero
variety of E with respect to Fq7 . This shows that extensions of degree 7 should be avoided in the
design of discrete logarithm systems on elliptic curves.

22.3.5 Index calculus method via hyperplane sections

The previous sections used Weil descent to construct a curve D such that the discrete logarithm
problem on JC(Fqk) can be transferred to the discrete logarithm problem in JD(Fq). Such a transfer
is useful if the resulting problem is easier to solve. Usually, index calculus methods (cf. Chapter 21)
are used in JD(Fq). If one wants to apply index-calculus methods in the group of rational points of
elliptic curves over finite fields without transfer, one has to find an appropriate factor base. It seems
to be impossible to do this by lifting techniques analogously to the case of discrete logarithms in
finite fields. Diem [DIE 2004] and Gaudry [GAU 2004] found (independently) a first approach to
overcome this difficulty in the case that the curve is defined over Fqk with k > 1. They suggest to
intersect the Weil descent of JC with the hyperplanes xi = 0, where i = 1, . . . , k − 1 in Gaudry’s
approach and i ∈ I ⊂ {0, 1, . . . , k−1} in Diem’s. These elements constitute the factor base for the
index calculus method.

To implement the index calculus algorithm with this factor base one needs an efficient method
for membership testing. In the case of elliptic curves this is given by the summation polynomials
introduced by Semaev [SEM 2004].

Definition 22.14 Let E : y2 = x3 + a4x + a6 be an elliptic curve over Fqk . The summation
polynomials fn are defined by the following recurrence. The initial values for n = 2 and n = 3 are
given by

f2(x1, x2) = x1 − x2,

and

f3(x1, x2, x3) = (x1−x2)2x2
3−2

(
(x1+x2)(x1x2+a4)+2a6

)
x3+

(
(x1x2−a4)2−4a6(x1+x2)

)
,

and for n � 4 and 1 � j � n − 3 by

fn(x1, x2, . . . , xn) = Resx

(
fn−j(x1, x2, . . . , xn−j−1, x), fj+2(xn−j , . . . , xn, x)

)
.

Semaev shows that fn is uniquely defined in spite of the redundancy in the definition. One can check
that fn(x1, x2, . . . , xn) = 0, with xi ∈ Fqk , if and only if there exists an n-tuple (y1, y2, . . . , yn),
with yi ∈ Fqk , such that Pi = (xi, yi) ∈ E(Fqk) and

P1 ⊕ P2 ⊕ · · · ⊕ Pn = P∞.

The polynomials fn are symmetric and have degree 2n−2 in each variable.
The methods of Gaudry and Diem differ in the choice of the factor base. We describe both in the

setting of elliptic curves as there the summation polynomials are already determined even though
the method can be applied in more generality. Gaudry also gives the relation to the standard Weil
descent method and shows that for hyperelliptic curves this approach corresponds to the standard
index calculus method with factor base given by linear polynomials.

22.3.5.a Choice of the factor base by Gaudry

Gaudry’s [GAU 2004] method is applicable for small k � 3 only, as the (k + 1)-th summation
polynomial is involved in a Gröbner basis computation and the complexity of this step depends
heavily on the degree.
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Let E be an elliptic curve defined over Fqk = Fq(θ) and not over a proper subfield and put

x =
k−1∑
i=0

xiθ
i and y =

k−1∑
i=0

yiθ
i.

Assume that the intersection of an open affine part Wa of the Weil restriction WF
qk /Fq

(E)(Fq) with
the hyperplanes Hj : xj = 0 for j = 1, . . . , k−1 is an irreducible curve (this is the case generically
and can otherwise be reached by a different choice of the basis). Then one can choose the factor
base

F = {P ∈ E(Fqk) | P = (xP , yP ), xP = xP,0 ∈ Fq, y ∈ Fqk}.

Like in the usual index calculus algorithm for computing the discrete logarithm of Q ∈ 〈P 〉 one
computes combinations

R = [mP ]P ⊕ [mQ]Q

with random integers mP , mQ, and hopes that R can be expressed as sum of points in F . Here we
use that the arithmetic on WF

qk /Fq
(E)(Fq) is inherited from E and apply Weil descent only in the

basic form of sorting the equations according to the powers of θ.
Gaudry suggests to use only such points R that allow a representation as

R = P1 ⊕ P2 ⊕ · · · ⊕ Pk,

with Pi ∈ F . The existence of such a representation can be checked with the (k + 1)-th summation
polynomial which gives rise to an equation of the form

k−1∑
i=0

ψi(xP1,0, xP2,0, . . . , xPk,0)θi = 0,

where the ψi depend on R. This is a system of k equations in k unknowns which all have to hold
individually. Before applying Buchberger’s algorithm one should symmetrize the equations. In
case one finds a solution in the symmetric expressions one checks whether this in fact gives rise
to a decomposition with xPi,0 ∈ Fq and (finally) in F . As soon as one has more equations than
unknowns, sparse linear algebra techniques allow to compute the discrete logarithm. Note that each
row has only k nonzero entries.

Remarks 22.15

(i) The complexity of this algorithm is O(qk− 2
k ), where the hidden constants depend (ex-

ponentially) on k. Gaudry proposes this method for k = 3 or k = 4 only and shows
that for E defined over Fq3 , the discrete logarithm problem can be solved in time
O(q4/3) � O(q1.33). If E is defined over Fq4 , then the discrete log problem can be
solved in time O(q1.5). These complexities are no better than those resulting from Weil
descent of curves over Fqk as explained in the previous sections. But there are only a
few curves leading to such a small genus of D while Gaudry’s method applies to all
curves.

(ii) We point out that this algorithm does not work as described if E is defined over a proper
subfield Fqk′ as then all combinations of points in F lead to points in E(Fqk′ ) which is
usually outside of the subgroup of large prime order one is working in. A way out is to
make a different choice of the factor base by putting a different xi �= 0.
Like with the standard Weil descent approaches one can also use an isogenous curve
defined over Fqk .
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22.3.5.b Choice of the factor base by Diem

Diem’s version [DIE 2004] uses a larger factor base by observing that there is no need to allow
only one nonzero coordinate of x. Let c � k be an integer and put m =

⌈
k
c

⌉
and l = mc − k.

The x-coordinates of points in the factor base lie in an m-dimensional subspace of Fqk over Fq. We
describe a simplified version and fix a polynomial basis Fqk = Fq(θ) and a subset I ⊂ {0, 1, . . . , k−
1} of cardinality m. We put

F = {P ∈ E(Fqk) | P = (xP , yp), xP =
∑
i∈I

xP,iθ
i, xP,i ∈ Fq, yP ∈ Fqk}.

To guarantee that a sufficiently large factor base can be obtained by this method in O(qm) field oper-
ations, Diem needs to make a random choice averaging over all bases of m-dimensional subspaces
and put the fixed coordinates to some randomly chosen values. We refer to his paper for details.

For c < k he also uses a second factor base F ′ ⊂ F for which the x-coordinates lie in an
(m − 1)-dimensional space over Fq. He looks for relations

R = [mP ]P ⊕ [mQ]Q = P1 ⊕ P2 ⊕ · · · ⊕ Pc,

such that P1, . . . , Pl+1 ∈ F ′ and Pl+2, . . . , Pc ∈ F . To check for the existence of such a splitting,
the (c+1)-th summation polynomial is used and k equations are found. Unlike Gaudry he suggests
to perform this Gröbner basis computation once symbolically involving the k coefficients defining
xR. The task of checking whether a given R allows such a decomposition is then simplified to
checking whether the k equations can be satisfied. To obtain a relation one finally needs to check
whether the xPi lead to a point defined over Fqk or Fq2k . In the latter case the relation is rejected.

By the choice of m and l he has k equations defining the k − 1 variables which determine the
elements in F ′ and F and this is used in the analysis of the algorithm (the case c = k is already
considered in the previous section). His paper considers the complexity of the algorithm for various
choices of c in relation to k.

The asymptotic result found by Diem (heuristic since one has to make a very plausible assump-
tion) is stated in the following proposition.

Proposition 22.16 Let 0 < a < b and ε > 0 be fixed real numbers and put D = 4b+ε
a3/4 · Assume

that a lg q � k � b lg q. Then there exists an algorithm which computes the discrete logarithm in
E(Fqk) with O

(
2D(k lg q)3/4)

field operations in Fq, where the constants depend on a, b, ε.

For the proof and more details we refer to [DIE 2004].
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We want to design a public-key cryptosystem that enables us to exchange keys, sign and authenticate
documents and encrypt and decrypt (small) messages. The system should rely on simple protocols
that are based on secure cryptographic primitives with a well understood mathematical background.
The implementation rules should be clear and easy to understand.

By using the results obtained in the previous chapters, we hope to convince the reader that these
criterions can be realized quite satisfyingly by systems based on the discrete logarithm in finite
groups G of prime order �.

The purpose of this chapter is to serve as a digest of the other chapters. To this aim we briefly
state the main results and provide many references to the much more detailed descriptions in the
book.

23.1 Candidates for secure DL systems

The protocols based on discrete logarithms are described and discussed in Chapter 1. It is obvious
that the complexity of computing discrete logarithms in the chosen group is a key ingredient for
the security of the system. For actual use in practice, the DLP is used as a cryptographic primitive
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in protocols. In this section we shall introduce examples for groups that are expected to be good
candidates for this.

23.1.1 Groups with numeration and the DLP

For the convenience of the reader we shall repeat the essential notions from Chapter 1. Let (G,⊕)
be a group of order �, where � is a prime number. Let P, Q ∈ G be two elements. The discrete
logarithm in G of Q with respect to P is a number n = logP (Q) with

Q = [n]P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n times

.

The number n is determined modulo �. To compute n (for randomly given (P, Q)) is the discrete
logarithm problem in G (the DLP in G).

To enable this computation for a computer, we have to assume that G is given in a very concrete
way. So, we shall assume that the elements of G are given as bit-strings of length O

(
lg(�)

)
. The

assumption used here is that G is a group with numeration. For the exact definition of this notion
we refer to [FRLA 2003].

Furthermore, for estimating the hardness of the discrete logarithm problem, the instantiation of
G is very important. The fact that the representation plays a key role for the complexity of the
computations of discrete logarithms is demonstrated by two examples.

Up to isomorphisms there is only one group with � elements.
As a first representation, we choose (G,⊕) = (Z/�Z, +) with natural numeration

f : Z/�Z → {1, . . . , �}
m + �Z �→ rm such that rm ≡ m (mod �).

The discrete logarithm of m1 + �Z with respect to m2 + �Z is computed in O(lg �) bit operations
(cf. Chapter 10).

In Example 1.13 we choose another representation for such a group. We find G embedded in
the multiplicative group of the finite field Fp as the group of roots of unity of order �, where p is a
prime such that � divides p − 1. In this case the complexity of the DLP is subexponential in p (cf.
Chapter 20).

We take this opportunity to recall our measure for the complexity of algorithms introduced in
Chapter 1 and used many times.

Let N be a natural number. Define

LN (α, c) := exp
(
(c + o(1))(ln N)α(ln ln N)1−α

)
with 0 � α � 1 and c > 0. LN(α, c) interpolates between polynomial complexity for α = 0 and
exponential complexity for α = 1. For α < 1 the complexity is said to be subexponential.

So the second numeration makes G to a group in which the DLP is much harder than in the first
example but not optimal, i.e., not exponential in �. More details on computing discrete logarithms
using the index calculus method can be found in Chapter 20. To make related cryptosystems secure
one has to take p rather large (the bit-size of p should be at least 1024).

23.1.2 Ideal class groups and divisor class groups

All DL-based cryptosystems applied today use as groups the ideal classes of convenient (commuta-
tive) rings O with unit element and without zero divisors. Using a class group requires that in the
scalar multiplication some notion of reduction of ideals is available and that the groups are chosen
in a manner to guarantee that ideal classes can be (almost) uniquely represented by reduced ideals.
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23.1.2.a Mathematical background

Let O be a commutative ring with unit element and without zero divisors. The quotient field K of
O consists of all fractions f/g with f, g ∈ O with addition and multiplication defined by rules one
is used to follow in Q.

A fractional ideal is a set A ⊆ K such that there exists an element f ∈ O, so that fA is an ideal
in O. The multiplication of fractional ideals is defined and associative. A first criterion to choose O
is that the fractional ideals form a group called the ideal group I(O) of O.

The group I(O) will have no elements of finite order. This changes if we introduce the following
equivalence relation: two fractional ideals A, A′ are equivalent if there exists an element f ∈ K
such that A = fA′.

The resulting group is denoted by Cl(O), the ideal class group of O. The neutral element in the
class group consists of the group of principal ideals Princ(O) and so Cl(O) = I(O)/Princ(O).
The next criterion to choose O is that Cl(O) should have many elements of finite order. In fact, in
all existing systems Cl(O) is a finite group.

This advantage has a price. As usual one computes in quotient structures like Cl(O) by using
representatives (in our case, ideals) of the classes, composes these representatives, and then forms
the class of the result. Since there are infinitely many elements in an ideal class, this does not lead
to an algorithm if one does not have more information. There are two ways out of this difficulty.

1. It is possible to find a distinguished element in each ideal class (respectively a finite
[small] subset of such elements).

2. It is possible to define “coordinates” and addition formulas directly for elements of
Cl(O).

The first possibility can be used if we have efficient “reduction algorithms” that compute the distin-
guished element in ideal classes, and the second possibility can be realized if there is a geometric
background of Cl(O).

Most interesting cases are those for which both methods can be used!

23.1.2.b Realization in number fields

Having in mind the requirements stated above, it is no wonder that the first suggestions for systems
of discrete logarithms based on ideal classes came from number theory [BUWI 1988]. The highly
developed “computational number theory” based on Minkowski’s geometry of numbers made it
possible to compute efficiently with ideal class groups of the ring of integers OK of number fields
K that are finite algebraic extensions of Q. An important special case is that K is an imaginary
quadratic field. In this case already Gauß developed a fast algorithm for computing with ideal
classes. It relies on the identification of these classes with classes of binary quadratic forms. The
distinguished ideals correspond to the uniquely determined reduced quadratic forms. A given form
is transformed into a reduced one by an explicit algorithm using Euclid’s algorithm which runs in
polynomial time.

The disadvantage of these systems is that the index calculus attack is very effective, i.e., the
algorithm based on the principles explained in Chapter 20 has only subexponential complexity. One
uses prime ideals of OK with small norm to build up a factor base for Cl(O).

23.1.2.c Realization in function fields

This motivates us to look for rings O having a similar simple structure as OK but being more
resistant against index calculus attacks. Since the beginning of arithmetic geometry in the last
century, it is well-known and has been often exploited that the ring OCa of regular functions on
a nonsingular irreducible affine curve Ca defined over a finite field Fq is a Dedekind domain with
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finite ideal class group Cl(OCa) and that the arithmetic is analogous to the arithmetic of the ring of
integers in number fields. The quotient field of OCa is the function field (of meromorphic functions)
of Ca and is denoted by K(Ca).

These rings and their ideal class groups are explained in Section 4.4. As size of ideals one uses
their degree, and the theorem of Minkowski about points in lattices is replaced by the Riemann–
Roch theorem, which yields (amongst other results) that in every ideal class in Cl(OCa) there are
ideals contained in OCa with small degree. (For a precise formulation see Section 4.4.6 and es-
pecially Theorem 4.143.) The reader familiar with the geometry of numbers will remark that the
logarithm of the absolute value of number fields is replaced by the genus g of the curve Ca, respec-
tively of its function field K(Ca) (cf. Definition 4.107). Already at this stage it follows that the
group Cl(OCa) is at least as good as a candidate for groups, in which the group operation can be
executed effectively, as the rings of integers in number fields.

But we can go further because of the geometrical background of OCa . The prime ideals in OCa

are closely related to points on Ca. To see this one takes the points P on Ca with coordinates
in the algebraic closure Fq of Fq together with the operation of the Galois group GFq of Fq (cf.
Section 4.4.4). The resulting Galois orbits GFq ·P of points correspond one-to-one to the prime
ideals (always taken differently from {0}) of OCa consisting of functions f ∈ OCa vanishing in
P . By taking the order of vanishing of f at P we define a valuation vP on OCa , and hence on
K(Ca), whose valuation ring contains OCa . Its equivalence class is called a prime divisor p of
K(Ca) corresponding to GFq·P .

One of the major advantages of the geometric theory of curves over finite fields is that it is very
easy to compactify the affine curve Ca by going to its projective closure. In principle this is done
by homogenizing the equations defining Ca. The procedure is explained in Section 4.22. We find a
projective curve C containing the affine curve Ca and the difference set of points consists of finitely
many “points at infinity.” The Galois orbits of these points define, as above, equivalence classes of
valuations of K(Ca) and hence divisors p. They correspond one-to-one to the equivalence classes
of valuations (and hence to prime divisors) of K(Ca) which do not contain OCa .

Because of the compactness of C the only functions that are regular at all points of C are con-
stants. To study the arithmetic of C one has to introduce the divisor group of C (see Section 4.4.2)
replacing the ideal group of OCa . Divisors can be identified with formal sums of points on C
with integers as coefficients. The role of principal ideals is taken by principal divisors (cf. Defini-
tion 4.102) and the resulting quotient group is the divisor class group of degree 0 of C denoted by
Pic0

C . By construction, it is closely related to Cl(OCa) For instance, if there is only one point at
infinity of C then Pic0

C is isomorphic to Cl(OCa) by Proposition 4.140. We shall assume from now
on that this is satisfied. We denote by P∞ this unique point at infinity.

The group Pic0
C is (in a canonical way) isomorphic to the group of rational points of the Jacobian

variety JC of C which is an abelian variety (cf. Definition 4.134) defined over Fq and intrinsically
attached to C. Together with the abstract theory comes a very concrete way to construct JC (up
to birational equivalence): a consequence of the theorem of Riemann–Roch is that in every divisor
class of degree 0 of C, there is a divisor of the form

∑r
i=1 Pi − rP∞ with r � g. Details are found

in Section 4.4.4.

23.1.2.d Conclusion

Beginning with an affine curve Ca and its ring of regular functions OCa we construct the associated
projective curve C. Under the assumption that there is only a single point at infinity we can interpret
Pic0

C , its divisor class group of degree 0, as both — as class group of ideals of the ring OCa , for
which we have an efficient reduction theory, and as an abelian variety. Hence, we have a compact
way to represent its elements and we can introduce coordinates for ideal classes and expect algebraic
formulas describing the group composition in these coordinates.
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Since we have related the ideal class group of OCa to rational points of abelian varieties we can
use their rich structure in general as described in Section 4.3 and especially over finite fields (see
Section 5.2).

For the choice of a ring OCa or equivalently, an affine or projective curve C we have a lot of
freedom compared with the case that the chosen ring is a ring of integers in a number field. The
parameters are

1. the characteristic p of the base field Fp,

2. the degree d of the ground field Fq over Fp,

3. the genus gC = g of the curve C (resp. the function field K(C)).

The number of isomorphism classes of curves of genus g = 1 over Fpd is about pd and for genus
g � 2 it is of size pd(3g−3).

Even more important is that in the geometric case we have a much stronger relation between these
parameters and the expected order of the divisor class group. By Theorem 5.76 of Hasse–Weil we
get

|Pic0
C | ∼ pdg.

So, if � is the desired size of the group of prime order we want to embed into Pic0
C , we have to take

d lg p slightly larger than lg(�)/g.
The explicit construction of the Jacobian variety represented as divisors of degree zero contain-

ing at most g affine points yields that the number of bits needed to represent group elements is
O(dg lg p) = O(lg �).

23.1.3 Examples: elliptic and hyperelliptic curves

In this section we shall apply our general theory to two special families of curves called elliptic
and hyperelliptic curves. The assumption we have made in Section 23.1.2.c that there is only a
single point at infinity implies that the hyperelliptic curves have a rational Weierstraß point. In
Section 4.4.2.b and Chapter 14 we have studied these curves in great detail. We shall repeat their
definition and crucial properties for the convenience of the reader.

23.1.3.a Elliptic curves

An elliptic curve E defined over Fq is a projective absolute irreducible curve of genus 1 with a
rational point P∞. It can be given by an affine Weierstraß equation

Ea : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

If the characteristic is prime to 6 this equation can be transformed to

Ea : y2 = x3 + a4x + a6, with a4, a6 ∈ Fq.

For normal forms and invariants of the curve we refer to Table 4.1.
The ring OEa is Fq[x, y]/(y2 +a1xy +a3y−x3−a2x

2 −a4x−a6). So it is a polynomial order
in Fq(x, y) which has rank 2 over Fq[x].

By Riemann–Roch, we find in each ideal class of OEa a uniquely determined prime ideal MP

of degree 1. It is generated by the two functions x − x1, y − y1 with x1, y1 ∈ Fq corresponding
to the point P = (x1, y1) of E(Fq). The Jacobian of E is isomorphic to E with zero element P∞.
The point P corresponds to the divisor class of P − P∞. Hence the Fq-rational points of E form
in a natural way an abelian group. The addition law can be expressed either by polynomials in the
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homogeneous coordinates of points on E or by rational functions (with the appropriate interpretation
if the point P∞ is involved) in the affine coordinates (x1, y1).

The explicit formulas can be found in great detail in Section 4.4.5 and Chapter 13.

23.1.3.b Hyperelliptic curves

A generalization of elliptic curves are hyperelliptic curves C. These are projective curves of genus
g > 1. We assume that they have a rational Weierstraß point P∞. Then they are determined by
affine equations

Ca : y2 + h(x)y = f(x), with h(x), f(x) ∈ Fq[x], (23.1)

where deg(h) � g and deg(f) � 2g + 1. Hence OCa = Fq[x, y]/
(
y2 + h(x)y − f(x)

)
is a

polynomial order of rank 2 in Fq(x, y).
By Riemann–Roch, we find in each ideal class of OCa an ideal lying in OCa of degree less

than or equal to g. Again we get that Cl(OCa) is isomorphic to Pic0
C , the divisor class group of

degree 0 of C. In the language of divisors we get that in each divisor class of degree 0 there is a
divisor D =

∑r
i=1 Pi − rP∞ where Pi are points on Ca, which are now not necessarily rational

over Fq. If we assume that D is reduced (cf. Theorem 4.143) then D is uniquely determined. For
computations the representation by ideals is most convenient. It leads to the Mumford representation
discussed already in Theorem 4.145, and which we repeat here to give a flavor of how to introduce
“coordinates” for compact presentations of the classes.

Theorem 23.1 (Mumford representation)
Let C be a genus g hyperelliptic curve given as in (23.1). Each nontrivial group element

__
D ∈ Pic0

C

can be represented via a unique pair of polynomials u(x) and v(x), u, v ∈ Fq[x] , where

(i) u is monic,

(ii) deg v < deg u � g,

(iii) u | v2 + vh − f .

Let D ∈
__
D be the unique reduced divisor, i.e., D =

∑r
i=1 Pi − rP∞, where Pi 	= P∞, Pi 	= −Pj

for i 	= j and r � g. Put Pi = (xi, yi). Then the divisor class of D is represented by

u(x) =
r∏

i=1

(x − xi)

and the property that if Pi occurs ni times then(
d

dx

)j [
v(x)2 + v(x)h(x) − f(x)

]
|x=xi

= 0, for 0 � j � ni − 1.

So the polynomials [u, v] can be taken as coordinates of elements in Pic0
C . The group operations

can be computed using this representation as given below in Cantor’s algorithm. Moreover, it is
explained in Section 14.1 how to express the group law in terms of the coefficients of u and v.

Algorithm 23.2 Cantor’s algorithm

INPUT: Two divisor classes
__
D1 = [u1, v1] and

__
D2 = [u2, v2] on the curve C : y2 + h(x)y =

f(x).

OUTPUT: The unique reduced divisor D such that
__
D =

__
D1 ⊕

__
D2.

1. d1 ← gcd(u1, u2) [d1 = e1u1 + e2u2]

2. d ← gcd(d1, v1 + v2 + h) [d = c1d1 + c2(v1 + v2 + h)]
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3. s1 ← c1e1, s2 ← c1e2 and s3 ← c2

4. u ← u1u2

d2
and v ← s1u1v2 + s2u2v1 + s3(v1v2 + f)

d
mod u

5. repeat

6. u′ ← f − vh − v2

u
and v′ ← (−h − v) mod u′

7. u ← u′ and v ← v′

8. until deg u � g

9. make u monic

10. return [u, v]

23.1.4 Conclusion

To design DL-based cryptosystems we have the following results:

• In ideal class groups Cl(O) of orders O in number fields or function fields over finite
fields one can perform the group operation in polynomial time.

• Let O be the ring of regular functions on an affine nonsingular curve Ca of genus g over
a finite field Fq . There is a close connection between Cl(O) and Pic0

C , the divisor class
group of the projective curve associated to Ca. Moreover Pic0

C is equal to the set of
rational points of the Jacobian variety of C. So its order is of size gg.

• If C is an elliptic curve E we have that

Pic0
E 
 Cl

(
Fq[x, y]/(y2 + a1xy + a3y − x3 − a2x

2 − a4x − a6)
)
.

The curve E is isomorphic to its Jacobian variety with P∞ as zero element. The elements
in Pic0

E correspond one-to-one to the rational points E(Fq) and hence can be represented
by bit strings of size O(lg |E(Fq)|) = O(lg q). The addition law described by explicit
formulas can be found in Chapter 13 and is done in O(lg q) bit operations.

• If C is a hyperelliptic curve of genus g with an Fq-rational Weierstraß point P∞ we have
that

JC(Fq) 
 Pic0
C 
 Cl

(
Fq[x, y]/

(
y2 + h(x)y − f(x)

))
,

with h, f ∈ Fq[x] and deg(h) � g, deg(f) = 2g + 1.
Hence, the points in Pic0

C can be given by ideals in Mumford representation and the
addition is done by Cantor’s algorithm. So Pic0

C is a group in which elements can be
represented by bit strings of size O(lg |Pic0

C |) and addition is done in O(lg |Pic0
C |) bit

operations.

Remark 23.3 Obviously the arithmetical properties of elliptic and of hyperelliptic curves are com-
pletely analogous. For this reason we often interpret elliptic curves as “hyperelliptic curves of genus
1” without mentioning it.
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23.2 Security of systems based on Pic0
CPic0
CPic0
CPic0
CPic0
CPic0
CPic0
CPic0
C

In the last section we have seen that ideal class groups attached to elliptic and hyperelliptic curves
lead to groups in which elements have a compact representation and in which the composition law
is computable in polynomial time.

In generic black-box groups of order N , the results by Shoup show that the discrete logarithm
problem cannot be solved in less than O(

√
N). Hence, if only the generic algorithms (cf. Chap-

ter 19) can be used, we can consider the discrete logarithm problem to be hard as they run in time
O(

√
N).

There are also some results showing that the discrete logarithm problem and the Diffie–Hellman
problem on elliptic curves have at least a certain complexity when attacked by means like Boolean
functions or polynomials. However, the results given in [LAWI 2002, LAWI 2003] are much
weaker than expected and can only give an indication on the hardness — only the opposite result
would have catastrophic implications.

We now deal with security issues showing under which conditions there exist attacks that are
stronger than the generic ones.

23.2.1 Security under index calculus attacks

We have stressed the similarity with the case of orders in imaginary quadratic fields and, hence,
the disadvantage: namely, the possibility of computing the discrete logarithm by index calculus
algorithms must be discussed.

In fact, one has seen in Chapter 21 that this type of algorithms works in certain ranges. In the
sequel we briefly present these results.

We recall the result of Gaudry, Enge, and Stein [ENG 2002, ENGA 2002, ENST 2002] which is
strong for large genus g.

Theorem 23.4 For g/ ln(q) > t the discrete logarithm in the divisor class group of a hyperelliptic
curve of genus g defined over Fq can be computed with complexity bounded by

Lqg

(
1
2

,
√

2
((

1 + 1
2t

)1/2 +
(

1
2t

)1/2
))

.

The results of Gaudry [GAU 2000b] and more recently of Thériault [THÉ 2003a] and Gaudry, Théri-
ault, and Thomé [GATH+ 2004] are serious for hyperelliptic curves of relatively small genus (in
practice: g � 9).

There is an index calculus attack of complexity

O
(
g5q2− 2

g +ε
)

with “reasonably small” constants and even for g = 3 and 4 the security is reduced.
The explicit result for g = 4 is: for hyperelliptic curves C of genus 4 defined over Fq there is an

index calculus algorithm that computes the discrete logarithm in Pic0
C with complexity

O
(
q3/2+ε

)
= O

(
|Pic0

C |0.375
)
.

This means that the discrete logarithm is considerably weaker than generically expected.
The explicit result for g = 3 is: for hyperelliptic curves C of genus 3 defined over Fq, there is an

index calculus algorithm that computes the discrete logarithm in Pic0
C with complexity

O
(
q4/3+ε

)
= O

(
|Pic0

C |0.44
)
.
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This shows that asymptotically genus 3 curves are weaker than elliptic curves and even for group
sizes encountered in practice the security is reduced. However, the main application of genus three
curves is over fields of 64 bits using one word on a 64-bit processor or two words on a 32-bit
processor. This setting can easily offer group sizes of 192 bits. So even with some percent less
security, one is above the usual security threshold of working in groups of size 2160.

We stress that these results hold for all curves of that genus, not only for hyperelliptic curves.
The difference appears only in the constants that are smaller for hyperelliptic curves.

23.2.1.a Conclusion

We can summarize our results.

• For curves C of genus g � 4, a direct application of index calculus algorithms to
Cl(OCa) gives a complexity of the DLP that is smaller than the generic one. Hence,
orders related to curves of genus g � 4 or closely related abelian varieties should not
be used as crypto primitives for public-key systems, or, if one has very good reasons for
using them, one has to enlarge the group size considerably.

• The state of the art is: we have only three types of rings O which avoid serious index
calculus attacks and for which addition in Cl(O) is fast enough. These are the maximal
orders belonging to curves of genus 1, 2 and 3. Even for g = 3 one needs to take into
account the group size to compare the complexities of the generic attacks and Thériault’s
large prime variant of the index calculus attack and the more recent double large prime
variants (cf. Section 21.3).

23.2.2 Transfers by Galois theory

In the last section we have studied a “generic” attack to compute discrete logarithms based on ideal
class groups and as a consequence we have to exclude all (not only hyperelliptic) curves of genus
g � 4 from the candidate list. Now we want to show that special curves of genus g � 3 over special
fields can deliver weak DL systems though no direct application of an index calculus algorithm can
be used. The method is to transfer the discrete logarithm problem in the original group in polynomial
time to a group in which index calculus algorithms are efficient. The transfer maps known today are
treated in Chapter 22.

In the following sections we shall always work with a projective absolutely irreducible nonsingu-
lar curve C defined over the finite field Fq .

23.2.2.a Pairings

The first method uses the duality theory of Jacobian varieties.
First look at the special case that � divides q. Then we can transfer Pic0

C in polynomial time into
a subgroup of a vector space of dimension g over Fq, and in this group the discrete logarithm has
complexity O

(
(2g − 1) lg(q)k

)
, where k is a small constant. Hence, one has to avoid this case in

all circumstances.
So assume now that � is prime to q. In Chapter 6 one finds the definition and the mathematical

background of the Tate pairing in the Lichtenbaum version. In Chapter 16 one finds algorithms to
implement the pairing efficiently. The result to be kept in mind is Theorem 6.15. Together with its
corollary it states: let Fq be the field with q elements, � a prime number prime to q and k ∈ N be
minimal with � | (qk − 1).

There is a bilinear map

T� : Pic0
C [�] × Pic0

C·F
qk

→ F∗qk/(F∗qk)�,
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which is nondegenerate on the right side, i.e., for a random element in
__
D ∈ Pic0

C·F
qk

the map

T�,
__
D : Pic0

C [�] → F∗qk [�]

P �→ T�,
__
D(P ) :=

(
T�(P,

__
D)
) qk−1

�

is an injective homomorphism of groups, which has complexity O(k lg q).
As a consequence we get from the results in Chapter 20 the following proposition.

Proposition 23.5 The discrete logarithm in Pic0
C has complexity Lqk

(
1
2

,
√

2
)

and so is subexpo-
nential in qk.

Example 23.6 Assume that k � ln q. Then the complexity to compute the discrete logarithm in
Pic0

C is Lq

(
1
2

,
√

2k
)
.

It is rather easy to avoid curves C of genus � 3 for which a large prime � divides |Pic0
C | and for

which at the same time the corresponding k is relatively small. For elliptic curves we have proved in
Section 6.4.2 a necessary and sufficient criterion for this situation. It turns out that for supersingular
elliptic curves (cf. Definition 4.74) k is always small, namely less than or equal to 6, while for
ordinary random elliptic curves k can be expected to be large. Analogous results hold for curves of
genus g � 3. So, for a cryptographic system with discrete logarithms as crypto primitive, the divisor
class groups Pic0

C of supersingular curves are to be avoided — or, if there is a strong reason for using
them, one has to choose the parameters in such a way that for given k the complexity Lq

(
1
2

,
√

2k
)

is large enough. One of these strong reasons is motivated by the constructive aspects of the Tate
pairing related to the bilinear structure on Pic0

C . A detailed discussion is found in Chapter 24.

23.2.2.b Weil descent

In Section 23.1.2.d we have given a list for parameters of DL systems. By index calculus methods
we have seen that we should restrict the genus to be less than or equal to 3. Because of duality we
have to make sure that for the pair (Fq, �) the minimal number k with � | qk − 1 has to be large
enough.

Now we come to the parameter d with q = pd. Assume that d > 1 and that d0 | d with d0 < d. So
we have a nontrivial operation of the Frobenius φpd0 and we can use Weil descent (see Chapters 7
and 22). The results there give strong indications for the weakness of the discrete logarithm problem
if either d/d0 is small or if d is a prime with the additional property that there is a small number
t with 2t ≡ 1 (mod d). For instance d is not allowed to be a Mersenne prime number. These
assertions follow from the GHS algorithm (cf. Section 22.3.2) and its generalizations. But the
reader should be aware that the algorithms described in Chapter 22 are only examples of possible
attacks and, contrary to the attack by pairings, we do not have a clean criterion for a curve defined
over nonprime fields with composite degree to be resistant against Weil descent attack.

The new ideas of Gaudry and Diem make the situation even worse. For instance the result of
Gaudry in Section 22.3.5.a can be applied to all elliptic curves defined over extension fields of
degree 4, and the result of Diem stated in Section 22.3.5.b at least gives a strong hint that for elliptic
curves d should be a large prime.

Taking this into account the choice of the ground field Fq for a DL system realized in Pic0
C should

be:

• a prime field, namely Fq = Fp, or
• an extension field Fq = Fpd with p very small (usually p = 2) and d a prime such that

the multiplicative order of 2 modulo p is large.
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There should be a very good reason if one does not follow this rule, and then a careful discussion of
the security has to be performed. We shall give one example for this.

Example 23.7 Trace zero varieties introduced in Section 15.3 are constructed from curves defined
over Fp which are considered over Fpd for d = 3 or d = 5. The latter is only proposed for elliptic
curves while the former construction could be used for elliptic and genus 2 curves.

As DL system one uses the group of divisor classes that have trace zero (hence the name), i.e.,

G =
{ __

D ∈ Pic0
C(Fpd)

∣∣ __
D ⊕ φp(

__
D) ⊕ · · · ⊕ φd−1

p (
__
D) = 0

}
.

Geometrically this group is isomorphic to an abelian variety G of dimension g(d − 1) in the Weil
descent of C, which shows |G| ∼ pg(d−1). The advantages of this group come from efficient
implementation and will be made clear in the following section. From the security considerations
the choice of (g, d) = (1, 3) has no known weakness. For good choices of parameters the other two
possibilities that lead to groups of size p4 offer better security than genus 4 curves or elliptic curves
over fields Fp4 , which would have the same group order. For (g, d) = (2, 3) this comes from the fact
that G can always be embedded in the Jacobian of a genus 6 curve over Fp and that there the index
calculus algorithm runs in O

(
q

22
13 +ε

)
= O

(
|G| 1116+ε

)
. In this rough bound we did not include the

constants. A more thorough study (cf. Section 22.3.4.b, [DISC 2003]) reveals that for low security
applications, e.g., group sizes of 128 bits, the security is close to the generic one whereas for larger
bit sizes one loses asymptotically about 17% of security.

23.2.2.c Conclusion

The results of Section 23.2.2 show that one has to be careful with the choice of the pair (C,Fq) if
one wants to have instances in which the complexity of algorithms computing the discrete logarithm
is O(�1/2).

1. One has to choose � so that it does not divide q and so that the field Fq(ζ�) is an extension
of Fq of sufficiently large degree k. For instance k � 1000 should be ensured. (Note
that this does not mean that one needs to actually compute k but that one checks for all
k′ � k that � � qk′ − 1.) This excludes especially the case that C is supersingular.

2. One should take Fq either as prime field or as an extension of a field of small character-
istic p (e.g., p = 2), which has prime degree d over Fp. Moreover the number 2 should
have large order modulo d, e.g., d must not be a Mersenne or a Fermat prime number.

If one has strong reasons not to follow these directions, one has to make a careful analysis of the
situation.

Example 23.8 Assume the situation that one would like to find a group of order equivalent to q4

as, e.g., the arithmetic in Fq is particularly suited to the hardware. In this case, one should not
take curves of genus 4 over Fq or elliptic curves defined over Fq4 , as due to the attacks described
in Section 22.3.5.a the size of q needs to be chosen much larger. One can do better with trace
zero varieties of curves of genus 2 defined over Fq with respect to extensions of degree 3 (see
Example 23.7).

23.3 Efficient systems

In the previous section we have shown that ideal class groups of function fields over finite fields
allow us to obtain groups in which the discrete logarithm is supposed to be hard to compute, given
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that the genus is less than or equal to 3. The parameters p, d, and g may then be chosen to accom-
modate fast computation of scalar multiples in the group provided that the group size O(pdg) is of
the correct size and none of the weaknesses mentioned before is introduced.

23.3.1 Choice of the finite field

From the point of view of finite field arithmetic, prime fields Fp and binary fields F2d are the most
common choices, but for some implementations optimal extension fields and their generalizations
might offer advantages, as they are ideally suited to the word size. For full details on arithmetic on
finite fields we refer to Chapter 11, and the mathematical background can be found in Chapter 2.
For special considerations for hardware implementation one should consult Chapter 26.

23.3.1.a Prime fields

In prime fields Fp, addition and subtraction are performed as in the integers and the result is reduced
modulo the prime p. In general, much of the considerations for integer arithmetic (cf. Chapter 10)
can be applied for the arithmetic modulo p.

For multiplication one uses the schoolbook method or Karatsuba’s trick. Fast multiplication
methods like FFT do not apply for the small size of p we are considering here. Squaring has about
the same complexity as multiplication and can either be implemented separately (which can lead to
a speedup in trade-off for more code) or by reusing the multiplication routine. In general one should
consider the multiplication separately from the reduction and take into account the effect that for
computing ab + cd, for field elements a, b, c, d, one only needs one reduction instead of two.

Inversions and divisions are computed using the (binary) extended gcd.
To have fast arithmetic in Fp it is advisable to choose p of low Hamming weight, ideally of the

form 2wn + c, where w is the word size and c is small. This allows us to compute the modular
reduction more efficiently.

Montgomery representation of elements in Fp speeds up the computations even further. The
element x is represented by xR, where R is the smallest power of 2w larger than p. This repre-
sentation behaves well with respect to addition, multiplication, and inversion and the reductions are
particularly simple. For full details we refer to Algorithms 11.3 and 11.9.

23.3.1.b Extension fields

To represent extension fields one has two general methods, either using the multiplicative or the
additive structure of Fpd . In the first case one uses a generator g and represents each element as a
power of g. This way, multiplications are very efficient but additions are problematic. For small
fields one can use a lookup table but this gets inefficient very quickly.

So, for implementations in cryptographically relevant ranges, representations using the additive
structure of Fpd as d-dimensional vector space over Fp are favored. In this representation addition
is done coefficient-wise.

There are two main trends for choosing the basis: either find an irreducible polynomial m(X) ∈
Fp[X ] of degree d and use

(
1, θ, . . . , θd−1

)
as basis, where θ is a root of m(X) over Fpd , or choose

a basis of the form
(
α, αp, . . . , αpd−1)

. The latter is called a normal basis; it has the advantage that
the operation of the Frobenius automorphism φp is computed by a cyclic shift of the coefficients. As
a drawback, multiplications are more complicated than in polynomial basis representation, where
they are computed by a multiplication of polynomials followed by a reduction modulo m(X).

We now give some details for binary fields F2d and optimal extension fields Fpd . Some appli-
cations discussed in Chapter 24 use the field F3d . It shares many properties with F2d . Hence, the
mathematical background is covered in the following paragraph. Note that the basic arithmetic in
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F3 is slower than in F2 as two bits are needed to represent a field element.

Binary fields

The security considerations impose that d is a large prime. So, in all applications d is odd implying
that TrF2d/F2(1) = 1. This means that some transformations on the curve equations, discussed later,
are always possible. On the other hand this means that there is no type I optimal normal basis (cf.
Section 11.2.2.b), i.e., if one represents the multiplication using a matrix, then it is not possible to
get the most sparse type of matrix.

The use of normal basis representation can be useful if many more squarings than multiplica-
tions are needed or if one needs to compute square roots. For many of the coordinate systems on
elliptic and hyperelliptic curves and ways of scalar multiplication discussed below, normal basis
representation leads to slower implementations than cleverly chosen irreducible polynomials with a
polynomial basis.

To be able to multiply in normal basis representation one is either given an explicit multiplica-
tion matrix or uses Gauß periods over extensions. Inversion is either done by transforming to a
polynomial representation and then performing it there as described in the sequel or by using La-
grange’s theorem. In the latter case one should apply an addition chain involving the Frobenius
automorphism, as this map is particularly fast in normal basis representation.

We now turn our attention to polynomial basis representations. As for primes it is very useful
if the irreducible polynomial is sparse, i.e., it has only few nonzero coefficients. Over F2 each
binomial has either 0 or 1 as its root and hence it cannot be irreducible. For implementations
irreducible trinomials are the best choice if they exist. Otherwise Section 11.2.1.b proposes to use
redundant trinomials to obtain sparse polynomials for reduction.

Multiplication is performed as a multiplication followed by a reduction modulo m(X). For the
fields F2d a Montgomery representation of the fields exists as well. Also, for inversions the same
tricks can be applied and usually they are computed as an extended gcd. For restricted devices
inversions are usually too time and space-consuming. However, one should note that the ratio
between multiplication and inversion is not as bad as in prime fields.

Even though in polynomial basis representation a squaring is more complicated than a cyclic shift,
it is still a fast operation compared to multiplication as no mixed terms occur. A rough estimate is
S = 0.1M, where S abbreviates a squaring and M stands for a multiplication.

Optimal extension fields

For some platforms or applications other choices of p and d are more advantageous. For security
reasons one chooses d to be prime. The idea behind optimal extension fields and their generalization
as processor adapted finite fields is to use a ground field Fp such that the elements of Fp fit within
one word, with the consequence that they can be particularly efficiently handled. For the choice of
p the same considerations as in the prime field case apply.

To construct the field extension one tries to use an irreducible binomial m(X) = Xd − a, where
optimally a is small such that multiplications involving a can be performed by a few modular addi-
tions. Hence, reduction modulo m(X) can be efficiently computed.

Addition is trivial. To multiply, the reductions are simplified by the choices of p and m(X)
and for small extension degrees d like those needed for trace zero varieties, one can save a few
multiplications over Fp by making a detailed look at the code. For d = 3 and 5 these formulas are
included in Section 11.3.6.

For inversion one uses αpd−1 = 1 and expresses

α−1 =
d−1∏
i=1

αpi
/ d−1∏

j=0

αpj

.
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Note that some of the powers can be rearranged to save even more operations. For d = 5 this reads

α−1 =
(αpαp2

(αpαp2
)p2

α
(
αpαp2(αpαp2)p2

) ·
For very small d � 4 an approach based on linear algebra is more efficient. We refer to Sec-
tion 11.3.4.

23.3.2 Choice of genus and curve equation

In this section we assume that the scalar multiplications appearing in the DL-based protocols are
carried out using doublings and additions, and, depending on the storage capacities, by using some
precomputed points. The latter can be applied in windowing methods as explained in Chapter 9
to reduce the number of additions needed in a scalar multiplication. As the number of doublings
remains unchanged such systems need especially cheap repeated doublings.

Clearly, Cantor’s algorithm can be used to perform arithmetic in the ideal class group of arbitrary
hyperelliptic curves. As soon as one fixes the genus of the curve one can derive explicit formulas
from the general group operations, which are usually much faster in implementations. As the group
size behaves like pdg a larger genus allows smaller finite fields. By the security considerations we
are, however, limited to g = 1, 2, and 3.

23.3.2.a Elliptic curves

Elliptic curves are curves of genus 1. On them the ideal and divisor class group are isomorphic to
the group of points and thus one can define addition and doubling in terms of the coordinates of
points. The general addition formula is given in Section 13.1.1.

Over a binary field, each nonsupersingular curve can be given (after an isomorphic transforma-
tion) by an affine equation

y2 + xy = x2 + a2x
2 + a6, where a2 ∈ F2d and a6 ∈ F∗2d .

As d should be odd, we can even choose a2 ∈ F2, cf. Remark 13.40.
In affine coordinates the addition formulas read as follows, where −P = (x1, x1 + y1).

Addition

Let P = (x1, y1), Q = (x2, y2) such that P 	= +−Q then P ⊕ Q = (x3, y3) is given by

x3 = λ2 + λ + x1 + x2 + a2, y3 = λ(x1 + x3) + x3 + y1, λ =
y1 + y2

x1 + x2

.

Doubling

Let P = (x1, y1) then [2]P = (x3, y3), where

x3 = λ2 + λ + a2, y3 = λ(x1 + x3) + x3 + y1, λ = x1 +
y1

x1
·

Thus an addition and a doubling require exactly the same number of operations that is I + 2M + S.
Here, we use the abbreviations I for inversion, M for multiplication, and S for squaring. We use
M2 to denote a multiplication by a2. This is counted separately as for odd d there always exists an
isomorphic curve with a2 ∈ F2 such that the multiplication is computed as an addition.
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To avoid inversions one can use projective and different weighted projective coordinates. The fol-
lowing Table 23.1 lists the number of operations needed to double or add in different coordinate
systems (A denotes affine coordinates, P projective coordinates, and J and LD stand for Jacobian
and López–Dahab coordinates, respectively). For details on the arithmetic we refer to Section 13.3.

Table 23.1 Operations required for addition and doubling.

Doubling Addition

Operation Costs Operation Costs

2P 7M + 4S + M2 J + J 15M + 3S + M2

2J 5M + 5S P + P 15M + 2S + M2

2LD 4M + 4S + M2 LD + LD 13M + 4S
2A = P 5M + 2S + M2 P + A = P 11M + 2S + M2

2A = LD 2M + 3S + M2 J + A = J 10M + 3S + M2

2A = J M + 2S + M2 LD + A = LD 8M + 5S + M2

— — A + A = LD 5M + 2S + M2

2A I + 2M + S A + A = J 4M + S + M2

2A′ I + M + S A + A = A′ 2I + 3M + S
2A′ = A M + 2S A + A I + 2M + S

If inversions are affordable, affine coordinates are preferred as the total number of field operations
is lowest. Otherwise, one should use López–Dahab coordinates, as for them doublings are fastest
and additions, especially mixed addition A + LD = LD, are cheap as well. For the binary elliptic
curves proposed in the standards a6 is chosen to be small such that multiplications by this constant
are fast. Then the standard doubling formulas should be applied, while for random curves, and thus
large and changing a6, formulas (13.9) are preferred.

In odd characteristic for p > 3 one can make an isomorphic transform to get each elliptic curve
represented by an affine equation of the form

y2 = x3 + a4x + a6, with a4, a6 ∈ Fq,

such that x3 + a4x + a6 has only simple roots over Fq. The negative of P = (x1, y1) is given by
−P = (x1,−y1).

Addition

Let P = (x1, y1), Q = (x2, y2) such that P 	= +−Q and P ⊕Q = (x3, y3). In this case, addition is
given by

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1, λ =
y1 − y2

x1 − x2
·

Doubling

Let [2]P = (x3, y3). Then

x3 = λ2 − 2x1, y3 = λ(x1 − x3) − y1, λ =
3x2

1 + a4

2y1
·
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An addition needs I + 2M + S and to compute a doubling I + 2M + 2S are used.

As stated in the previous section, in odd characteristic inversions are very time-consuming compared
to multiplications. Hence, it is even more important to consider inversion-free coordinate systems.
The following Table 23.2 gives an overview of the number of field operations per group operation.
In addition to the above abbreviations we use J m for modified Jacobian coordinates and J c for
Chudnovsky Jacobian coordinates. For full details on the formulas, we refer to Section 13.2.

Table 23.2 Operations required for addition and doubling.

Doubling Addition

Operation Costs Operation Costs

2P 7M + 5S J m + J m 13M + 6S
2J c 5M + 6S J m + J c = J m 12M + 5S
2J 4M + 6S J + J c = Jm 12M + 5S

2Jm = J c 4M + 5S J + J 12M + 4S
2Jm 4M + 4S P + P 12M + 2S

2A = J c 3M + 5S J c + J c = Jm 11M + 4S
2Jm = J 3M + 4S J c + J c 11M + 3S
2A = J m 3M + 4S J c + J = J 11M + 3S
2A = J 2M + 4S J c + J c = J 10M + 2S

— — J + A = J m 9M + 5S
— — Jm + A = Jm 9M + 5S
— — J c + A = J m 8M + 4S
— — J c + A = J c 8M + 3S
— — J + A = J 8M + 3S
— — J m + A = J 8M + 3S
— — A + A = J m 5M + 4S
— — A + A = J c 5M + 3S
2A I + 2M + 2S A + A I + 2M + S

23.3.2.b Curves of genus 222222

For these curves the explicit formulas are more involved compared to elliptic curves. On the other
hand the field one works in is of half the size for equal security as the group order is given by
O(p2d). In affine coordinates an addition needs I + 22M + 3S and a doubling needs 2S more. We
refer to Chapter 14 for the details on the group operation but mention that as for elliptic curves
one has the choice between different coordinate systems including inversion-free systems. The
choice of genus 2 curves leads to similar speed for scalar multiplication as elliptic curves. This can
be seen from the implementation results listed in Table 14.13, p. 353. For each environment one
needs to check which fields are faster to implement and also whether the longer code needed for
the group operations for genus 2 curves is a problem. It is only possible to state the advantages or
disadvantages of elliptic curves over genus 2 curves based on implementations. From a theoretical
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point of view their performance is similar.
Special choices of curves, like the family of binary curves

y2 + xy = x5 + f3x
3 + εx2 + f0, with f3, f0 ∈ F2d and ε ∈ F2,

over fields with odd d allow us to obtain especially fast doubling formulas that outperform elliptic
curves. There is no similar family of elliptic curves, and, hence, the richer structure of genus 2
curves pays off.

23.3.2.c Curves of genus 333333

So far explicit formulas for arithmetic on genus 3 curves were obtained in affine and projective co-
ordinates. For general curves it seems that the number of operations is so large that the performance
is worse than for elliptic and genus 2 curves. Furthermore, one needs to take into account the re-
duction of security due to index calculus attacks, such that the group order needs to be made even
larger.

For special choices of curves like the binary curves

y2 + y = f(x), with f(x) ∈ F2d [x]

particularly fast doublings can be designed without weakening security.

23.3.2.d Conclusion

Over prime fields elliptic curves and genus 2 curves offer similar efficiency, while genus 3 curves
are less efficient with the current explicit formulas. For completely general curves over binary fields
the same observations hold.

If one is willing to trade off generality for higher speed, there exist genus 2 and 3 curves over F2d

offering fast arithmetic. Comparable choices cannot be made for elliptic curves. We mention that
these curves constitute families and thus they are not considered special curves.

23.3.3 Special choices of curves and scalar multiplication

Some curves have extra properties that can be used to compute scalar multiplication faster. This
does not mean that the single group operations, i.e., additions and doublings, are sped up, but one
uses a different procedure to compute the scalar multiples.

In Example 23.7 we introduced trace zero varieties. In general, subfield curves defined over Fp

and considered over Fpd offer the advantage that the Frobenius endomorphism φp operates on the
points of the curve by raising each coordinate to the power of p. This can be used to obtain faster
methods for scalar multiplication. In Chapter 15 we showed how to compute [n]

__
D by using φp.

Instead of using a double and add algorithm, one applies a Frobenius and add algorithm, which
leads to faster computations as φp can be computed efficiently.

It is also possible to use other endomorphisms of curves. A general curve will not have an
efficiently computable endomorphism, but on specially chosen curves it can be used to speed up the
scalar multiplication. The methods are described in Section 15.2.

In both cases one needs to be aware that the endomorphisms also speed up the attacks. The effects
are discussed in Section 19.5.5. The use of special curves is particularly interesting for either large
systems, where a central server has to perform a huge amount of encryptions and has no problems
with a slightly larger group size (as long as the protocols run faster), or in lightweight cryptography
applications, where the security needs are reduced but the devices cannot consume too much power
and have limited storage. In this scenario curves with endomorphisms make the operations faster.
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23.4 Construction of systems

Depending on the security needs one chooses the size N of the group in which the discrete logarithm
is to be used. The list of candidates for secure DL systems in Section 23.1.4 gives possible choices
of parameters for the system. By considering the given environment and by looking at the results on
efficiency in Section 23.3 one chooses candidate pairs (Fq, C) such that the expected group order
of Pic0

C is of size N and that the other needs are met. The final step is to look for primes � ∼ N for
which Z/�Z can be embedded into Pic0

C for a candidate curve C in a bit-efficient way. Usually one
has to do this by randomly choosing curves C in a certain family F and then computing Pic0

C .

So, one needs two ingredients: there have to be sufficiently many instances leading to an almost
prime group order and one has to be able to compute the group order efficiently.

23.4.1 Heuristics of class group orders

First there has to be (at least) a heuristic prediction stating that with large probability the order of
Pic0

C for C ∈ F is almost a prime, i.e., there is a number c � B with |Pic0
C | = c� with � a prime

number. The number c is called the cofactor, usually one sets the bound to B � 1000. A large
choice of B will raise the probability of finding a suitable curve C but it will imply that we have to
take the size of the ground field Fq (and hence the key length) larger, since we have

g lg q ∼ lg c + lg �.

The main sources for such heuristics are analytic number theory and analogous techniques over
finite fields. Key words are Cohen–Lenstra heuristics about the behavior of class groups of global
fields and Lang–Trotter conjectures about the distribution of traces of Frobenius automorphisms
acting on torsion points of abelian varieties over number fields. Combined with sieving techniques
one finds a positive probability for the existence of class numbers with only a few prime divisors. It
is outside the scope of this book to give more details. For applications and statistics in the cases we
are interested in we refer readers to [BAKO 1998] and [WEN 2001b]. For our purposes it is enough
to state that in all families F that can be used in practice it will not take much time to find curves
that can be used for DL systems.

In many cases one can impose c = 1. But one has to be cautious in special cases. There can be
families F for which there is a number c0 such that for each member, C, one has that c0 divides
|Pic0

C | and so c has to be a multiple of c0. For example take F as the set of ordinary binary elliptic
curves. They are all of the form y2+xy = x3 +a2x

2 +a6 with a6 	= 0. Therefore, 2 always divides
the cofactor as (0,

√
a6) is a point of order 2 defined over the ground field. Another example is the

family F consisting of curves C of genus 3, which have an automorphism of order 4. Their class
number is always even (cf. Section 18.3).

In other families it can occur that the class numbers are always divisible by different numbers
bounded by c0. For instance take F as a family of curves defined over a field Fq0 with q0 | q. Then
the class number of C over Fq is divided by the class number of C regarded as curve over Fq0 and
so the cofactor c has to be � (

√
q0 − 1)2g. Examples of families F for which c = 1 is possible and

for which one can (efficiently) determine the group order are random elliptic curves or hyperelliptic
curves of genus 2 over fields Fq of odd characteristic, as well as elliptic curves over prime fields
constructed by the method of complex multiplication (cf. Section 18), and not isogenous to a curve
with j-invariant equal to 0 or 123.
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23.4.2 Finding groups of suitable size

In the following we shall give examples for families of curves F for which the (heuristic) results
of the Section 23.4.1 predict that with a reasonable probability the number of elements in Pic0

C for
C ∈ F is divisible by a large prime � and for which it is possible to determine |Pic0

C | efficiently.
To find a curve C usable for DL systems one chooses a random curve in F and computes the order
of Pic0

C . If it is not of the right shape one chooses another random element in F and repeats the
computation until finally a usable curve is found.

Once a suitable curve is found, one has to choose a base point in Pic0
C of order �.

23.4.2.a Finding a curve

As said already the key ingredients for finding curves with divisor class group usable for DL systems
are point counting algorithms, which are described in Chapter 17. Their common principle is that
they compute the characteristic polynomial χ(φq)C(T ) of the Frobenius endomorphism φqC acting
on JC (cf. Section 4.3.6) and use the fact that |Pic0

C | = χ(φq)C(1) (cf. Corollary 5.70).

Curves defined over subfields

Take as F the family of curves C of genus g over fields Fq , which are defined over subfields Fq0 .
If q0 is small, elementary methods like counting by enumeration (cf. Section 17.1.1) or square root
algorithms (cf. Chapter 19) can be used. This is reasonable e.g., for qg

0 � 1016.
For larger q0 it may be necessary to replace these counting algorithms by more refined algorithms

explained in the next paragraphs. Nevertheless this counting will be very fast compared to counting
methods for curves defined over Fq.

So, it is possible to compute the characteristic polynomial χ(φq0)(T ) of the Frobenius endomor-
phism φq0 over Fq0 . As explained in Section 17.1.2 this can be used to compute the characteristic
polynomial of φq and hence the order of Pic0

C .

Remark 23.9 This method is especially fast if q0 is small. Moreover, the operation of the Frobenius
endomorphism φq0 can be used to accelerate the computation of scalar multiples in Pic0

C consider-
ably (cf. Section 15.1). The key word is “Koblitz curves.”

Example 23.10 The most famous Koblitz curves are

Ea2 : y2 + xy = x3 + a2x
2 + 1, with a2 = 0 or 1

seen as curves over F2. The characteristic polynomial is given by

χa2(T ) = T 2 − (−1)1−a2T + 2

and the number of points of E(F2d) is given by (15.9).

The disadvantages are that if q0 is very small there will be only a few curves in the cryptographically
interesting range. At the same time the cofactors will be divisible by χ(φq0 )C(1), which is of size
equivalent to qg

0 . Moreover the degree of Fq over Fq0 should be a prime number because of the
transfers related to Weil descent (cf. Section 22.3). This attack has to be considered for small
extensions, too.

Remark 23.11 If the degree of Fq over Fq0 is small (� 5) one is led to systems based on trace
zero varieties (cf. Section 7.4.2), which can be interesting alternatives in special situations for fast
arithmetic; see Section 15.3.
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Random elliptic curves

One chooses the size of the allowed cofactor c and of the prime �, which should divide the order
of the group of rational points of an elliptic curve E. Let q be a power of a prime p of size c�. As
family F we take the set of elliptic curves defined over Fq.

Let E be a randomly chosen elliptic curve defined over Fq . We can apply the SEA Algo-
rithm 17.25 to count the elements of E(Fq) in O

(
lg(q)2µ+2

)
bit operations, where µ is a constant

such that two B-bit integers can be multiplied in time Bµ. The algorithm is fast enough to find
cryptographically usable elliptic curves even with cofactor 1 in a short time.

Random curves of genus 222222

As above, the desired size of the group order is denoted by N . One chooses q to be of size N1/2.
The family F consists of all curves of genus 2 defined over Fq. In [GASC 2004a] one finds an
algorithm combining p-adic, �-adic, and generic methods to count points on the Jacobian variety of
random curves of genus 2 defined over Fq , and to find such curves that can be used for DL systems.
At the moment this is rather time-consuming — for a curve over a Fp with p = 5×1024+8503491,
the time reported in [GASC 2004a] is one week per curve — but it is to be expected that refinements
will accelerate the algorithm in the near future.

Curves over fields of small characteristic

Let p be a small prime number, in practice p = 2 or p = 3. So, to reach cryptographic group sizes
we need q = pd with d large. (For security reasons d should be a prime such that the multiplicative
order of 2 modulo d is large (cf. Section 22.3)). The family F consists of random curves C of genus
g (with 1 � g � 3) defined over Fq. Hence d ∼ logg N/g. To count points on random curves
C in F one uses p-adic methods as described in Section 17.3. For p = 2 the AGM method (cf.
Section 17.3.2) generalizes Satoh’s method for elliptic curves and constructs canonical liftings of
Jacobian varieties of curves of genus 1, 2, and 3 in a most efficient way — provided that this curve
is ordinary. For random curves this condition will be satisfied.

The AGM algorithm is very easy to implement, especially for elliptic curves. As an example, we
state the algorithm for elliptic curves over F2. The idea is to use a recurrence to compute the trace t
of the Frobenius endomorphism.

Algorithm 23.12 Elliptic curve AGM

INPUT: An elliptic curve E : y2 + xy = x3 + a6 over F2d with j(E) �= 0.

OUTPUT: The number of points on E(F2d).

1. L ← � d
2
� + 3 [L is the precision to be used]

2. a ← 1 and b ← (1 + 8e) mod 24 [e arbitrary lift of a6]

3. for i = 5 to L do

4. (a, b) ← `
(a + b)/2,

√
ab
´

mod 2i

5. a0 ← a

6. for i = 0 to d − 1 do

7. (a, b) ← `
(a + b)/2,

√
ab
´

mod 2L

8. t ← a0

a
mod 2L−1

9. if t2 > 2d+2 then t ← t − 2L−1

10. return 2d + 1 − t
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In Section 17.3.2.c one finds the algorithms for g � 2. The theoretical background is given in
Section 17.3.

A universal method of computing the characteristic polynomial of the Frobenius endomorphism
φq for arbitrary (small) p and arbitrary hyperelliptic curves was developed for the first time by Ked-
laya [KED 2001]. He uses the Monsky–Washnitzer cohomology, which computes the de Rham
cohomology of a formal lifting of the curve. Though the background is rather involved, the algo-
rithm is easily implemented. It is given in Section 17.3.3 as Algorithm 17.80.

If the AGM method can be used it is faster than algorithms based on Kedlaya’s idea. The big
advantage of Kedlaya’s approach is that it is a universally applicable algorithm (which can be gen-
eralized to practically all curves). In any case, one can state that point counting for random hy-
perelliptic curves of genus 1, 2, and 3 over fields of characteristic 2, 3, and 5 in cryptographically
relevant ranges can be done in a satisfying way.

The CM method

The methods described until now leave one gap open: it is difficult to compute the characteristic
polynomial of the Frobenius endomorphism acting on the Jacobian variety of curves of genus 2
and 3 defined over fields Fq of large characteristic. To fill this gap, especially in the case that q
is a prime number p, one can use the theory of complex multiplication relying on the results of
Taniyama and Shimura. Even for elliptic curves this method remains interesting, especially if one
wants to find many curves to check heuristics or to construct an elliptic curve with prescribed group
order [BRST 2004], e.g., if one wants to obtain a group order with low Hamming weight.

For the background of this theory, we refer to Section 5.1. In this method one begins with the
choice of a ring of endomorphisms EndC of an abelian variety that has complex multiplication and
that is the Jacobian variety of a hyperelliptic curve C of genus g. This ring EndC has to be an order
in a CM-field of degree 2g. One characterizes the curve by its invariants, and to obtain the equation
of the curve one computes the minimal polynomials overQ of the invariants, the class polynomials.
For details on the computation of the class polynomial we refer to Section 18.1.3.

In practice both finding the ring EndC and computing the class polynomials are to be regarded as
part of a precomputation. For elliptic curves they can be taken from published lists (cf. [WENG]).

The family F consists of the curves Cp, which are obtained from C by reduction modulo primes
p. So, our space of parameters is now the set of prime numbers. Arithmetic geometry tells us that
this can be regarded as the analogue of a curve, and so the richness of the family F is analogous to
that of the family consisting of all curves of genus g over a fixed finite field Fq.

By class field theory it is possible to determine the order of Pic0
Cp

by solving a norm equation in
EndC that can be done quickly. Only after having found a “good” prime p one constructs the curve
Cp in an explicit way.

The algorithm for elliptic curves E is found in Section 18.1.5. We repeat it here for this case.

Algorithm 23.13 Construction of elliptic curves via CM

INPUT: A squarefree integer d �= 1, 3, parameters ε and δ, Hilbert class polynomial Hd(X),
desired size of p and �.

OUTPUT: A prime p of the desired size, an elliptic curve E/Fp whose group order |E(Fp)| has a
large prime factor �.

1. repeat

2. repeat choose p prime of desired size

3. until εp = x2 + dy2 with x, y ∈ Z
4. n1 ← p + 1 − 2x/δ and n2 ← p + 1 + 2x/δ

5. until n1 or n2 has a large prime factor �
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6. compute a root j of Hd(X) (mod p)

7. compute Ej/Fp from (18.1) and its twist eEj/Fp

8. while true do

9. take P ∈R Ej(Fp) and compute Q ← [n1]P

10. if Q = P∞ and [n2]P �= P∞ then return p and Ej

11. else if Q �= P∞ then return p and eEj

The situation is more complicated for g = 2 but nevertheless the corresponding algorithm works
very well. The details can be found in Section 18.2. For g = 3 one has to assume that EndC

contains
√
−1 and hence C has an automorphism of order 4, which implies that the cofactor is

divisible by 2. So we get only special curves, and the situation is not totally satisfying. Nevertheless
we can construct many hyperelliptic curves of genus 3, which can be used for DL systems.

23.4.2.b State of the art of point counting

We have seen that the computation of the order of Pic0
C for curves C of genus g defined over fields

Fq can be performed efficiently by not too complicated algorithms if

• The curve C is already defined over a small subfield Fq0 of Fq, or

• The genus g is equal to 1, or

• The characteristic of Fq is small, or

• The genus of C is 1 or 2, the field Fq is a prime field, and the curve C is the reduction modulo
q of a curve C̃ with complex multiplication over a given order EndC in a CM-field.

For random curves C of genus 2 there is hope that one will find an efficient algorithm for point
counting. The results of Gaudry and Schost [GASC 2004a] are very encouraging.

For genus g = 3 and Fq a prime field, we have to restrict ourselves, at least at the moment, to
hyperelliptic curves that have an automorphism of order 4.

23.4.2.c Finding a base point

We assume now that C is a hyperelliptic curve defined over Fq such that

|Pic0
C | = c�

and that C is given by an affine equation

Ca : y2 + h(x)y = f(x).

One chooses a random element x1 ∈ Fq and tests whether the polynomial y2 +h(x1)y− f(x1) has
a solution y1 in Fq. This will be the case with probability 1/2. If the polynomial has no solution in
Fq one chooses another x1. After a few trials one has found a point P = (x1, y1) ∈ C(Fq). One
uses the embedding of C in its Jacobian. With probability 1 − 1/� the divisor class of P − P∞ has
order divisible by � and so [c](P − P∞) has order �. To check this one verifies that [c](P − P∞) is
not the neutral element.

If this is the case we can take
__
D = [c](P − P∞) as the base point of our DL system and embed

Z/�Z into Pic0
C by mapping n �→ [n]

__
D for 0 � n < �.
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If the trial multiplication fails, i.e., if [c](P − P∞) = 0, one repeats the procedure by choosing a
new element x1.

The expected time to find a base point by this method is O(lg �). For details concerning hyperel-
liptic curves implemented with explicit formulas we refer to Section 14.1.2.

23.5 Protocols

So far we have presented groups in which the discrete logarithm problem is assumed to be hard. In
Chapter 1 we stated some protocols in Section 1.6 using only the structure of a DL system. We now
briefly cover two issues: how to actually instantiate these protocols with groups based on Pic0

C of
curves over finite fields; and which pitfalls one needs to be aware of.

We need to make a general remark. As of the time of writing this, only elliptic curves are in
the standards. In this section we state system parameters and protocols for hyperelliptic curves by
giving the generalizations from the elliptic curve setting.

23.5.1 System parameters

We now assume that the system parameters consisting of the ground field, the genus of the curve,
and the curve equation are chosen in a manner that the DL problem should be hard to compute.

To use these parameters in a cryptosystem they need to be published. For the finite field this
means that q = pd needs to be given but also the way the field elements are represented, i.e.,
for prime fields one needs to state whether the following parameters of curve and points refer to
Montgomery or standard representation. In extension fields the type of basis and how to multiply in
it need to be stated, e.g., for polynomial basis one gives the irreducible polynomial m(X) of degree
d over Fp.

Once the field elements can be represented, the equation of the curve, the base point, and also
public keys can be stated. This information is sufficient for most applications — if all users behave
well. In the following we sometimes assume that an attacker could get signatures on innocent-
looking messages. In practice this is not too far fetched — there are service providers that sign
all packages transmitted by them so that one could easily get signatures implying arbitrary group
elements unless the following checks are implemented.

Standards additionally require that the group order N = |Pic0
C | is given together with the co-

factor c such that N/c = � is prime, and also ask for a small cofactor. In signature schemes like
Algorithm 1.18 one needs �, as the signature is an integer modulo �, and an inversion modulo � is
required when signing. We point out that there are inversion-free signature schemes that would not
require knowledge of the group order but usually they are less efficient. However, what is worse is
that a malicious user could ask for a signature on an element

__
D that comes from a subgroup of Pic0

C

of order dividing c. If c has enough prime factors the attacker could determine the secret scalar
modulo all these primes and recover a large part of the secret by using Chinese remaindering. This
attack is called the small subgroup attack.

To avoid this attack one should check whether
__
D has order �. This can be done by either actually

checking [�]
__
D = 0 or by computing [h]

__
D for h = c/pi for all prime divisors pi of c and checking

that the result is not 0. Both methods require that � is prime, which could also be checked.
Browsing the algorithms for addition and doubling in Pic0

C one notices that not all curve coef-
ficients are needed in the arithmetic. Hence, the same set of formulas could be used for different
curves. The invalid curve attack works by requesting a signature on a group element of Pic0__

C , where__
C has the same coefficients as C on those positions appearing in the group operations and is differ-
ent otherwise. If it is possible to find a curve

__
C that offers less security, this could be used to find
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the secret key by attacking the DL problem in the easier group Pic0__
C . In fact, it is very likely that

there are curves
__
C such that the group order contains many factors of moderate size, such that the

DLP could be solved by using Chinese remaindering.
Hence, the protocols require to check whether

__
D is actually a group element.

To sum up: the system parameters consist of the five entries

(Fpd , C,
__
D, N, c),

where we assume that Fqd contains information on the field representation and
__
D is the base point

of the system. The system parameters are accepted if

1. all field elements are correctly represented,

2.
__
D 	= 0 ∈ Pic0

C , and

3.
__
D has order � = N/c.

User A has public key
__
DA = [aA]

__
D, which is included in her system parameters. To verify a

signature issued by her or before sending her an encrypted message, B checks whether
__
DA ∈ Pic0

C .
Before signing a message that involves computation of [aA]

__
E for some

__
E , A needs to check

whether
__
E ∈ Pic0

C and if so whether
__
E has order �.

23.5.2 Protocols on Pic0
CPic0
CPic0
CPic0
CPic0
CPic0
C

For using elliptic curves, some special protocols were designed that make use of the representation
of group elements by points. Applying compression techniques (cf. Sections 13.2.5 and 13.3.7) a
point P = (x1, y1) can be uniquely stored using its x-coordinate and a bit of y. As for each x1

there are at most two y1’s such that (x1, y1) is on the curve and the points are the negatives of one
another, one can also give up the uniqueness and only use x1 to represent both P and −P .

Hence, some reduction in the length of the key and signatures is possible such as is not possible
in a generic group. In the following, we detail a signature algorithm to show the differences to the
general purpose algorithm presented in Chapter 1. For other protocols similar observations hold.

The elliptic curve digital signature algorithm (ECDSA) [ANSI X9.62] is a signature scheme of
ElGamal type as given in Section 1.6.3. We state the generalized version applicable to hyper-
elliptic curves in the following. For easier reference we call it HECDSA. We assume Mumford
representation for elements in Pic0

C and assume that the finite field elements are ordered such that
0 � L(α) < q is an integer uniquely assigned to α ∈ Fq in an invertible way.

In Germany and Korea slightly different versions of the signature scheme are applied. The inter-
ested reader is referred to the standards and [HAME+ 2003].

Algorithm 23.14 HECDSA – Signature generation

INPUT: The system parameters (Fpd , C,
__
D, N, c), the private key aA, a hash function h, and a

message m.

OUTPUT: The signature (U, s) on m.

1. repeat

2. repeat

3. r ∈R [0, � − 1]

4.
__
E ← [r]

__
D

ˆ __
E = [uE , vE ] with uE = xν +

Pν−1
i=0 ui for some ν � g

˜

5. U ←Pν−1
i=0 L(ui)q

i mod �
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6. until U �= 0 and 1

7. s ← `
r−1
`
h(m) − [aA]U

´´
mod �

8. until s �= 0

9. return (U, s)

Algorithm 23.15 HECDSA – Signature verification

INPUT: The system parameters (Fpd , C,
__
D, N, c), the public key

__
DA, a hash function h, the

message m, and the possible signature (U, s) on m.

OUTPUT: Acceptance or rejection of signature.

1. if U or s /∈ [1, � − 1] then return “reject”

2. else w ← s−1 mod �

3. u1 ← `
h(m)w

´
mod � and u2 ← (Uw) mod �

4.
__
F ← [u1]

__
D ⊕ [u2]

__
DA [

__
F = [uF , vF ]]

5. if
__
F = 0 then return “reject”

6. else U1 ← `Pν−1
i=0 L(uF,i)q

i
´

mod �
ˆ
uF = xν +

Pν−1
i=0 uF,i for some ν � g

˜

7. if U = UF then return “accept” else return “reject”

The signature scheme works as specified as it is a special instance of Algorithm 1.18. Note, however,
that the storage requirements are reduced as the first entry of the signature is not a group element
but an integer modulo �.

As only the first part of the representation of
__
E is used in the signature, the scheme is malleable,

i.e., it is possible to obtain a valid signature on a different message by the observation that
__
E and

−
__
E result in the same signature. This property was pointed out in [STPO+ 2002] together with

an attack that uses this property to choose the private key in a manner that two a priori chosen
messages will result in the same signature.

An easy way to avoid this drawback is to apply a compression, (cf. Section 14.2) to
__
E , which

means that U depends uniquely on
__
E .

There are also encryption and key agreement protocols that take into account the special proper-
ties of elliptic curves. Usually it is easy to obtain hyperelliptic curve analogies. We do not include
them in this book but refer the reader to the vast literature. A useful overview with many references
is given in [HAME+ 2003].

23.6 Summary

In Chapter 1 we have explained which purposes public-key cryptography can be used for as part of
systems that provide data security. In Section 1.5 we have defined discrete logarithms in an abstract
way and in Section 1.6 one finds protocols that use discrete logarithms as crypto primitives.

The purpose of the present chapter is to help to decide how to realize such systems in the most
efficient way.

Remark 23.16 In Chapter 1 we have discussed bilinear structures as additional structures of certain
DL systems, as well as their use in protocols. Their realization is discussed in the next chapter.
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To use DL systems in practice one first has to analyze which grade of security is needed. Then one
inspects the offered types of groups and the hardness in the DLP in these groups. It could be that
for specific practical reasons one is satisfied with subexponential complexity of DLP and chooses
as the group a subgroup of prime order in the multiplicative group of a sufficiently large finite field
Fq. The system XTR is an example of an efficient realization of such a system (see Example 1.13).
But in most cases one will want to have key sizes as small as possible with an easy scalable security,
and so groups for which there are good reasons to believe in the exponential hardness of the DLP
are the appropriate choice. In Section 23.2 we have discussed such groups; the results are stated
in Sections 23.2.1.a and 23.2.2.c. The short answer is that the groups Pic0

C for curves of genus
1, 2, 3 over prime fields, or over fields of order 2d with d a prime such that the multiplicative order
of 2 modulo � is large, are good candidates. A more subtle answer can be found by following
the references in Section 23.2 leading to detailed discussions of the mathematical background and
implementational details of attacks.

Roughly spoken, the proposed groups have the same level of security, require the same space for
keys, and need the same time for scalar multiplication. But in concrete realizations, in particular the
efficiency will depend heavily on the specific implementation and the computational environment.
So, the discussion in Section 23.3 becomes relevant. One of the basic decisions is the choice of the
ground field Fq and its arithmetic. Hints for this are to be found in Section 23.3.1 and references
cited there. Since the group size � is determined by the security level the choice of the bit size of the
ground field is related to the genus g of the curve C by lg � ∼ g lg q. So, the choice of q determines
g and hence one has to check whether one finds a family of curves of genus g over Fq that fits into
the special situation one has.

The next criterion for the choice of C is the efficiency of the group law in Pic0
C . This is discussed

in Sections 23.3.2 and 23.3.3. In many cases it will be sufficient to take random curves and standard
versions of the scalar multiplication. But in special cases “the” best implementation will depend on
special properties of the processors used, and adding additional structures like endomorphisms can
result in significant accelerations. But then implementations (and choices) have to be done more
carefully and the relevant background chapters have to be consulted.

Having gone through all choices one needs a pair (C,Fq) satisfying the properties one wants to
have. At this stage one can either look for standard curves (especially for g = 1) or use the results
described in Section 23.4. This part is one of the most attractive aspects of cryptography from the
mathematical point of view and the algorithms related to point counting are relatively involved. On
the other side, for all practical needs they are well documented and can be implemented without
knowing the whole theoretical background. So in praxis it will be no problem to find suitable
instances (C,Fq).

Now the last but not the least step has to be done: the embedding of the crypto primitive in the
chosen protocol. In Section 23.5 it is explained how the generic protocols from Chapter 1 have
to be transformed into protocols using Pic0

C as crypto primitive. This was done for signatures in
Section 23.5.2, and it is not difficult to treat other protocols in a similar way.
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Chapter 23 showed us how to build DL systems on the Jacobian of curves. In Chapter 1 we intro-
duced DL systems with bilinear structure. In this chapter we first give more applications of this con-
struction, namely the extension of the tripartite protocol given before to multiparty key exchange,
identity-based cryptography, and short signatures. In recent years many systems using this extra
structure have been proposed. We include some more references to further work in the respective
sections, since giving a complete survey of all these schemes is completely out of the scope of this
book. For a collection of results on pairings we refer to the “Pairing-Based Crypto Lounge” [BAR].

The second section is devoted to realizations of such systems. In Chapter 6 we gave the mathe-
matical theory for the Tate–Lichtenbaum pairing and Chapter 16 provided algorithms for efficient
evaluation of this pairing on elliptic curves and the Jacobian of hyperelliptic curves. There we as-
sumed that the embedding degree (i.e., the degree k of the extension field Fqk to which the pairing
maps), is small, so as to guarantee an efficiently computable map as required in a DL system with
bilinear structure. In Section 24.2 we explain for which curves and fields these requirements can be
satisfied and give constructions.

24.1 Protocols

For the convenience of the reader we repeat the definition of DL systems with bilinear structure.
For the definition of general DL systems we refer to Chapters 1 and 23.

573
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Definition 24.1 Let (G,⊕) be a DL system, where G is a group of prime order � and such that there
is a group (G′,⊕′) in which we can compute “as fast” as in G. Assume moreover that (H, �) is
another DL system and that a map

e : G × G′ → H

satisfies the following requirements:

• the map is e is computable in polynomial time (this includes the fact that the elements
in H should need only O(lg �) space),

• for all n1, n2 ∈ N and random elements (P1, P
′
2) ∈ G × G′ we have

e([n1]P1, [n2]P ′
2) = [n1n2]e(P1, P

′
2),

• the map e(· , ·) is nondegenerate in the first argument, so that for a random P ′ ∈ G′ we
have e(P1, P

′) = e(P2, P
′) if and only if P1 = P2.

We then call (G, e) a DL system with bilinear structure.

If there exists such a bilinear map with G = G′ or an efficiently computable isomorphism ψ : G →
G′, the decision Diffie–Hellman problem becomes easy. Namely, given (P, [a]P, [b]P, [r]P ) we can
compare e

(
[a]P, ψ([b]P )

)
= [ab]e

(
P, ψ(P )

)
with e

(
[r]P, ψ(P )

)
= [r]e

(
P, ψ(P )

)
. As H has the

same order � we have equality only if ab ≡ r (mod �).
DL systems with bilinear structure are a special case of Gap-DH groups. These are groups in

which the computational Diffie–Hellman problem (CDHP) is hard while the corresponding deci-
sion problem DDHP is easy. Joux and Nguyen [JONG 2003] show that the two problems can be
separated and give a realization via supersingular elliptic curves.

Supersingular elliptic curves were shown to have this additional structure (cf. Sections 24.2.1).
For a long time this was considered a weakness since it makes the DLP in G no harder than in H .
Joux [JOU 2000] was the first to propose a positive application of bilinear maps, namely tripartite
key exchange. For the extended version of the paper see [JOU 2004].

In this section we first repeat this protocol and then show how to extend it to more than three
parties. As a second topic we introduce ID-based cryptography. We picked these examples as
they are historically the first constructive applications of DL systems with bilinear structure. They
motivate the study of suitable groups with respect to fast implementations of the bilinear map and
also the investigation of their security. As a third application we describe how one can use DL
systems with bilinear structure to build a signature scheme with short signatures.

Some protocols require G = G′, for the others we can usually save some computations of scalar
multiples per participant if the groups are equal. In the remainder of this section we will some-
times assume that we are in this favorable case since it simplifies the description of the protocols.
Furthermore we make the assumption that the DLP is hard in G (G′) and H .

24.1.1 Multiparty key exchange

For the convenience of the reader we recall Joux’s [JOU 2000, JOU 2004] tripartite key exchange
protocol.

Let P be a generator of G and P ′ one for G′. We state the algorithm for the viewpoint of user A;
user B and C follow the same steps with the roles interchanged accordingly.
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Algorithm 24.2 Tripartite key exchange

INPUT: The public parameters (G,⊕, P, G′,⊕′, P ′, H,�, e).

OUTPUT: The joint key K ∈ H for A, B, C.

1. choose aA ∈R N [aA is the secret key of A]

2. (PA, P ′
A) ← ([aA]P, [aA]P ′)

3. send (PA, P ′
A) to B and C

4. receive (PB, P ′
B) from B [PB = [aB]P and P ′

B = [aB]P ′]

5. receive (PC, P ′
C) from C [PC = [aC]P and P ′

C = [aC]P ′]

6. return K ← [aA]
`
e(PB, P ′

C)
´

Applying this algorithm, A, B, and C obtain the same element K of H as

K = [aA]
(
e(PB, P ′

C)
)

= [aAaBaC]
(
e(P, P ′)

)
= [aB]

(
e(PA, P ′

C)
)

= [aC]
(
e(PA, P ′

B)
)
.

The joint key could be computed by an eavesdropper if the computational bilinear Diffie–Hellman
problem (CBDHP) were easy, namely the problem of computing [aAaBaC]

(
e(P, P ′)

)
given

• the points P and P ′

• the description of G, G′, H , and e

• the transmitted values [aA]P, [aB]P, [aC]P ∈ G and [aA]P ′, [aB]P ′, [aC]P ′ ∈ G′.

The security of protocols is usually based on decision problems. The decision bilinear Diffie–
Hellman problem (DBDHP) is the problem of distinguishing

[aAaBaC]
(
e(P, P ′)

)
from [r]

(
e(P, P ′)

)
under the same conditions as for the CBDHP.

To avoid a man-in-the-middle attack we usually assume that A, B, C participate in some public-
key cryptosystem and can thus sign their messages. The receiver has to check the authenticity of
the message before using it in the computation of the key. Some proposals use ideas from ID-based
cryptography (see below) to achieve authenticity.

Assume that a group of more than three parties wants to agree on a joint key. If a public-key
infrastructure exists, i.e., a directory listing public keys of all participants together with a certificate
of their correctness, this can be solved by sending the encrypted key to each participant using Algo-
rithm 1.16 or 1.17. The first proposal for such a group key exchange was given in [INTA+ 1982].
The Burmester–Desmedt schemes I and II [BUDE 1995, BUDE 1997] give extensions of the Diffie–
Hellman key exchange to more participants based on ordinary DL systems. The first one is contrib-
utory, i.e., the contribution of each participant is reflected in the key while the second one is non-
contributory but more efficient (O(n) vs. O(lg n) for n participants). Both protocols can be turned
into authenticated key agreement protocols as described in [KAYU 2003, DELA+ 2004]. Note that
this approach does not prevent attacks from malicious insiders as described in [JUVA 1996], e.g.,
participants not playing according to the rules — such as refusing to deliver messages or giving a
valid signature on an incorrect message — can make the system insecure.
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There exist many proposals combining multiparty key exchange with DL systems with bilinear
structure. This allows us to gain efficiency by at least a constant factor as the basic block consists
of three parties instead of two. The first authenticated scheme is proposed in [CHHW+ 2004]
and improved in [DELA 2004b]. In [BADU+ 2004], Barua et al. propose a different arrangement
of the participants which has some computational advantages, and to date the most efficient but
noncontributory scheme is described in [DELA+ 2004].

Group key exchange is combined with ID-based cryptography (see below) in [CHHW+ 2004,
DUWA+ 2003] to achieve authenticity. Hence, they keep the two-party DH protocol as a building
block and apply the additional structure to get the sender’s identity involved. This eases the verifi-
cation of the messages since no extra public-key cryptosystem is involved, but it has the drawback
that the long-term secret key of the ID-based system is involved in the protocol. Unless time stamps
or other randomization techniques are used this allows for replay attacks.

24.1.2 Identity-based cryptography

The algorithms presented for general DL systems require the receiver of an encrypted message to
have set up his public key in advance. To solve the problem of sending a ciphertext to a person
who is not yet in the system leads to the concept of ID-based cryptography, [SHA 1984]. Here, the
public key is derived in a deterministic way from the user’s identity parameters.

In an ID-based system, the receiver then has to put in some effort to determine his private key.
All systems proposed so far require a trusted authority (TA) to help in this process and it is TA
who checks whether the entity is allowed to obtain the private key. The systems in Section 1.6.2
and Section 23.5 require the sender to make sure that he receives the latest public key together with
a certificate that the key actually belongs to the intended receiver. Identity-based systems allow the
sender to choose the public key of the recipient, thus putting the workload on the person interested
in receiving the message.

In the usual DL systems, a third party was only needed to guarantee that the public key belongs
to a certain entity by issuing a certificate of the public key. Such a certification authority (CA)
never sees the user’s private key. The drawback of ID-based systems proposed so far is that there
the trusted authority issues the private keys of the participants, i.e., a malicious TA could decrypt all
incoming messages and sign on behalf of any participant. We present ID-based systems using DL
systems with bilinear structure — which up to now provide the only efficient examples. Burmester
and Desmedt [BUDE 2004] study in detail advantages and disadvantages of ID-based cryptography.

We present the ID-based encryption protocol as proposed by Boneh and Franklin [BOFR 2001].
An extended version achieving chosen ciphertext security can be found in [BOFR 2003]. They base
the protocol on a DL system with bilinear structure in the special case that e : G×G → H , i.e., the
first two groups are equal.

We assume that each participant can be uniquely identified by a bit-string ID and that there is
a map, usually taken to be a cryptographic hash function, h1 : {0, 1}∗ → G, such that one can
associate a group element to every identity. We give implementation details for this hash function in
Section 24.2.5 for the realization of G as a subgroup of the Jacobian of some curve. Let the message
space be given by bit-strings of fixed length M = {0, 1}n. We also need a second hash function
h2 : H → M.

Before one can use the scheme, the trusted authority TA sets up the system by choosing a group
(G,⊕, P ) with bilinear map e to H and computing the public key PTA = [aTA]P . The system
parameters (G,⊕, H, �, P, PTA, e) are made public, the integer aTA is kept secret and serves as the
master key.
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Algorithm 24.3 Identity-based encryption

INPUT: A message m, public parameters (G,⊕, H,�, P, PTA, e), and the identity of the recipi-
ent ID.

OUTPUT: The ciphertext (R, c).

1. choose r ∈R N

2. R ← [r]P

3. Q ← h1(ID)

4. S ← e(PTA, Q) [S ∈ H]

5. c ← m XOR h2([r]S)

6. return (R, c)

The group element Q = h1(ID) is the public key of the user with identity ID. As we assume the
DLP in G to be hard, it is not possible to compute the corresponding private key as logP (Q). This
is the point where TA enters the scene. After checking that the user is allowed to obtain his private
key, TA performs the following algorithm:

Algorithm 24.4 Private-key extraction

INPUT: The parameters (G,⊕, P ), the master key aTA, and the identity ID.

OUTPUT: The private key AID ∈ G of ID.

1. Q ← h1(ID)

2. AID ← [aTA]Q

3. return AID

Once this private key is obtained, TA is no longer needed and AID is used as the private key. If he
thinks that the key might be compromised, the sender can append the time to ID. Then a further
interaction of ID with TA is needed. For the decryption, the bilinear structure is used again.

Algorithm 24.5 Identity-based decryption

INPUT: The ciphertext (R, c), the parameters (G,⊕, P, PTA, e), and the private key AID.

OUTPUT: The message m.

1. T ← e(R,AID)

2. return m ← c XOR h2(T )

The algorithm works as specified as

T = e(R, AID) = e
(
[r]P, [aTA]Q

)
= [raTA]

(
e(P, Q)

)
= [r]

(
e(PTA, Q

)
) = [r]S.

Clearly, this cryptosystem is weak if one can solve the DLP in G or H . The actual security is based
on the intractability of the CBDHP. To prove security in the random oracle model one needs to
assume the intractability of the DBDHP.
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As TA poses a critical point of security, it is recommended to use a secret sharing scheme to store the
master key aTA. This was already noticed in [BOFR 2003] and considered further in [LIQU 2003,
BAZH 2004, DELA 2004a].

For a large group of participants it is clearly not desirable that all participants need to contact TA
to obtain their keys. Fortunately, the system allows a hierarchical structure as shown in [GESI 2002]
and considered further in [DOYU 2003, BOBO+ 2005].

24.1.3 Short signatures

In [OKPO 2001], Pointcheval and Okamoto show how a Gap-DH group can be used to design a
signature scheme. Boneh, Lynn, and Shacham [BOLY+ 2002, BOLY+ 2004] give a realization
using supersingular elliptic curves with the Tate–Lichtenbaum pairing as bilinear structure. In this
realization the signature scheme has the advantage of offering shorter signature lengths compared
to DSA and ECDSA (cf. Chapter 23). We present the basic scheme using a DL system with bilinear
structure now and give details on the key length in Section 24.2.4.a. For simplicity we assume
G = G′ but the scheme can be modified to allow different groups with a slightly modified security
assumption (for a discussion of this co-DHP see [BOLY+ 2002, BOLY+ 2004]).

The system parameters consist of a DL system with bilinear structure (G,⊕, P, e). Furthermore,
a hash function h1 : {0, 1}∗ → G, mapping from the message space in the group is required. For
realizations of h1 see Section 24.2.5.

Like in an ordinary DL system A’s private key consists of a secret integer aA, and the public key
is PA = [aA]P (cf. Section 1.6.2).

The signing procedure simplifies compared to Algorithm 1.18 and the signature consists only of
one group element.

Algorithm 24.6 Signature in short signature scheme

INPUT: A message m, system parameters (G,⊕, P ), and the private key aA.

OUTPUT: The signature S on m.

1. M ← h1(m) ∈ G

2. S ← [aA]M

3. return S

If compression techniques exist in G, the signature can be even shorter. This will be the case for the
realization with Jacobians of curves (cf. Section 24.2.4.a).

To verify the signature the receiver performs the following steps:

Algorithm 24.7 Signature verification in short signature scheme

INPUT: The message m, the signature S, parameters (G,⊕, P, e), and the public key PA.

OUTPUT: Acceptance or rejection of signature.

1. if S /∈ G then return “rejection”

2. else M ← h1(m)

3. u ← e(PA, M)

4. v ← e(P, S)

5. if u = v then return “acceptance” else return “rejection”
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Obviously, the signature scheme is valid since for a correct signature we have

u = e(PA, M) = [aA]e(P, M) = e(P, [aA]M) = e(P, S) = v.

The larger workload lies on the side of the verifier, since he must compute two pairings, whereas the
signer only needs to compute one scalar multiplication. But this meets the usual scenario encoun-
tered in practice that the sender should sign every message and the receiver can decide whether it is
worth the effort checking the signature, or if he believes that it is correct right away.

Remark 24.8 Obviously short signatures do not require a DL system with bilinear structure but use
only the defining property of Gap-DH groups to compare u and v. We described the system in
this more restrictive setting, as curves lead to efficient instantiations allowing compression, and as
until now curves with efficiently computable Tate–Lichtenbaum pairing constitute the only known
examples of such groups.

24.2 Realization

We have seen in Section 6.4.1 that the Tate–Lichtenbaum pairing is a bilinear map from the Jacobian
JC of a curve C/Fq to the multiplicative group of Fqk for some k depending on C and Fq. If k
is small, the pairing can be computed very efficiently, as explained in Chapter 16. The previous
section shows how it can be used for cryptographic applications. In this section, we will focus on
realizations of the Tate–Lichtenbaum pairing, namely how to use it in practice and how to create
instances with small k.

Some systems require the bilinear map e to map G × G to H , while for the Tate–Lichtenbaum
pairing the inputs come from two different groups e : G×G′ → H . Therefore, we study efficiently
computable isomorphisms from G to G′.

Let C be a curve of genus g defined over Fq with q = pd and p prime. Let JC be its Jacobian.
In this section, we are only interested in cryptographic applications, so we assume that we work in
a cyclic subgroup G of JC(Fq) of prime order �. The Tate–Lichtenbaum pairing maps the points
of order � into some field extension of the base field Fq (cf. Section 16.1.1 for details). The degree
of this extension is called the embedding degree and will always be denoted by k. In fact k is
the minimal number such that � | qk − 1, and the Tate–Lichtenbaum pairing takes its values in
F∗qk/(F∗qk)�. To achieve a unique representation one usually raises the result to the power of (qk −
1)/� such that this modified pairing maps to the �-th roots of unity µ� in F∗qk .

The size of this embedding degree is very important. Indeed, as mentioned above, the DLP
in G cannot be harder than in µ�. The multiplicative group was considered as an example for
index calculus methods in Section 20.4 There it was shown that the security is subexponential
Lqk

(
1/2,

√
2
)

for general fields and even Lqk

(
1/3, c) for the number and function field sieves as

opposed to exponential security of JC for g � 3. Therefore the parameters have to be chosen in
such a way that the DLP is hard in JC(Fq) and in µ�. Due to the different levels of security, k
should not be too small to avoid using a large finite field. On the other hand, if k is too large, the
computation of the Tate–Lichtenbaum pairing becomes inefficient since a lot of computations are
performed in Fqk or the field Fq is too small such that the DLP in JC(Fq) is easy.

By [BAKO 1998] a random elliptic curve has a large k and this result generalizes to larger genera.
In the next sections, we first detail implementations on supersingular elliptic curves as they are the
most important examples of curves with small embedding degrees and were the first to be proposed
for applications using pairings. We then consider supersingular hyperelliptic curves and conclude
with constructions of nonsupersingular elliptic curves having a small embedding degree.
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24.2.1 Supersingular elliptic curves

We now describe supersingular elliptic curves and their use for pairing-based cryptosystems. Super-
singular abelian varieties are defined in Chapter 4 (cf. Definition 4.74). We recall some properties
specialized to elliptic curves here (cf. Definition 13.14).

Definition 24.9 Let E be an elliptic curve defined over Fq with q = pd. If E[pe] � {P∞} for all e
the curve is called supersingular, otherwise it is called ordinary.

For us the most important property is that the trace t = Tr(φq) of the Frobenius endomorphism
satisfies t ≡ 0 (mod p). By the Theorem of Hasse–Weil 13.28 we have |t| � 2

√
q. Hence, over

prime fields Fp with p � 5, the condition implies t = 0 and the cardinality of E(Fp) satisfies
|E(Fp)| = p + 1. As � divides |E(Fp)| = p + 1, which in turn divides (p2 − 1), we see that for
supersingular curves over large prime fields the embedding degree is bounded by 2. As outlined in
Section 6.4.2, Menezes, Okamoto, and Vanstone [MEOK+ 1993] prove that the embedding degree
for supersingular elliptic curves is always less than or equal to 6. In fact, we can even say more. It is
proved in Section 6.4.2 that the upper bound on the embedding degree depends on the characteristic
of the base field:

• in characteristic 2 we have k � 4,

• in characteristic 3 we have k � 6,

• over prime fields Fp with p � 5 we have k � 2,

and these bounds are attained.

This means that for supersingular elliptic curves over large prime fields we must work in a larger
field than usual for curve-based cryptography. For current security parameters we should choose a
ground field with around 2512 elements to obtain a satisfying level of security, since the finite field
Fqk needs to have at least 21024 elements to adhere to the proposals. But this is to the detriment of
efficiency, since we have to compute on some larger field for the same level of security (note that the
current proposals assume elliptic curves with 2160 elements to offer sufficient security). Therefore,
it is preferable to work in characteristic 2 or, even better, in characteristic 3 and on curves with the
maximal possible k.

Once the curve is chosen and k has been determined, the algorithms from Chapter 16, usually
referred to as Miller’s algorithms, can be used to implement the protocols from the previous section.
Particular care should be taken when working in characteristic 3 as this is not very common and
some specific algorithms and improvements to the computation of the pairing should be used, which
we now consider.

24.2.1.a Efficient Tate–Lichtenbaum pairing in characteristic 333333

In characteristic 3 (i.e., q = 3d), it is quite natural to use a triple and add algorithm instead of the
standard double and add method used to describe Miller’s algorithm as proposed in [GAHA+ 2002]
and [BAKI+ 2002]. In the computation of the Tate–Lichtenbaum pairing we compute the �-fold of
a point of order � keeping some information along the way. In general, let

∑l−1
i=0 ni3i be the signed

base 3 representation of the integer n where ni ∈ {0, +− 1} and nl−1 = 1. Let P be some point on
the elliptic curve; the computation of the scalar multiplication [n]P proceeds as follows
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Algorithm 24.10 Triple and add scalar multiplication

INPUT: An integer n represented in signed base 3 format
Pl−1

i=0 ni3
i and a point P ∈ E(F3d).

OUTPUT: The scalar multiple [n]P .

1. T ← P

2. for i = l − 2 down to 0 do

3. T ← [3]T

4. if ni = 1 then T ← T ⊕ P

5. if ni = −1 then T ← T � P

6. return T

Remark 24.11 Obviously, all the algorithmic improvements explained in Chapter 9 can easily be
applied to this basic algorithm.

To apply this algorithm efficiently, of course, we need the formulas for tripling. Note that a super-
singular elliptic defined over F3d can always be represented by an equation of the form

y2 = x3 + a4x + a6.

Let P = (x1, y1) ∈ E(F3d), then using the division polynomials (cf. Section 4.4.5.a) one sees that
[3]P is given by

[3]P =

(
x33

1 + a3
6

a4
4

+ 2
a6

a4

, 2
y33

1

a6
4

)
· (24.1)

As cubing is linear in characteristic 3, point tripling on curves of this form can be done in time
O(d) (and even O(1) in normal basis representation), which is very efficient and corresponds to the
linearity of point doubling for supersingular curves in characteristic 2 as discovered by Menezes and
Vanstone [MEVA 1990]. Moreover this provides an inversion-free algorithm for tripling (assuming
that 1/a4 is precomputed). In total, this leads to a triple and add algorithm, which is much more
efficient than the standard double and add algorithm.

Unfortunately, an inversion is required to compute the pairings since we need to compute 1/y to
obtain the equations of the lines (cf. Chapter 16 for details). Indeed, to triple the point P = (x1, y1)
we need the lines L1 and L2 involved in the doubling of P and the lines L′

1 and L′
2 involved in the

addition of P and [2]P . These lines are given by the following equations [GAHA+ 2002]:

L1 : y − λx + (λx1 − y1) = 0 with λ = 2
a

y1
the slope of the tangent at P,

L2 : x − x2 = 0 with x2 = λ2 + x1,

L′
1 : y − µx + (µx1 − y1) = 0 with µ =

(
y3
1

a2
− λ

)
the slope of the line through P and [2]P,

L′
2 : x − x3 = 0 with x3 = µ2 − x1 − x2.

As previously, let us write the integer � in signed base 3 expansion, namely

� =
l−1∑
i=0

�i3i with �i ∈ {0, +− 1} and �l−1 �= 0. (24.2)

The following algorithm is a version of Miller’s algorithm 16.1.3.c in base 3 which is well adapted
for base fields of characteristic 3.
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Algorithm 24.12 Tate–Lichtenbaum pairing in characteristic 3

INPUT: An integer � =
Pl−1

i=0 �i3
i as in (24.2) and the points P ∈ E(F3d)[�], Q ∈ E(F

3dk)[�].

OUTPUT: The Tate–Lichtenbaum pairing T�(P, Q).

1. choose S ∈R E(F
3dk)

2. Q′ ← Q ⊕ S

3. P2 ← [2]P

4. f2 ← f(Q′ − S) [f is such that div(f) = 2P − P2 − P∞]

5. if nl−1 = 1 then T ← P and f1 ← 1

6. else T ← P2 and f1 ← f2

7. for i = l − 2 down to 0 do

8. T ← [3]T [use (24.1)]

9. f1 ← f3
1

L1 L′
1

L2 L′
2
(Q′ − S) [L1, L

′
1, L2 and L′

2 are the lines arising in [3]T ]

10. if �i = 1 then

11. T ← T ⊕ P

12. f1 ← f1
L1
L2

(Q′ − S) [L1 and L2 are the lines arising in T ⊕ P ]

13. if �i = −1 then

14. T ← T � P

15. f1 ← f1f2
L1
L2

(Q′ − S) [L1 and L2 are the lines arising in T � P ]

16. return f1

3dk−1
�

Remarks 24.13

(i) Remember that Q′ − S is a divisor, so that f(Q′ − S) = f(Q′)
f(S) ·

(ii) Algorithm 24.2 is just an equivalent form of Miller’s basic algorithm, and all the im-
provements explained in Chapter 16 can of course be applied.

(iii) The final exponentiation can be omitted if one does not need a unique representative per
class of F∗qk/(F∗qk)�. For example, in Algorithm 24.6 one could first compute only the

classes u and v and check whether (u/v)(q
k−1)/� = 1.

24.2.1.b Distortion maps

The main drawback of the Weil pairing is that W�(P, P ) is always equal to 1. Hence, the pairing is
degenerate if applied to the cyclic subgroup of order � in both arguments. This is not the case with
the Tate–Lichtenbaum pairing. Frey, Müller, and Rück state in [FRMÜ+ 1999] that if �2 does not
divide the cardinality of the elliptic curve over Fqk , the Tate–Lichtenbaum pairing applied to a point
with itself yields a primitive �-th root of unity (see also Example 6.10).

Otherwise, i.e., if �2 | |E(Fqk )|, a modification is required to make the pairing nontrivial on the
cyclic subgroup generated by P ∈ E(Fq). Verheul [VER 2001, VER 2004] suggests to make use
of the fact that the endomorphism ring of a supersingular elliptic curve is an order in a quaternion
algebra. In particular this implies that the ring is not commutative and, hence, there exists an
endomorphism ψ such that P and ψ(P ) lie in disjoint cyclic groups of order � in E(Fqk). He
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calls these endomorphisms distortion maps. They give the possibility of sending points from one
�-torsion subgroup to another (different) one, over Fqk . In this way we define a new pairing by
T�

(
P, ψ(Q)

)
. In most applications, P and Q are defined over Fq and lie in the same subgroup

of order � of E(Fq), and ψ is a non-Fq-rational endomorphism. We now give examples of such
endomorphisms.

24.2.1.c Examples

In this part, we give some examples of supersingular elliptic curves in various characteristics that can
be used to build pairing-based cryptosystems. These examples come from [JOU 2000, JOU 2004],
[BAKI+ 2002], and [GAHA+ 2002]. One needs finite fields Fqk of 1024 bits to achieve that the
DLP in the multiplicative group F∗qk is as hard as the DLP of a 160-bit elliptic curve because there
are subexponential algorithms solving the DLP in finite fields while no subexponential algorithm is
known for solving the DLP on elliptic curves. The following types of supersingular elliptic curves
come with a fixed embedding degree k but allow to choose q. We state the needed size of q to
achieve that simultaneously the DLP on the curve and in F∗qk is hard. In fact as all these curves
are supersingular, the finite fields are all chosen larger than necessary as k is bounded by 6 (cf.
Section 24.2.1).

Over prime fields Fp (p �= 2, 3), there are two well-known families of supersingular elliptic
curves. The first family is given by the equation

y2 = x3 + a4x (24.3)

when p ≡ 3 (mod 4). The latter condition ensures that −1 is a nonsquare in Fq. As a distortion
map we can thus choose (x, y) �→ (−x, iy) with i2 = −1 as this maps P ∈ E(Fq) to a point of the
extension field Fq2 and hence to a linearly independent group.

The second family is given by the equation

y2 = x3 + a6 (24.4)

when p ≡ 2 (mod 3). As a distortion map we can choose (x, y) �→ (jx, y) with j3 = 1, j �= 1,
which maps to Fq2 as there are no nontrivial cube roots of unity in Fq. In [BOFR 2001, BOFR 2003],
Boneh and Franklin suggested this setting with a6 = 1 together with the Weil pairing to realize their
ID-based encryption scheme.

In both cases, the order of the curve is equal to p + 1 and the embedding degree is equal to 2
(which is the maximal possible value in this case), so that p must be chosen of the order of 2512.

However, as noticed by Boneh and Franklin [BOFR 2001] this does not mean that � must be
of this size. Indeed, for this level of security, it is sufficient to work on a subgroup of E(Fq) of
approximately 160 bits. In fact, the cardinality of E(Fq) need not be almost prime as usual but can
be of the form p + 1 = c� with � a 160-bit prime number and c some large cofactor. Hence, the
number of loops in Miller’s algorithm is not increased but the computations need to be carried out
over far too large a field.

It is possible to have an embedding degree equal to 3 in large characteristic using curves of the
form (24.4) defined over Fp2 with p prime and a4 /∈ Fp (in which case a 340-bit base field can be
used).

Over F2d , we can use the subfield curves given by the equation

y2 + y = x3 + x + a6, with a6 = 0 or 1

and the distortion map

(x, y) �→ (x + s2, y + sx + t) with s, t ∈ F24d , s4 + s = 0 and t2 + t + s6 + s2 = 0.
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These curves have 2d + 1 +− 2(d+1)/2 points and an embedding degree equal to 4 (which is the
maximal value in characteristic 2). As a consequence a 256-bit base field is sufficient. Again, this
is not satisfactory but better than in large characteristic and, of course, we can again use a subgroup
of 160-bit prime order.

Furthermore, as shown in the first part of Section 13.3, doublings are particularly fast on this type
of curve and the arithmetic profits from the coefficients being defined over the ground field.

Finally, in characteristic 3 we can use the curves given by the equations

y2 = x3 + x + a6, with a6 = +− 1

whose embedding degree is 6 and cardinality is 3d + 1 +−3(d+1)/2 (the precise cardinality in terms
of d modulo 12 and a6 is given in [JOU 2000]). In this case we can choose the distortion map

(x, y) �→ (−x + s, iy) with s3 + 2s + 2a6 = 0 and i2 = −1.

For these curves the tripling in (24.1) is even simpler given by [3]P = (x33
,−y33

). The relatively
large embedding degree allows at least a satisfactory efficiency with respect to the level of security
obtained. Indeed, in this case it is sufficient to choose a 170-bit base field.

Moreover, for the examples in characteristic 2 and 3, it can be advantageous to use the particular
structure of the extensions involved in these examples. In fact, Galbraith, Harrison, and Soldera
explain in [GAHA+ 2002] how to work efficiently in F24d and F36d where d is prime (cf. also
Section 11.3).

Thanks to these results, it is possible to choose an elliptic curve with an embedding degree equal
to 6 defined over some field of about 2170 elements, so that transferring the discrete logarithm
problem gives one on a 1020-bit field, which is not easier to solve. Thus, using pairings in this case
can be done without loss of security and (almost) without loss of performance.

Moreover, to increase the level of security, the growth in the group size for elliptic curves is much
smaller than for finite fields, e.g., an elliptic curve of 160 bits is assumed to offer security similar
to a finite field of 1024 bits, and when the finite field size is increased to 2048 bits, the size of the
elliptic curve is only increased to 200-230 bits. Thus, larger embedding degrees are required to keep
acceptable performance in both groups.

To get around this problem, we can either use hyperelliptic supersingular curves for genus g � 3,
or try to find ordinary elliptic curves with larger embedding degrees. We treat these two possibilities
in the next sections.

24.2.2 Supersingular hyperelliptic curves

Most of this section is based on [GAL 2001a]. We first recall that a hyperelliptic curve is said to be
supersingular if its Jacobian is isogenous, over Fq , to a product of supersingular elliptic curves (cf.
Definition 4.74).

As in the case for elliptic curves, there exists an upper bound, denoted by k(g), on the embed-
ding degree for supersingular curves depending only on the genus and not on the abelian variety
[GAL 2001a] (cf. Section 6.4.2).

We will now give effective values for these bounds for higher genera (we have shown above that
k(1) = 6). In fact, in terms of security, the interesting value is k(g)/g and it is called the security
parameter. It represents the logarithmic ratio between the size of the Jacobian and the size of the
finite field Fqk , which are the important parameters for security. Using cyclotomic polynomials,
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Galbraith proves that

k(2) = 12,
(
k(2)/2 = 6

)
,

k(3) = 30,
(
k(3)/3 = 10

)
,

k(4) = 60,
(
k(4)/4 = 15

)
.

This shows that for hyperelliptic curves one can obtain larger embedding degrees, but it also shows
that genus 2 supersingular curves do not solve the problem of the too-small embedding degree
encountered with elliptic curves. On the contrary, higher dimensional abelian varieties seem to
provide better ratios (for instance, 10 for dimension 3). Note that the bounds are upper bounds and
that Galbraith shows that they are sharp, in the sense that they are attained, but it is not proved that
they can be attained for the Jacobian of a hyperelliptic curve.

Remark 24.14 In cryptosystems based on general abelian varieties A/Fq, the security depends on
the cyclic subgroup of A(Fq) of prime order. Thus, in cryptography, we are only interested in
simple abelian varieties (i.e., those that do not decompose as products of lower dimensional abelian
varieties). For this case, Rubin and Silverberg prove in [RISI 1997] that Galbraith’s bounds are not
attained for dimensions greater or equal to 3.

Just as for elliptic curves, the largest security parameters (or the largest embedding degree) achiev-
able depend on the characteristic of the base field.

In the following table [RISI 1997], we give the highest security parameters attainable with simple
supersingular abelian varieties for dimensions g up to 6 defined over Fq with q = pd (the sign —
means that there is no simple supersingular abelian variety in this case).

Table 24.1 Security parameter k(g)/g for simple supersingular abelian varieties.

g 1 2 3 4 5 6

q arbitrary (Galbraith’s bounds) 6 6 10 15 24 35

q square 3 3 3 15
4

11
5

7
2

q nonsquare, p > 3 2 3 14
3

15
4

22
5 7

q nonsquare, p = 2 4 6 — 5 — 6

q nonsquare, p = 3 6 2 6 15
2 — 7

In dimension 2, the best bound obtained is the same as Galbraith’s. It is interesting to note that it
is attained in characteristic 2, which is more convenient for implementations than characteristic 3
(which is required in genus 1). As an example, Galbraith suggests the hyperelliptic curve C/F2

given by C : y2 + y = x5 + x3, which has embedding degree equal to 12.
In higher dimensions, bounds for the security parameters are smaller for simple supersingular

abelian varieties than for general ones. The largest security parameter is 15
2 = 7.5 and it is attained

for a supersingular simple abelian variety of dimension 4 in characteristic 3. Rubin and Silver-
berg [RISI 1997] construct such an abelian variety by using the Weil restriction of scalars of an
elliptic curve (which is explained in Chapter 7). For this example the field sizes can be chosen
smaller than for supersingular elliptic curves.
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24.2.3 Ordinary curves with small embedding degree

As seen in the previous sections, supersingular curves are not optimal for constructing cryptosys-
tems based on the Tate–Lichtenbaum pairing, for at least two reasons.

The first reason is that supersingular elliptic curves (or higher genus curves and more generally
abelian varieties) attain large embedding degrees only in small characteristic (e.g., char(Fq) = 3
for elliptic curves and char(Fq) = 2 for genus 2 curves). This implies in particular that for the
finite field Fqk the security estimates have to take into account Coppersmith’s attack [COP 1984].
Furthermore, recent generalizations of the Weil descent approach [GAU 2004, DIE 2004] (cf. Sec-
tion 22.3.5) make these fields with small characteristic more suspect to attacks.

The second reason is that larger embedding degrees will be necessary in the future in order to
maintain an optimal ratio between the security in the Jacobian of the curve and the security in the
finite field Fqk , and higher genus curves (or higher dimensional abelian varieties) do not really solve
this problem as seen in Section 24.2.2.

In this section, we will explain how to solve these two problems by constructing ordinary elliptic
curves defined over some prime field with a large embedding degree. This is not easy since the
results of Balasubramanian and Koblitz [BAKO 1998] show that curves having a large prime order
subgroup usually have a large extension degree. Luca and Shparlinski [LUSH 2005] generalize this
study to arbitrary elliptic curves. Therefore, trying to find at random an elliptic curve suitable for
pairing-based protocols (i.e., one with a moderately small embedding degree k ∼ 10 and a large
subgroup of prime order) is not appropriate. It is therefore quite natural to try to construct such
curves using the CM-method explained in Chapter 18.

24.2.3.a Constructing ordinary elliptic curves defined over FpFpFpFpFpFp with k �k �k �k �k �k � 6

The first work in this direction is due to Miyaji, Nakabayashi, and Takano [MINA+ 2001] who
describe how to construct ordinary elliptic curves with an embedding degree equal to 3, 4, or 6
having a large subgroup of prime order. Their method is quite restrictive since it is is necessary to
find an elliptic curve with prime order. To allow a small cofactor, Scott and Barreto [SCBA 2004],
following previous work with Lynn [BALY+ 2003, BALY+ 2004a], transformed these conditions
into a condition on cyclotomic polynomials: let E be an elliptic curve defined over Fq with trace t
and cardinality equal to c� with � prime (and c small). Then, the subgroup of order � in E(Fq) has
embedding degree equal to k if and only if � | Φk(t − 1) and � � Φi(t − 1) for i < k, where Φk is
the k-th cyclotomic polynomial.

In fact, this condition is just a combination of the two conditions q + 1 − t ≡ 0 (mod �) and
qk − 1 ≡ 0 (mod �). In this section, we are only interested in k = 3, 4, or 6 so that only Φ3, Φ4,
and Φ6 are required. We have

Φ3(x) = x2 + x + 1,

Φ4(x) = x2 + 1,

Φ6(x) = x2 − x + 1.

Unlike in Section 18.1, we here fix the ground field Fq and vary the discriminant of the quadratic
number field. In the notation of (18.3) we put D = εd. Recall that the complex multiplication
method will find an elliptic curve with a given base field Fq and given trace t if a solution can be
found for the CM-equation

Dv2 = 4q − t2

for sufficiently small values of D. Introducing the new condition on the embedding degree yields
the equation

Dv2 = 4c
Φk(t − 1)

c′
− (t − 2)2
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using q = c� + t − 1 and Φk(t − 1) = c′� . In the cases we are interested in, the degree of the
cyclotomic polynomial is always 2 so that this equation is quadratic. Setting n3 = 2c + c′, n4 = c′,
n6 = −2c + c′, m = 4c− c′, r = c′mD, y = m(t− 1) + nk and fk = n2

k −m2, the CM-equation
simplifies to the generalized Pell equation

y2 − rv2 = fk.

Such Diophantine equations are a classical topic in number theory and can easily be solved (cf.
[SMA 1998] or [COH] for details). For each solution, we must check that

• t = y−nk

m + 1 is an integer

• � = Φk(t−1)
c′ is prime, and

• q = c� + t − 1 is prime (or a power of a prime but, as noticed in [DUEN+ 2005], this
seems hopeless).

These are restrictive conditions so that solutions are rare — especially since in addition q and � must
be in a range interesting for cryptographic applications. Still, this leads to a probabilistic algorithm
that finds an ordinary elliptic curve with a given embedding degree equal to 3, 4, or 6.

Algorithm 24.15 Construction of elliptic curves with prescribed embedding degree

INPUT: An embedding degree k = 3, 4, or 6, the maximal cofactor cmax, and the maximal dis-
criminant for the CM-algorithm Dmax.

OUTPUT: A prime field Fq and an elliptic curve E such that |E(Fq)| = c� with c � cmax and �
prime or “failure”.

1. λ ← −2�k/2� + 4

2. for c = 1 to cmax do

3. for c′ = 1 to 4c − 1 do

4. nk ← λc + c′

5. m ← 4c − c′

6. fk ← n2
k − m2

7. for D = 1 to Dmax squarefree do

8. r ← c′mD

9. for each solution of y2 − rv2 = fk do

10. t ← (y − nk)/m + 1

11. � ← Φk(t − 1)/c′

12. q ← c� + t − 1

13. if t ∈ Z and � is prime and q is prime then

14. return q and CM(q, t,D)

15. return “failure”

Remarks 24.16

(i) The input value of cmax must be chosen small for reasons of efficiency of the crypto-
graphic application and Dmax must not be too large to facilitate the CM-algorithm.
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(ii) Scott and Barreto [SCBA 2004] give some congruential restrictions (on c′ and D) to
eliminate some impossible solutions and speed up this algorithm. They also notice that
some congruences give better results than others (for instance D ≡ 3 (mod 8)).

Example 24.17 This algorithm allows Scott and Barreto to find several ordinary elliptic curves
suitable for pairing-based cryptosystems such as

y2 = x3 − 3x + 259872266527491431103791444700778440496305560566

defined over the 160-bit prime field Fp, where

p = 730996464809526906653170358426443036650700061957,

and which has a 160-bit prime order subgroup of size

� = 730996464809526906653171213409755627912276816323

and embedding degree k = 6.
They also find curves defined over fields of size 192, 224, and 256 bits with very small cofactors

and embedding degrees equal to 6, cf. [SCBA 2004].

This algorithm cannot be generalized directly to higher values of the embedding degree. In fact, it
uses the fact that the k-th cyclotomic polynomial for k = 3, 4, or 6 has degree equal to 2 so that the
CM-equation can be solved. For higher values of k the degree of the k-th cyclotomic polynomial is
larger than or equal to 3 and we must use other methods.

24.2.3.b Constructing ordinary elliptic curves with larger embedding degree

In [BALY+ 2003, BALY+ 2004a], the authors notice that the conditions required in the previous
method are too restrictive for larger values of k and the CM-equation cannot be reduced to Pell’s
equation and thus cannot easily be solved. They avoid these problems by

• relaxing the condition on the size of c, which can be of the size of �,
• choosing a value to serve as solution to the CM-equation, and then
• searching for parameters that yield a CM-equation with this particular solution.

In this way they produce examples of curves with embedding degree 7, 11, and 12.
However, since the condition on the size of c has been omitted, the curves that are obtained have

a subgroup of prime order � of size only
√

q. This loss of efficiency is not very suitable for cryp-
tographic purposes. In some applications such as short signatures [BOLY+ 2002, BOLY+ 2004]
there are further reasons that require the same size for � and q. Otherwise, the use of such curves
results in an increase of length of ciphertexts or generated signatures.

Dupont, Enge, and Morain [DUEN+ 2005] also find solutions of CM-equations for larger values
of the embedding degree but they use a different approach. They choose the maximal value for the
trace with respect to the Hasse–Weil bound so that the solution to the CM-equation must be small.
They then use an exhaustive search on the remaining parameters. They also produce examples with
large embedding degrees (up to 50) but their approach has the same drawback: the curves obtained
cannot be used for efficient cryptosystems since q has twice the number of bits as �. Note that so
large degrees are not useful for the settings considered here; an embedding degree of 1024/160, i.e.,
of 6 or 7, is optimal for current security requirements and in the near future, where the finite field
Fqk should have 2048 bits, k = 10 is a good choice.

More recently, Brezing and Weng obtained a better cofactor (i.e., a better ratio between the size
of the field and the size of the subgroup of prime order) under certain conditions [BRWE 2004].
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For instance they can find ordinary elliptic curves with an embedding degree equal to 8 such that
ln q
ln � = 5

4 so that a 200-bit prime field is required for 160-bit security.
Thus, by using CM-methods as explained above it is possible to construct ordinary elliptic curves

with small embedding degrees. Of course, the main drawback of those methods is that ordinary
elliptic curves have no distortion maps, which are required in many protocols, so that, up until now
it is usually more practical to use supersingular curves.

Fortunately, as noticed in [BAKI+ 2002] and mentioned above, some protocols or variants of
protocols do not require such maps (i.e., can work with G �= G′). This is for instance the case in the
short signature protocol [BOLY+ 2002, BOLY+ 2004] or in the ID-based encryption [BOFR 2001]
described in Section 24.1, since the second divisor can be chosen in E(Fqk)�E(Fq), thanks to the
hash function (see next section for more details).

This approach has been partially generalized to hyperelliptic curves in [GAMC+ 2004].

24.2.4 Performance

In the following we comment on additional performance issues, namely the signature length, and
compare performance between supersingular and ordinary curves.

24.2.4.a Short signatures

The signature scheme based on Gap-DH systems was proposed as a scheme with short signatures.
In [BOLY+ 2002, BOLY+ 2004] the authors suggest using a supersingular elliptic curve E over
F3d with maximal embedding degree k = 6. The signature then consists of a point on the curve.
By Section 13.2.5 a point can be uniquely represented by the x-coordinate and one further bit. If
compression is used the signature has a length of only d lg 3. For the proposed parameters this results
in a very much shorter signature than in DSA and of half the bit-size than in ECDSA since there,
two integers modulo � are required. As a drawback, the decompression requires some additional
algorithms to recover the y-coordinate. The same considerations apply to hyperelliptic curves as
well.

24.2.4.b Comparison of ordinary and supersingular elliptic curves

In [PASM+ 2004], Page, Smart, and Vercauteren compare the efficiency of pairing-based cryp-
tosystems using supersingular elliptic curves with those using ordinary elliptic curves constructed
as explained above. As already noticed, the main drawback of ordinary curves is the absence of
distortion maps. To cope with this, we can use hash functions taking their values in E(Fqk) as
explained in the next section. In this manner, the hashed point is defined over E(Fqk), on which
arithmetic is slower than on E(Fq). For instance in the short signature scheme explained in Sec-
tion 24.1.3, a scalar multiplication of this hashed point is required. Thus if an ordinary curve is
used, we must perform a scalar multiplication on E(Fqk), whereas if a supersingular curve is used,
it is only necessary to perform a scalar multiplication on E(Fq) as the distortion map transforms the
result to an element in E(Fqk).

On the other hand, ordinary elliptic curves are defined over a base field Fql
of large characteris-

tic, whereas supersingular curves interesting for cryptographic applications are defined over a base
field Fqs of small characteristic and algorithms for solving DL on finite fields are more efficient in
small characteristic [COP 1984, JOLE 2002]. Studying the complexities in detail, the authors of
[PASM+ 2004] prove that, for the same level of security, we need

qs = q1.7
l .

It follows that for supersingular curves we need much larger base fields than for ordinary curves.
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Taking this into account, the arithmetic on ordinary curves is more efficient than the one on super-
singular curves for the same level of security.

Moreover, we have seen that embedding degrees larger than 6 can be obtained with ordinary
elliptic curves, while this is not the case for supersingular ones.

Finally, ordinary elliptic curves are more efficient for pairing-based protocols, except for appli-
cations to signature schemes, for which a costly scalar multiplication is required. Nevertheless, we
could swap the roles of G and G′ to obtain a more efficient signature generation.

24.2.5 Hash functions on the Jacobian

Here we deal with the issue of defining a cryptographic hash function h1 : {0, 1}∗ → G, taking
values in a subgroup G of the Jacobian of some curve. Such a hash function is needed in ID-based
cryptography (cf. Section 24.1.2).

In general, such hash functions are hard to build in practice. Therefore, Boneh and Franklin
describe in [BOFR 2001] how to relax the requirements. Instead of hashing directly onto a Jacobian,
one can hash onto some set A ⊆ {0, 1}∗ (using standard hash functions) and then use an admissible
encoding function to map A onto the Jacobian. An encoding function is said to be admissible if it
is computable, c-to-1 and samplable ([BOFR 2001]), where c is the cofactor (|JC(Fp)| = c�). It is
proved in [BOFR 2001] that this relaxation does not affect security.

Example 24.18 Boneh and Franklin give an example of admissible encoding functions for the el-
liptic curve y2 = x3 + 1 defined over Fp (where p ≡ 2 (mod 3) is prime). They use a standard
hash function from {0, 1}∗ to Fp. This allows us to obtain a y-coordinate y0. Then the x-coordinate
x0 is obtained by

x0 = (y2
0 − 1)1/3 = (y2

0 − 1)(2p−1)/3.

Finally they compute the scalar multiplication [c](x0, y0) to obtain a c-to-1 map.

Of course, this kind of map can be applied to other curves. Galbraith generalizes this example in
[GAL 2001a] as follows: the identity bit-string is concatenated with a given padding string and
then passed through a standard hash function taking its values in Fq. This process is repeated
using a deterministic sequence of padding strings until the output is the x-coordinate (or the first
polynomial u(x) in the higher genus case) of an Fq-rational element of the Jacobian. It is then easy
to find the remainder of the representation of this element using the decompression techniques (cf.
Sections 13.2.5, 13.3.7, 14.2.1, and 14.2.2). Finally, this element is multiplied by c.

This method provides an Fq-rational element of the Jacobian. Often an Fqk -rational element is
required to ensure that the pairing is nontrivial. For supersingular curves, distortion maps can be
used to transform the element obtained above to an Fqk -rational one. But for ordinary curves, this
is not possible.
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Primality and factoring are essential in many aspects of public-key cryptography. RSA is still the
most widely used public-key cryptosystem, and its fundamental idea is based on the difficulty of
factoring compared to the simplicity of primality testing. In addition, in ECC and HECC we need
to work in groups whose order is either prime or a small factor times a large prime, so once again
primality is essential.

The simplest attempt to factor an integer n is of course trial division. But the main breakthrough
in primality and compositeness testing was made by Fermat thanks to his “little” theorem an−1 ≡ 1
(mod n) when n is a prime not dividing a. Although this does not give a necessary and sufficient
condition for primality, it can be modified so that the number of exceptions becomes vanishingly
small. Such modifications are called compositeness tests since they will prove a number composite,
but will never prove that a number is prime, only give a “moral certainty” of that fact. Deeper
modifications lead to true primality tests, giving a proof of primality. Once a number n is proven
composite, we can either be content with that fact, or want to know the factors of n, and this is the
whole subject of factoring.

There are two attitudes that one can have with respect to compositeness and primality testing. If
we are content with the fact that a number is almost certainly, but not yet provably prime, we can
stop there, and declare our n to be an industrial-grade prime number. The disadvantage is that this
may be false, and as a consequence it can induce either bugs or security holes in cryptosystems using

591
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that number. The big advantage is that the test is very fast and easy to implement, so for instance a
dynamical generation of industrial-grade primes can be included in a smart card environment.

If we want higher security, or if we can spare the time, or simply if we want mathematical rigor,
we must use a true primality test. These are much more complex than compositeness tests, both
in the mathematics involved (although the mathematics of the AKS test is quite simple), and in the
algorithmic description.

Finally, if we know that a number is composite, we may want to know its factors. This leads to
the vast domain of factoring, which includes a wide variety of basic methods, and of variants of
these methods.

Since this book is primarily targeted to elliptic and hyperelliptic curve cryptosystems, we will not
give too much detail of the algorithms, but refer the reader to the abundant literature on the subject,
for instance to [COH 2000].

Our focus is on generic methods. Techniques that only work for inputs of a certain form (such as
Mersenne numbers) will not be considered here. Information about them can be found in any good
book on computer algebra.

As we remarked in Chapter 19, when constructing a cryptosystem based on the DLP in a group,
the order of the latter must be prime or almost prime. After point counting, the order must be
checked for suitability, or, if a curve is constructed by means of complex multiplication, the possible
orders must be checked for (almost) primality. Moreover, some of the methods presented here make
use of the theory of elliptic and hyperelliptic curves, and are themselves applications of the ideas
given in other chapters. In general, their implementation can take advantage of the techniques that
we describe elsewhere in this book; see for example Chapters 9, 11, 13, and 14.

25.1 Compositeness tests

We begin with compositeness tests. These are tests that can prove that a number is composite or
assess that it is a prime with a certain probability. This might seem strange, since a given integer
is either prime or composite. It refers to the fact that a run of the test will possibly not be able
to identify some composites as such. Running the test several times with different parameters —
or using a combination of different tests — can increase the probability that a number identified
as a probable prime is indeed prime, but will never give us complete certainty unless an explicit
primality proof is given. For this purpose, primality tests have been devised, and we shall see them
in Section 25.2.

25.1.1 Trial division

As already mentioned, the simplest method for factoring a number n, and in particular to detect
whether it is prime or composite, is trial division. This can be done in several ways. We could
divide n by all integers up to n1/2 until either a nontrivial factor is found or n is declared prime
because it is not divisible by any such integer. An evident improvement that gains a multiplicative
factor is to divide only by 2, 3, and integers congruent to +− 1 modulo 6, or more generally to use a
wheel, in other words to use as divisors elements of congruence classes of integers coprime to some
integer W , together with the prime divisors of W . The number W should not be chosen too large
since we have to store a table of ϕ(W ) integers, where ϕ denotes Euler’s totient function. Another
possibility is to use a precomputed table of prime numbers up to some bound B. If n � B2 this
will be sufficient to factor n, otherwise the prime number table will at least tell us that the smallest
prime factor of n is larger than B. Once again B should not be chosen too large since there are more
efficient ways than trial division for removing small factors, for instance, Pollard’s rho method.
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25.1.2 Fermat tests

The fundamental remark, due in essence to Fermat, that allows us to distinguish between primes
and composites without factoring is that an element g of a finite group G of cardinality N satisfies
gN = 1, where 1 denotes the identity element of G. Applied, for instance, to G = (Z/nZ)∗ for n
prime, it gives Fermat’s little theorem

an−1 ≡ 1 (mod n) when gcd(a, n) = 1.

If n is not prime but satisfies this condition, we say that it is a pseudoprime to base a. If the condition
is not satisfied, then we call a a Fermat witness for the compositeness of n.

Although it is not a necessary and sufficient condition (for instance 2340 ≡ 1 (mod 341) al-
though 341 = 11×31 is not prime), the pseudoprimality test is already very useful for the following
two reasons:

• The number of exceptions, although infinite, is quite small. In other words, if n is a
pseudoprime to base a there is already a good chance that n is in fact prime.

• The test is practical, in other words it is easy to compute an−1 mod n using any rea-
sonable exponentiation method in Z/nZ, cf. Chapter 9. This is in marked contrast with
other tests such as those based on Wilson’s theorem (n − 1)! ≡ −1 (mod n) if and
only if n is prime, since it is not known how to compute (n− 1)! mod n in a reasonable
amount of time (and this is probably impossible).

Pseudoprimes to base 2 are sometimes also called Poulet numbers or Sarrus numbers. There are
1091987405 primes less than 25 × 109 and 21853 nonprime pseudoprimes to base 2 – a relatively
small number, but still too large for some applications.

To improve on this test (i.e., to reduce the number of exceptions), we can use several bases a.
Unfortunately, even such a stronger test has infinitely many exceptions since there exist infinitely
many nonprime n such that an−1 ≡ 1 (mod n) for all a coprime to n. Such a composite number
n without any Fermat witnesses is called a Carmichael number. It is easy to show that Carmichael
numbers must satisfy very strong conditions: an integer n is a Carmichael number if and only if it
is squarefree and p − 1 divides n − 1 for all prime factors p of n. As a consequence, Carmichael
numbers are odd and have at least three prime factors. On the other hand, it has been quite difficult
to show that there are infinitely many Carmichael numbers. In [ALGR+ 1994] it has been proven
that the number of Carmichael numbers up to x is at least x2/7 for x large enough (2/7 ≈ 0.285).
The exponent has been improved to ≈ 0.293 in [BAHA 1998] and, recently, to ≈ 0.332 by Harman
in [HAR 2005]. Erdős [ERD 1956] conjectured that there are x1−o(1) Carmichael numbers up to
x for x large. Granville and Pomerance [GRPO 2002] give convincing arguments to support this
conjecture and also their own that, for any given integer k � 3, there are x1/k−ok(1) Carmichael
numbers up to x with exactly k prime factors.

There are only 2163 Carmichael numbers less than 25 × 109 [POSE+ 1980]. The Carmichael
numbers under 100000 are

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585,

15841, 29341, 41041, 46657, 52633, 62745, 63973, and 75361.

Richard Pinch gives a table of Carmichael numbers up to 1017 on his web site [PINCH].
It is possible and important to use more sophisticated groups G than (Z/nZ)∗. These groups

must have the following properties:

• The cardinality of G should be equal to some simple function f(n) when n is prime,
and rarely be a divisor of f(n) if n is not prime (or even better, the group law may
not be defined everywhere if n is not prime). In the example G = (Z/nZ)∗ we have
f(n) = n − 1.
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• It must be easy to compute in G, and in particular to detect if an element is equal to the
identity element 1 of G.

As examples of such groups we mention subgroups of finite fields and the group of rational points
of an elliptic or (of the Jacobian of) a hyperelliptic curve over a finite field.

All these groups can also be used for factoring, but then we need some additional properties that
we will mention below.

25.1.3 Rabin–Miller test

The Fermat test is very attractive because of its simplicity, but it is not able to identify the Carmichael
numbers as composite. As Pomerance [POM 1990] writes: Using the Fermat congruence is so
simple that it seems a shame to give it up just because there are a few counter examples! Hence
improved tests have been devised that aim to reduce the number of incorrectly identified composites,
but without sacrificing too much of the beauty of the Fermat test.

Certainly the most important of all compositeness tests improving upon the Fermat test is the
Rabin–Miller test. It is based on the following additional property of a prime number n: if x2 ≡ 1
(mod n) then x ≡ +− 1 (mod n). Thus instead of testing only that an−1 ≡ 1 (mod n) we write
n− 1 = 2tm with m odd, and then it is easily seen that either am ≡ 1 (mod n) or that there exists
an integer s with 0 � s � t− 1 such that a2sm ≡ −1 (mod n). If these conditions are satisfied we
say that n is a strong pseudoprime to base a.

If a2s+1m ≡ 1 (mod n) and b = a2sm �≡ +− 1 (mod n) for some 0 � s � t− 1, then n must be
composite, and gcd(b + 1, n) is a nontrivial factor of n. In fact, if a is chosen uniformly at random
in [2, n − 2], the test furnishes a proper divisor of a Carmichael number with probability at least
1/2.

As such, this simply gives a stronger test than the basic Fermat test. For instance, although 340
is a pseudoprime to base 2, it is not a strong pseudoprime because 2170 ≡ 1 (mod 341) while
285 �≡ +− 1 (mod 341). The smallest nonprime strong pseudoprime to base 2 is n = 2047. The
following list [POSE+ 1980] gives all composite numbers up to 25 × 109 that are simultaneously
strong pseudoprime for bases 2, 3 and 5:

25326001, 161304001, 960946321, 1157839381, 3215031751,

3697278427, 5764643587, 6770862367, 14386156093,

15579919981, 18459366157, 19887974881, and 21276028621.

The only number of the above that is also a strong pseudoprime to base 7 is 3215031751.
The basic result due to Rabin and Monier is that for a given nonprime n the number of false

witnesses, i.e., of a between 1 and n such that n is a strong pseudoprime to base a is at most equal
to n/4, in fact at most equal to ϕ(n)/4, where ϕ is Euler’s totient function. Thus, by repeating the
test a small number of times (for instance, 20), and assuming that the tests are independent (which
they are not), we can say that n has a very high probability of being prime, and so is an industrial-
grade prime, according to a name coined by one of the authors. The above procedure is called the
Rabin–Miller test.

Thus, after a small trial division search, one applies the Rabin–Miller test and the outcome is
as follows: if the test has failed for some a this gives a proof that n is composite, usually without
giving any clue to its factors. If it is necessary to know the factors of n, we must then use a factoring
method. On the other hand if every test has succeeded, then there is a very high probability that n is
prime. Note however that in this case the tests will never prove that n is prime. To prove primality,
we must use a primality test. Such a test will have two possible outcomes: either it will give a
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proof that n is prime, or it will give a proof that n is composite, this last alternative being extremely
unlikely since it is essentially ruled out by the Rabin–Miller test.

There are other similar strengthenings of the Fermat test, for instance, the Solovay–Strassen
compositeness test, which checks whether

a(n−1)/2 ≡
( a

n

)
(mod n),

where
(

a
n

)
is the Legendre–Kronecker symbol. This test is strictly weaker than the Rabin–Miller

test since every strong pseudoprime to base a passes this test, but the number of exceptions for a
given nonprime n can be as large as ϕ(n)/2 instead of ϕ(n)/4. Since the probability of error (that
is, the probability that it fails when n is composite) is higher than in the Rabin–Miller test, the same
degree of confidence can be achieved by using more iterations of the test.

Slightly more complicated tests have been introduced that reduce the proportion to 1/4 as in the
Rabin–Miller test, but to little advantage: in practice the Rabin–Miller test efficiently distinguishes
between prime and composite numbers, although if the number is prime a primality proof is always
necessary afterwards, except if we are content with industrial-grade primes (for instance, when we
need to generate large prime numbers in real time on a smart card).

25.1.4 Lucas pseudoprime tests

For a reference to the facts mentioned in this section, see [RIB 1996].
Let P and Q integers satisfying D := P 2 − 4Q > 0, and let ρ = 1

2

(
P +

√
D
)
, σ = 1

2

(
P −

√
D
)

be the roots of the equation x2 − Px + Q = 0. Consider the two sequences

Uk =
ρk − σk

ρ − σ
and Vk = ρk + σk.

The sequences Uk and Vk satisfy{
U0 = 0, U1 = 1,

V0 = 2, V1 = P,
and, for k � 0,

{
Uk+2 = PUk+1 − QUk,

Vk+2 = PVk+1 − QVk.

The terms of the sequences can be very efficiently obtained by means of recurrence relations that
permit the construction of a kind of double-and-add-like ladder for each value of the index k con-
sisting of O(lg k) steps. These relations are{

U2k = UkVk,

V2k = V 2
k − 2Qk,

{
U2k+1 = Uk+1Vk − Qk,

V2k+1 = Vk+1Vk − PQk.

We have the following result, which is exactly analogous to the one leading to the notion of strong
pseudoprime.

Theorem 25.1 Let p be a prime number not dividing 2QD, and write p −
(

D
p

)
= 2tm with m odd.

Then either p | Um or there exists s with 0 � s � t − 1 such that p | V2sm.

A composite number n relatively prime to 2QD and such that either n | Um, or there exists s with
0 � s � t − 1 such that p | V2sm, where n −

(
D
n

)
= 2tm with m odd, is called a strong Lucas

pseudoprime with respect to the parameters P and Q.
A weaker notion is that of a Lucas pseudoprime, which is defined as a composite number n that

is coprime to 2QD, and such that the Legendre symbol
(

D
n

)
= 1, and n | Un+1. There are no even

Lucas pseudoprimes [BRU 1994], and the first Lucas pseudoprimes are 705, 2465, 2737, 3745, . . .
There are several additional definitions, such as that of extra strong Lucas pseudoprime [MOJO],

Frobenius pseudoprime, Perrin pseudoprime, and probably many more scattered in the literature.
See, for example, [GRA 2001].
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25.1.5 BPSW tests

Baillie and Wagstaff [BAWA 1980] and Pomerance et al. [POSE+ 1980, POM 1984] proposed a
test (or rather a related set of tests), now known as the BPSW probable prime test, which is a
combination of a strong pseudoprime test and a “true” Lucas test, i.e., with

(
D
n

)
= −1.

There are several variants, such as the following, modeled around the description in [POM 1984]:

1. Perform a strong pseudoprime test to base 2 on n.

• If this test fails, declare n composite and halt.

• If this test succeeds, n is probably prime: perform the next step.

2. In the sequence 5,−7, 9,−11, 13, . . . find the first number D for which the Legendre
symbol

(
D
n

)
= −1, then perform a Lucas pseudoprime test with discriminant D on

n. Some authors perform here a strong Lucas pseudoprime test in place of the Lucas
pseudoprime test. Marcel Martin uses a different sequence for finding D, namely D =
5, 21, 45, . . . , (2k +1)2 − 4, . . . which may lead to a faster search. This approach might
have been suggested by Wei Dai, but the attribution is uncertain.

• If this test fails, declare n composite and halt.

• If this test succeeds, n is very probably prime.

Pomerance [POM 1984] originally offered a prize of $30 for discovery of a composite number
that passes this test, but the offer was subsequently raised to $620 by Selfridge and Wagstaff.
PRIMO [PRIMO] author Marcel Martin uses the BPSW test in his ECPP (cf. Section 25.2.2) soft-
ware. Based on the fact that in more than 3 years of regular usage the ECPP part of his software
never found a composite that passes the BPSW test, he estimates that no composite up to about
10000 digits (the current limit for ECPP) can fool the latter. Still, its exact reliability is not yet
known.

Grantham [GRA 1998] provided a pseudoprimeness test (RQFT) with probability of error less
than 1/7710, and he pointed out that the lack of counter examples to the BPSW test was a quite
strong hint that probability of error of the latter may be much lower.

Zhenxiang Zhang [ZHA 2002] has a variant of the BPSW test called the one-parameter quadra-
tic-base test (OPQBT), that is passed by all primes � 5 and passed by an odd composite n with a
certain probability of error that is also very carefully analyzed.

The running time of the OPQBT is asymptotically 4 times that of a Rabin–Miller test in the worst
cases, but only twice that of a Rabin–Miller test for most composites. This, together with the much
higher reliability of the test, should result in a test that is faster that the Rabin–Miller test for a given,
asymptotically very high, reliability level on large numbers.

25.2 Primality tests

This section is devoted to primality tests, i.e., to tests that can identify prime numbers with certainty.

25.2.1 Introduction

Note first that primality tests may be error-prone, since they may only give a one bit yes/no answer.
Thus if there is any mistake, either in the algorithm or in the implementation, it will be difficult to
detect, and the only remedy is to use another algorithm and another implementation on the same
number. Thus, if possible, we will ask the primality test not only to give a proof of primality, but
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also a primality certificate, in other words some data that will allow anyone to prove the primality
of the number for himself much more rapidly than the initial proof. Of the two main primality tests
in use today, the ECPP test gives such a certificate, while the APRCL test does not, at least without
considerable modifications.

The simplest primality test is the Pocklington–Lehmer test. Although completely superseded, it
contains the basic ingredients of modern primality tests. It is based on the following result.

Proposition 25.2 Let n be a prime number. Then for every prime divisor p of n − 1, one can find
an integer ap such that

an−1
p ≡ 1 (mod n) and gcd

(
a(n−1)/p

p − 1, n
)

= 1.

Conversely, if this is satisfied and n > 1, then n is prime.

The problem with using this proposition is that it is necessary to find the prime factors of n − 1,
hence essentially to factor n − 1, which may be impossible in practice. Although this test can be
improved in a number of ways, and combined with tests coming from other subgroups of finite
fields (in other words, essentially Lucas-type tests), it is basically limited in scope because of the
need to factor.

25.2.2 Atkin–Morain ECPP test

ECPP stands for elliptic curve primality proving. The initial method is described in [ATMO 1993].
See [FRKL+ 2004] for the latest version. This is currently the primality test of choice, and has
for some time held the record for the size of general numbers that have been proved prime (special
numbers such as Mersenne numbers can be proved prime using faster methods). In any case, for
cryptographic purposes, ECPP and the other modern primality test APRCL are just as efficient,
since a 1024 bit number, for example, can be proven prime in less than a minute by both algorithms.

The ECPP primality test is based on a result very similar to the one used for the Pocklington–
Lehmer test, replacing the group (Z/nZ)∗ by the group E(Z/nZ), where E is a suitable elliptic
curve.

Proposition 25.3 Let n > 1 be an integer coprime to 6. Assume that we can find a plane ellip-
tic curve E defined over Z/nZ, a point P ∈ E(Z/nZ), and a positive integer m satisfying the
following conditions:

• [m]P = P∞, where P∞ is the identity element of the elliptic curve.
• There exists a prime divisor q of m such that q > (n1/4+1)2 and [m/q]P = (X : Y : Z)

in projective coordinates with gcd(Z, n) = 1.

Then n is prime.

The integer m above is in practice going to be the cardinality of E(Z/nZ) (if n is prime), but it
is not necessary to know this in advance. This is similar to the Fermat–Pocklington–Lehmer test
where one uses n − 1 as a supposed cardinality of (Z/nZ)∗, although this is not yet known.

There are two apparently quite difficult problems that we must solve to be able to use Proposition
25.3. The first one is to find a suitable integer m, hence essentially to compute the cardinality of
E(Z/nZ). The second is once again to factor m so as to find a suitable prime divisor q. A priori
this seems to make life even more difficult than for the Pocklington–Lehmer test. However, this is
not at all the case, because of the following two crucial remarks.

• Contrary to the Pocklington–Lehmer test we can vary the elliptic curve E, so that if
we have some algorithm that can compute the cardinality m of E(Z/nZ) (when n is
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prime), we use trial division on m to see whether there exists a large (pseudo)prime
divisor q of m, and if this does not seem to be the case or cannot be determined easily
we simply choose another curve. This is the basis of the theoretical and nonpractical
Goldwasser–Killian test.

• Although there do exist efficient (polynomial time) algorithms for computing m, it is
much better to use the theory of complex multiplication to construct elliptic curves E
for which m can be immediately computed. This is the basis of the Atkin–Morain ECPP
test.

To use complex multiplication, cf. Chapter 18, we must find a negative discriminant D (not neces-
sarily fundamental) such that n splits in the quadratic order of discriminant D as a product of two
elements n = ππ or, equivalently, such that there exist integers a and b with a2+|D|b2 = 4n. If this
is the case, it is immediate to construct an elliptic curve E over Z/nZ with complex multiplication
by the given order (see below), and we have the simple formula

|E(Z/nZ)| = n + 1 − π − π = n + 1 − a.

A necessary condition for n to split as a product of two elements is
(

D
n

)
= 1. This will occur with

probability approximately equal to 1/2. This necessary condition will also be sufficient if the class
number h(D) of the order is equal to 1, and this occurs only for 13 values of D, namely D = −3,
−4, −7, −8, −11, −12, −16, −19, −27, −28, −43, −67, or −163. Otherwise, if

(
D
n

)
= 1 there

will be a probability close to 1/h(D) for n to split as a product of two elements.
The basic Atkin–Morain test thus proceeds as follows. We choose discriminants D in sequence

of increasing h(D), and for a given D we test whether
(

D
n

)
= 1 and whether 4n is of the form

a2 + |D|b2. This last condition can easily be checked using a Euclidean type algorithm called
Cornacchia’s algorithm, see [COH 2000]. Once a suitable D has been found, as well as the corre-
sponding integer a, we compute m = n + 1 − a. If m can easily be factored and is found to have
a pseudoprime divisor q > (n1/4 + 1)2 we can apply Proposition 25.3 and prove (or very rarely
disprove) that n is prime. If we cannot easily factor m we go on to the next value of D.

To finish the description of the test we explain how to construct the elliptic curve E, given a
discriminant D satisfying the above conditions. Assume first that D �= −3 and D �= −4. We first
compute the elliptic j invariants of the h(D) classes of the order of discriminant D as complex
numbers, using one of the efficient formulas for j. We then form the monic polynomial HD(X)
whose roots are these h(D) values, in other words the class polynomial, see Chapter 18. The theory
of complex multiplication tells us that HD(X) has integer coefficients, and gives an estimate on
the size of these coefficients, so if we have used sufficient accuracy we simply round to the closest
integer the coefficients of the polynomial that we have obtained so as to compute HD(X). Since we
have chosen D such that n splits as a product of two elements, the theory of complex multiplication
also tells us that the polynomial HD(X) will split modulo n as a product of h(D) linear factors, at
least if n is prime. If we call j one of the h(D) roots modulo n the elliptic curve E can be defined
by the equation

y2 = x3 − 3cg2kx + 2cg3k,

where c = j/(j − 1728), g is any quadratic nonresidue modulo n and k is 0 or 1. Although it
seems that we obtain in this way many different elliptic curves, corresponding to the choice of the
root j, of the nonresidue g and of k, it is easily shown that there are only two nonisomorphic curves
E, corresponding for instance to a fixed choice of j and g and the two possible values of k. The
cardinality |E(Z/nZ)| of these curves is equal to n + 1 − a or n + 1 + a, so we have two chances
of obtaining a suitable curve for a given D < −4.

If D = −3 or D = −4 the (simpler) construction must be slightly modified. If D = −4, hence
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for n ≡ 1 (mod 4), we have the four curves

y2 = x3 − gkx,

where as before g is any quadratic nonresidue modulo n but now 0 � k � 3. If D = −3, hence for
n ≡ 1 (mod 3), we have the six curves

y2 = x3 − gk,

where 0 � k � 5 and where g is not only a quadratic nonresidue but also a cubic nonresidue, in
other words must also satisfy

g(n−1)/3 �≡ 1 (mod n).

Remarks 25.4

(i) The above method in fact leads to a recursive test: after having found a suitable elliptic
curve E and an integer m having a large strong pseudoprime factor q, we must apply
the method once again, but now with n replaced by q, until we reach integers that are
sufficiently small to be shown prime by some other method.

(ii) The ECPP test gives a primality certificate for the primality of n. Indeed, at each stage
of the recursion it is sufficient to give the equation of the elliptic curve E, the integer
m, and the prime q (note that the choice of the point P satisfying the hypotheses of
Proposition 25.3 is unimportant and can be done very rapidly).

(iii) We have only described the basic Atkin–Morain test. In an actual implementation there
are evidently many additional tricks that we will not give here.

25.2.3 APRCL Jacobi sum test

APRCL stands for the initials of the five authors of this test (Adleman, Pomerance, Rumely, Cohen,
Lenstra), see [ADPO+ 1983], [COLE 1984], [COLE 1987].

This test is based on a version of Fermat’s theorem in cyclotomic fields. It is considerably more
complicated to explain than ECPP so we will be content with a sketch.

Let χ be a Dirichlet character modulo some prime q (which in practice will not be very large, at
most 108, say), and let ζq = exp(2iπ/q) be a primitive q-th root of unity in C. Recall that the Gauß
sum τ(χ) is defined by

τ(χ) =
∑

x∈Z/qZ

χ(x)ζx
q .

One of its basic properties is that when χ is not the unit character then |τ(χ)| = q1/2. Furthermore
if χ is a character of order 2 (in other words a real character) we even have τ(χ) = (χ(−1)q)1/2 for
a suitable choice of the square root.

The basic idea of the APRCL test is the following proposition, stated purposely in vague terms.

Proposition 25.5 Let n be prime, and let χ be a character of prime order p with p | q − 1. In the
ring Z[ζq , ζp] we have the congruence

τ(χ)n ≡ χ(n)−nτ(χn).

Conversely, if this congruence is true for sufficiently many characters χ, and if some easily checked
additional conditions are satisfied then n is prime.
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We note that if we choose χ(n) =
(

q
n

)
we obtain again the Solovay–Strassen test, which reduces to

test if q(n−1)/2 ≡
(

q
n

)
(mod n).

We must solve two important problems. One is theoretical: we must make precise the “suffi-
ciently many” and the additional conditions of Proposition 25.5. The second is practical: how does
one test the congruence, since even if q and p are moderately small the ring Z[ζq , ζp] may be quite
large. The first problem is (almost) solved by the following theorem.

Theorem 25.6 Let t > 1 be an integer, and set e(t) =
∏

(q−1)|t q, where the product is over the
primes q such that (q − 1) divides t. For each q | t and for each prime p | (q − 1) choose any
character χq,p modulo q of exact order p. Assume that the following conditions are satisfied:

• For each such pair (p, q), we have the congruence

τ(χp,q)n ≡ χp,q(n)−nτ(χn
p,q).

• For each p | t a technical condition Lp is true.
• We have gcd(te(t), n) = 1 and e(t) > n1/2.
• For every i with 0 < i < t, we have ri = 1, ri = n, or ri � n, where ri denotes the

remainder of the Euclidean division of ni by e(t).

Then n is prime.

The condition Lp is slightly too technical to explain here. It is for instance satisfied if p �= 2 and
np−1 �≡ 1 (mod p2).

The second problem is that of the practicality of the congruence test, since the ring Z[ζq, ζp] is
large. The crucial ingredient here is to introduce Jacobi sums, which are closely linked to Gauß
sums but belong to the much smaller ring Z[ζp] (typically p � 19 even for n having more than 1000
decimal digits). By definition, if χ1 and χ2 are two Dirichlet characters modulo the same q the
Jacobi sum J(χ1, χ2) is defined by

J(χ1, χ2) =
∑

x∈Z/qZ

χ1(x)χ2(1 − x).

The crucial formula linking Jacobi and Gauß sums is the following: if χ1, χ2, and χ1χ2 are all three
nontrivial characters then

J(χ1, χ2) =
τ(χ1)τ(χ2)
τ(χ1χ2)

·

Thus if the τ(χi) satisfy some congruence conditions, so does J(χ1, χ2), in the smaller ring Z[ζp].
Conversely, using some additional group ring machinery it is possible to show that if p �= 2 and
J(χ, χ) satisfies a suitable congruence in Z[ζp], then τ(χ) will satisfy the desired congruence in
Z[ζq, ζp] (for p = 2 we must introduce more complicated Jacobi-type sums). It can thus be shown
that all the congruences can in fact be done in Z[ζp] using Jacobi sums, and this is why this test
is called the Jacobi sum test. An evident additional gain is the following: if for instance n ≡ 1
(mod p) (which occurs often since p is very small), we can in fact replace ζp by a p-th root of 1
in (Z/nZ)∗ (for instance by a(n−1)/p modulo n for any a for which this is not equal to 1), so the
computations for that p can be done in Z.

25.2.4 Theoretical considerations and the AKS test

We begin with a few words concerning the running time of the two main practical algorithms for
primality testing, the ECPP and the APRCL tests. The ECPP test has a heuristic (but unproved)
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running time that is polynomial in lg n, of the order of O
(
lg n4+ε

)
for the most recent implemen-

tations (fastECPP). This is indeed what is observed in practice, but is not proved. Also the test is
probabilistic.

In its practical version the APRCL test is also probabilistic, with a proven expected running time
that is almost polynomial time, more precisely of O

(
lg nC lg lg lg n

)
. It seems that in practice the

APRCL test is slower by a factor of 2 or 3 (although serious comparisons of professional-level
implementations have never been made), but this is not at all because of its non-polynomial nature.
Instead it is because of the higher complexity of the basic operations, in other words because of the
size of the implicit O constant. It is to be noted that there exists a deterministic version of APRCL
with a similar running time, but which is less practical.

There have been two breakthroughs on the theoretical aspect of primality testing. The first one
occured at the beginning of the 1980’s: Adleman–Huang [ADHU 1992] proved that primality test-
ing was in RP, in other words that there exists a probabilistic algorithm for primality proving that
can be proved to run in expected polynomial time. Their quite sophisticated proof involves working
in the Jacobians of curves of genus 2 over finite fields.

The most spectacular breakthrough took place in the summer of 2002 through the work of
Agrawal–Kayal–Saxena [AGKA+ 2002], who proved that in fact primality is in P, in other words
that there exists a deterministic polynomial time algorithm for primality testing. All the more re-
markable is the fact that their algorithm is based on very simple considerations (in other words the
underlying groups are not complicated) and not on curves or higher-dimensional objects.

Since their fundamental discovery, much progress has been done by experts in the field. Lenstra
and Pomerance have for instance shown that modifications of the AKS ideas lead to a deterministic
algorithm that runs in time O(lg n6+ε). Even though the initial goal was to remove probabilistic as-
pects, Bernstein [BER 2004a] has found a probabilistic variant of AKS that runs in O(lg n4+ε). This
has been discovered independently by Mihăilescu and Avanzi [MIAV 2003], and builds upon im-
provements by Berrizbeitia [BER 2001b]. Qi Cheng has an interesting approach combining rounds
of ECPP with rounds of AKS [CHE 2003]. For now it is not clear how promising this combination
may be. The hope is to obtain a practical version, but for the moment we are far from that goal since
the best implementations can handle numbers of 300 decimal digits, a far cry from the 10000 digits
that ECPP can handle. Thus, since AKS is for the moment purely of theoretical interest, we do not
describe it here but refer for instance to [MORAIN].

25.3 Factoring

Contrary to primality testing, factoring need not be rigorous in any way, since if an algorithm claims
to output a factor of n this can trivially be checked by division.

There are many more factoring methods than primality tests. This is due primarily to the fact
that, contrary to primality, which is in a very satisfactory state, factoring is very difficult and almost
no method is really superseded. For instance, even though Pollard’s rho method, which we shall
describe in a moment, is much slower than more sophisticated methods, it is still used to remove
smallish prime factors from n, much faster than trial division. Thus a good factoring engine in a
computer algebra system usually has a large combination of methods, and the implementer must
choose carefully the sequence of methods to be used so as to optimize for speed.

25.3.1 Pollard’s rho method

This method is remarkable by its simplicity (a few lines of code) and the fact that it is much more ef-
ficient than trial division for similar results. More precisely, while trial division requires (essentially)
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time O(p) to find a prime factor p of n, Pollard’s rho method requires time approximately O(p1/2),
which of course makes a huge difference. It is based on the following idea. Let f ∈ Z[X ] be a
polynomial with integer coefficients. Consider the sequence xk defined by xk+1 = f(xk) mod n,
(in other words xk+1 is obtained by reducing f(xk) modulo n), and x0 being arbitrary. If p is some
(unknown) divisor of n we also have xk+1 ≡ f(xk) (mod p), hence the sequence xk modulo p can
be considered as a sequence of iterates of the function f in the ring Z/pZ (note that p need not be
prime). Since this ring is finite, the sequence is necessarily ultimately periodic with some period T .
Now it can be shown that if we average over all sequences of iterates of all functions f , the average
of T is O(p1/2) (much more precise results are known, see for instance [COH 2000]). Thus if we
assume that our polynomial f behaves like a “random” map from Z/pZ to itself, the period of our
sequence xk modulo p should be of the order O(p1/2). This poses a number of questions which are
all easily solved.

• The choice of f . Evidently linear polynomials will not be random. On the other hand
there is no need to choose polynomials of degree greater or equal to 3. Thus we choose
f of degree 2, and to minimize computation time we simply choose f(x) = x2 + c for
some c ∈ Z. Evidently we must choose c �= 0, but less evidently we must also choose
c �= −2 because (y + 1/y)2 − 2 = y2 + 1/y2. All other choices seem to be acceptable.

• The detection of the periodicity modulo p. Since p is unknown, the congruence xk+T ≡
xk (mod p) cannot be tested as written. Instead, we simply test whether gcd(xk+T −
xk, n) > 1. If this is not the case then certainly xk+T �≡ xk (mod p). On the other
hand if gcd(xk+T − xk, n) > 1 then we may not have discovered p itself, but in any
case we have found a divisor of n strictly larger than 1, which with very high probability
will be nontrivial, i.e., not equal to n itself.

• The detection of the condition gcd(xk+T − xk, n) > 1, in other words cycle detection.
We have studied this subject in detail in Section 19.5.1. Recall that a simple solution
is to test gcd(x2k − xk, n) > 1, which will be true as soon as k is simultaneously a
multiple of T and larger than the length of the nonperiodic part. Of course we may miss
the first occurrence of the period, and make a computation that is a little longer than
necessary, but this is largely compensated by the simplicity of the test. In practice one
uses the slightly more elaborate but much faster cycle-detection method due to Brent
and explained in Section 19.5.1.c, see [KNU 1997] and also [COH 2000].

• The detection of the condition gcd(x2k − xk, n) > 1 or of conditions of the same type.
We could of course store the xk as we go along. In fact it is much simpler, although
wasteful in time, to have the two sequences xk and yk = x2k considered as independent
sequences, with the recursion yk+1 = f

(
f(yk)

)
mod n. The storage requirements thus

become O(1). However, an easy but important improvement must also be made: since a
gcd computation takes some time, it is much more efficient to group a large number of
gcd computations together by multiplying modulo n and doing a single gcd from time
to time. For instance, setting zk = x2k − xk = yk − xk, to test whether z0, . . . , z20

are all coprime to n (which they will be if n is large), we simply compute recursively
Z = z0z1 · · · z20 modulo n (which requires for each zk only one multiplication modulo
n, not a gcd with n), and compute gcd(Z, n). If this is equal to 1, we have shown
that all the zk are coprime to n. Otherwise (which happens only at the very end of the
computation) we must backtrack our steps.

Because of its simplicity and importance, we give the algorithm explicitly, including Brent’s cycle-
detection method mentioned above adapted to our case.
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Algorithm 25.7 Pollard’s rho with Brent’s cycle detection

INPUT: A positive integer n.

OUTPUT: A nontrivial factor of n or a failure message.

1. y ← 2, x ← 2, x1 ← 2, k ← 1, l ← 1, P ← 1 and c ← 0

2. while true do

3. x ← x2 + 1 mod n, P ← P × (x1 − x) mod n and c ← c + 1

4. if c = 20 then

5. if gcd(P, n) > 1 then break

6. y ← x and c ← 0

7. k ← k − 1

8. if k = 0 then

9. if gcd(P, n) > 1 then break

10. x1 ← x, k ← l and l ← 2l

11. for i = 1 to k do

12. x ← x2 + 1 mod n

13. y ← x and c ← 0

14. repeat

15. y ← y2 + 1 mod n and g ← gcd(x1 − y, n)

16. until g > 1

17. if g = n then the algorithm return fail else return g

Example 25.8 If we choose n = 49649 the successive values of x will be 2, 5, 26, 677, 11489,
30080, 3025, 15210, 29410, 12872, 9672, 8869, 15146, 22937, 25166, 4913, and we will discover
that gcd(x1 − x, n) = gcd(15210 − 25166, 49649) = 131 is a nontrivial factor of n after 15
iterations (note that the last iteration leading to xk = 4913 is unnecessary, but comes from the
cycle-finding method).

25.3.2 Pollard’s p − 1p − 1p − 1p − 1p − 1p − 1 method

This method is also due to Pollard [POL 1974]. By Fermat’s little theorem ap−1 ≡ 1 (mod p) for
prime p and any integer a not divisible by p. It follows that if k is any integer multiple of p − 1
we also have ak ≡ 1 (mod p). Furthermore, if p | n, then p | gcd(ak − 1, n). Of course p is
unknown, but we can use this to find the prime factor p of n by computing gcd(ak − 1, n) for an
arbitrary integer a ∈ [2, . . . , n − 1] coprime to n: this is checked by a gcd computation (and, even
though unlikely, one might already find a factor of n). For this to work we have to find a multiple k
of p− 1, and the main problem is evidently that p− 1 is not known beforehand. Thus we hope that
n has a prime factor p for which p − 1 consists of the product of some small primes. If this is the
case we can choose for k a product of many small prime powers. This number might be very large,
but ak is only computed modulo n, and recursively without computing the number k itself. If this
does not work we choose k having more prime power factors and try again, or, even better, we use
a “second stage;” see [MON 1987] for implementation details.
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The result is that a prime factor p of n can be found in time proportional to the largest prime factor
of p − 1. There also exists a straightforward variant of this method using p + 1 instead of p − 1
[WIL 1982], which is the second cyclotomic polynomial. This is the reason that some cryptographic
standards require RSA moduli consisting of products of primes p for which p − 1 and p + 1 have
large prime factors. However, there are similar methods using all cyclotomic polynomials: because
of this and mainly because of the elliptic curve factoring method, which is only sensitive to the size
of p (see Section 25.3.3) and which has a much lower complexity, such precautions are superfluous
[RISI 1997].

25.3.3 Factoring with elliptic curves

One can rephrase Pollard’s p − 1 method in terms of B-smoothness: it attempts to find p dividing
n for which p − 1 is B-smooth by computing gcd(ak − 1, n) for k equal to a product of the prime
powers less than or equal to B. However, in almost all cases the largest prime in p − 1 is too large
to make this practical.

The elliptic curve method (in short: ECM) due to H. W. Lenstra, Jr. [LEN 1987] is similar to
Pollard’s p − 1 method in the sense that it tries to exploit the smoothness of a group order. In
Pollard’s p− 1 method the groups are fixed: they are the groups (Z/pZ)∗ for the primes p dividing
the number that we try to factor. The ECM randomizes the choice of the groups and of their orders.
Such groups are, as the name of the method says, the groups of points of elliptic curves, therefore
for their definitions and arithmetic we refer to the sections on elliptic curves mentioned above.
However, unlike the presentation given in the sections mentioned previously, here it is necessary
to consider curves defined over rings Z/nZ having zero divisors corresponding to the factors of n,
which “behave like fields” until some impossible division has to be performed, revealing a nontrivial
factor of n. This is what Lenstra calls a “side-exit.”

25.3.3.a Elliptic curves over Z/nZZ/nZZ/nZZ/nZZ/nZZ/nZ with nnnnnn composite

Note that a complete theory of elliptic curves over Z/nZ with n composite exists. However, we do
not need this theory here, but only some elementary remarks. Let n be a composite number coprime
to 6. An elliptic curve over Z/nZ is defined by a pair (a4, a6) ∈ (Z/nZ)2 with 4a3

4 + 27a2
6 ∈

(Z/nZ)∗ as the “curve” with equation

E : y2 = x3 + a4x + a6.

The set of points is, informally, the set E(Z/nZ) of pairs (x1, y1) ∈ (Z/nZ)2 which satisfy the
above equation together with a point at infinity P∞. On that set we define, exactly as for the
curves defined over fields, an addition that we call a partial addition. In other words, we define:
P ⊕P∞ = P∞ ⊕P = P for all P on E. The partial inverse −P of a point P = (x1, y1) such that
P ⊕ (−P ) = P∞ is the point (x1,−y1). If P, Q ∈ E(Z/nZ)� {P∞} with Q = (x2, y2) �= −P ,
we set

λ =

{
(y1 − y2)/(x1 − x2) if x1 �= x2

(3x2
1 + a4)/(2y1) if x1 = x2

and x3 = λ2 − (x1 + x2), and define P ⊕ Q =
(
x3, λ(x1 − x3) − y1

)
. Since in Z/nZ there

exist zero divisors that may appear as denominators in these formulas, the composition law may
fail to add points (this is why it is called a partial addition). Since in principle to invert a number
a modulo n we have to compute its extended integer gcd with n, a number a that corresponds to a
nontrivial zero divisor in Z/nZ will produce a nontrivial factor of n: one just has to put a “hook” in
the modular inversion routine to detect this fact (instead of just halting the software).
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Another, more mathematical way of considering the set of points of an elliptic curve over Z/nZ
for n composite is by using projective coordinates. The set E(Z/nZ) is the disjoint union of three
subsets: first the usual set of affine points having projective coordinates (X : Y : Z) with Z
invertible modulo n, corresponding to the affine coordinates (XZ−1, Y Z−1). Second, the point
at infinity P∞ with projective coordinates (0 : 1 : 0). Finally and most importantly for the ECM
factoring method, the “interesting points” (X : Y : Z) where Z �= 0 and Z is not invertible modulo
n. If n is prime there are no interesting points. On the other hand if n is composite these points
exist, and for any such point the gcd of Z and n is not equal to 1 or n hence gives a nontrivial divisor
of n. Thus the only purpose of the ECM method that we will see below is to perform computations
that allow us after a while to land in the set of interesting points.

25.3.3.b Elliptic curves over Z/nZZ/nZZ/nZZ/nZZ/nZZ/nZ modulo a prime

Let now p be a prime dividing n. The elliptic curve E overZ/nZ and its set of points can be mapped
onto an elliptic curve Ep defined over Fp simply by reducing modulo p the equation of E and the
coordinates of a point P ∈ E(Z/nZ), thus obtaining a point Pp ∈ Ep(Fp). Let P, Q ∈ E(Z/nZ).
If the partial addition can successfully compute P ⊕ Q ∈ E(Z/nZ), then it is trivial to verify that
Pp ⊕Qp = (P ⊕Q)p. Note that the algorithm detects a prime factor p of n (by failure of inversion
modulo n) if and only if it reaches a point P ∈ E(Z/nZ) for which the reduction modulo a factor
p yields Pp = (P∞)p, the zero element in Ep(Fp), but P �= P∞ in E(Z/nZ).

25.3.3.c The algorithm

Recall also that by Hasse’s theorem (cf. Corollary 5.76) we have |E(Fp)| = p + 1 − t for some
integer t with |t| � 2

√
p. If E is randomly chosen among the elliptic curves over Fp, it is reasonable

to expect that |E(Fp)| behaves like a “random number close to p+1.” Old results of Birch suggested
that this is indeed plausible [BIR 1968] and we also have the following theorem of Lenstra:

Theorem 25.9 [LEN 1987] There exist effectively computable positive constants c1 and c2 such
that for each prime p � 5 and for any subset S of integers in the interval [p + 1 −√

p, p + 1 +
√

p],
the probability rS that a random pair (a4, a6) ∈ Fp × Fp determines an elliptic curve E : y2 =
x3 + a4x + a6 with |E(Fp)| ∈ S is bounded as follows:

c1 ×
|S| − 2

2�√p� + 1
(ln p)−1 � rS � c2 ×

|S|
2�√p� + 1

ln p (ln ln p)2.

Similar results for the case of elliptic curves over F2m can be deduced from the work of Waterhouse
[WAT 1969] and Schoof [SCH 1987].

Furthermore, there are results about the density of smooth integers in intervals [1, M ] but not
about those in [M −

√
M, M +

√
M ]. Therefore the runtime arguments are based on the heuristic

assumption that these densities are equal: this has been confirmed by experiments and by the fact
that the ECM so far behaves as predicted. (In passing, we mention that Croot [CRO 2003] has some
partial results on the density of smooth numbers in intervals [M, M + H ] where H = c

√
(M) and

the constant c depends only on a lower bound on x.)
Pick a4, a6 ∈ Z/nZ at random with 4a3

4 + 27a2
6 coprime to n (otherwise we might have been

so lucky to already have found a nontrivial factor of n). With such a4 and a6, we define an elliptic
curve E over Z/nZ. In practice it is sufficient for a4 to be a single precision random integer, which
reduces the cost of operations on E. Moreover, there is no need to check if gcd(4a3

4 +27a2
6, n) �= 1,

as this is extremely unlikely unless n has a small prime factor.
Thus an elliptic curve Ep = E mod p over Fp is defined for each prime factor p of n, and

|Ep(Fp)| behaves (heuristically) as a random integer close to p + 1. Based on Lemma 20.7 with
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r = 1, α = 1, s = 1/2, and β =
√

1/2 we can assume that |Ep(Fp)| = Lp[1, 1] is Lp[1/2,
√

1/2]-
smooth with probability Lp[1/2,−

√
1/2]. Put ξ = Lp[1/2,

√
1/2]. Thus, for a fixed p, once every

ξ random elliptic curves over Z/nZ one expects to find a curve E for which |Ep(Fp)| is ξ-smooth:
Assume that E is such and let k be the product of the primes � ξ and some of their powers. Further,
we let P be a random element of E(Z/nZ). Note that since n is composite, it is not easy to
compute a square root modulo n, hence to find a point P , so in practice we proceed in reverse by
first choosing P = (x1, y1) at random modulo n, and setting a6 = y2

1 − (x3
1 +a4x1). Let k be a not

too large product of enough prime powers so that the order of Pp divides k, and attempt to compute
[k]P in E(Z/nZ) using the partial addition.

Suppose that for such a k the computation of [k]P is successful, i.e., it did not fail because of
noninvertible denominators, which means that we find no nontrivial factors of n. Then [k]P equals
some R ∈ E(Z/nZ). Its reduction modulo p, i.e., Rp ∈ Ep(Fp) would have been also obtained by
computing the elliptic curve scalar product [k]Pp in Ep(Fp). Being k a multiple of the order of Pp

we have Rp = (P∞)p ∈ Ep(Fp). But Rp = (P∞)p if and only if R = P∞ whence Rq = (P∞)q

for any prime q dividing n. It follows that k must be a multiple of the order of P when taken modulo
any prime dividing n. But E was a random curve such that |Ep(Fp)| was ξ-smooth: It is extremely
unlikely that for such a curve this would happen for all prime factors of n simultaneously.

Thus it is much more likely that the attempt to compute R fails: the partial addition breaks down
during the computation of the scalar multiplication, producing a nontrivial factor of n that is a
multiple of p.

Since one in every ξ elliptic curves over Z/nZ can be expected to generate a factor, the total
expected runtime is ξ times the time required to compute [k]P with k as above, which in turn
requires ξ partial additions, that is a cost O

(
M(lg n)ξ

)
where M(t) is the complexity of multi-

plications of t-bit numbers. The total heuristically expected running time is O
(
ξM(lg n)ξ

)
equal

to O
(
M(lg n)Lp[1/2,

√
2]
)
. This can be improved further using better scalar multiplication algo-

rithms; see Chapter 9. In a nutshell: if it must fail, it will fail anyway. So it is better to do things as
fast as possible to save time on all curves where it does not fail.

It follows that using the ECM small factors can be found faster than large factors. For p ≈
√

n,
the worst case, the expected runtime becomes Ln[1/2, 1]. For composites without known properties,
and, in particular, a smallest factor of unknown size, one generally starts off with a relatively small
k aimed at finding small factors. This k is gradually increased for each new attempt, until a factor
is found or until the factoring attempt is aborted. See [BOLE 1995] for implementation details.

The ECM can be easily turned into a parallel algorithm: any number of attempts can be run
independently on, say r processors in parallel, until one of them succeeds in finding a nontrivial
factor. The expected speedup is of a factor r.

Remark 25.10 In order to speed up the computation of the partial additions, one might want to use
advanced implementations of the modular arithmetic. Suppose one wants to adopt the Montgomery
representation, see Section 10.4, which works even for nonprime odd moduli. In this case, if the
number a is a multiple of a prime factor p of the modulus n, also the Montgomery representation
of a will be an integer divisible by p, and the inversion algorithm will discover it. For the coward:
since the quantities involved are rather large, one is also still safe from the performance point of
view using the Barrett or the Quisquater reduction methods, cf. Section 10.4 again.

25.3.3.d Using Montgomery’s trick

The ECM requires one inversion modulo n per partial addition or doubling, which takes approxi-
mately the same time as computing a gcd with n. This slows operations down, and one wants to
avoid it. One possible improvement is the use of projective coordinates. At the end of the computa-
tion of [k]P the gcd of the coordinates might yield a factor of n. The use of projective coordinates
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requires about 12 multiplications (13 in the case of a doubling) and no inversions. There is, how-
ever, a usually much faster approach that makes use of the trick due to Montgomery described in
Section 11.1.3.c, Algorithm 11.15. How can it be deployed to improve the ECM? The usual method
would have required i inversions (for instance: invocations of an extended Euclid algorithm) to do
the job. But this method requires only one inversion and 3(i − 1) multiplications modulo n. There-
fore it is superior as soon as one inversion is slower than three multiplications, and this is almost
always the case. Let τ be the ratio between the timings of an inversion and of a multiplication,
both modulo n. The computation of a partial addition requires the computation of (x1 − x2)−1 if
the points P = (x1, y1) and Q = (x2, y2) have distinct x-coordinates and of (2y1)−1 if P = Q,
plus two multiplications modulo n and some additions and subtractions. So if we work with m
curves in parallel — on a single processor in order to avoid slow intercommunication overheads —
we get that the cost of a partial addition corresponds to 6 + τ/m multiplications (7 + τ/m for a
doubling). If m is large enough (m = 50) this improvement can be remarkable (from a cost 6 + τ
to about 6). Note however that working with several curves simultaneously on one single processor
means that the processor has to work with much more data, and the number of cache misses could
lead to a performance penalty that might overcome the advantages. The quantity m must be chosen
with care. Moreover, it seems to be rather intricate to combine this idea with sophisticated scalar
multiplication algorithms; see Chapter 9. However the combination with fixed-width non-sliding
window methods seems to be relatively straightforward.

Remarkable successes of the ECM were the factorizations of the tenth and eleventh Fermat num-
bers.

A variant of the ECM suitable for the computation of discrete logarithms has never been pub-
lished.

25.3.4 Fermat–Morrison–Brillhart approach

This approach is based on Fermat’s factoring method of solving a congruence of squares modulo n:
try to find integers x and y such that

x2 ≡ y2 (mod n) and gcd(xy, n) = 1. (25.1)

It then follows that n divides x2−y2 = (x−y)(x+y) so that n = gcd(n, x−y)(n/ gcd(n, x−y),
which may yield a nontrivial factorization of n with a probability of 1 − 21−k where k is the
number of distinct odd prime factors in n. Fermat’s method to find x and y consists in trying
x = �

√
n�+1, �

√
n�+2, . . . in succession, until an x is found such that x2 −n is a perfect square.

In this form, however, the method has the same worst case running time as trial division, but is faster
if n is a product of two primes that are close to each other.

Remark 25.11 These methods do not work if n is a prime power but this is checked easily. If
n = p� where p is prime and � � 1, then n− 1 = p� − 1 is divisible by p− 1 and, by Fermat’s little
theorem, if gcd(a, n) = 1, then an−1 ≡ 1 (mod p). Hence p | gcd(an−1 − 1, n). Consequently, if
we find an a such that gcd(an − a, n) = 1, then n cannot be a prime power.

Morrison and Brillhart [MOBR 1975] proposed a faster way to find x and y. Their approach consists
in constructing x and y using identities modulo n which are, supposedly, easier to solve. There are
two phases. First, a set of relations is sought and, second, the relations are used to construct a
solution to x2 ≡ y2 (mod n). This is, essentially, the same scheme also used in the index calculus
algorithms.
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Algorithm 25.12 Fermat–Morrison–Brillhart factoring algorithm

INPUT: A rational integer n.

OUTPUT: A nontrivial factor of n.

1. Choose a factor base
Given a smoothness bound B, let the factor base P be the set of primes � B.
The cardinality of P is π(B).

2. Collecting relations
Collect more than |P| integers v such that v2 mod n is B-smooth:

v2 mod n =

 
Y

p∈P
pev,p

!

.

These congruences are called the relations.
Let V be the resulting set of relations of cardinality |V| > |P|.

3. Linear algebra
Each v ∈ V gives rise to a |P|-dimensional vector (ev,p)p∈P . Since |V| > |P|, the
vectors {(ev,p)p∈P : v ∈ V} are linearly dependent. This implies that there exist at least
|V| − |P| linearly independent subsets S of V for which

P
v∈S ev,p = 2sp is even for all

p ∈ P . These subsets S can, in principle, be found using Gaussian elimination modulo 2
on the matrix having the vectors (ev,p)p∈P as rows.

4. Compute a solution
For any subset S of V given by the linear algebra stage and the corresponding integer
vector (sp)p∈P , the integers

x =
Y

v∈S

v mod n and y =
Y

p∈P
psp mod n

form a solution to the congruence x2 ≡ y2 (mod n). Each of the |V| − |P| independent
subsets thus leads to an independent chance of at least 50% to produce a nontrivial factor
of n.

We did not mention how to collect the relations in Line 2. Morrison and Brillhart found them using
continued fractions. Dixon proposed a simpler (but slower) method: pick v < n at random and
keep the ones for which v2 mod n is B-smooth.

We do not make a complexity analysis here. In order to verify the candidates v for B-smoothness
in the relation collection stage the elliptic curve method can be used. Further, note that at most lg n
entries are nonzero for each vector (ev,p)p∈P so that sparse matrix techniques can be deployed in
the linear algebra stage. This leads to a provable Ln[1/2,

√
2] runtime for Dixon’s algorithm. The

Morrison-Brillhart method using continued fraction expansion performs somewhat better, but the
running time is only heuristic.

25.3.4.a Continued fraction method

The continued fraction method (abbreviated CFRAC) is the method used originally by Morrison
and Brillhart to factor the seventh Fermat number (39 digits) in 1970.

CFRAC looks for congruences x2 ≡ r (mod n) with small r, namely r = O(
√

n). For each
such congruence it finds, it attempts to factor r using the factor base. Where r is smooth, the
congruence is saved so it can be multiplied by other such congruences to form squares on both
sides.
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If n is a perfect square, then it is easy to factor it, but we are excluding this case anyway in view of
the remark opening the section. So

√
n is irrational.

There exist infinitely many rational approximations p/q of
√

n such that∣∣∣∣pq −
√

n

∣∣∣∣ <
1
q2

,

which are obtained as the partial fractions (convergents) of the (infinite) continued fraction expan-
sion for

√
n. If p/q is any such an approximation and ε is such that p/q =

√
n + ε/q2 then

p2 − nq2 =
(
q
√

n + ε/q
)2 − nq2 = 2ε

√
n + ε2/q2.

Since |ε| < 1, we get |p2 − nq2| < 2
√

n + 1/q2, whence all such values of p2 − nq2 are O(
√

n) as
desired.

Remarks 25.13

(i) Observe that the numerators and denominators p and q are given by recurrence formulas
involving the coefficients of the continued fraction of

√
n. Since these continued frac-

tions are periodic, one can compute p and q directly modulo n instead of computing with
unbounded integers. This trick was suggested by Montgomery.

(ii) Note that the factor base is actually only half as big as it could be: if p′ | (p2 − nq2)
then n must be a quadratic residue modulo p′ unless p′ | n. Since n is assumed not to be
a perfect square, asymptotically only half of the primes have n as a quadratic residue.
Therefore, if B is the smoothness bound, the cardinality of the factor base is ≈ π(B)/2.

25.3.4.b The quadratic sieve

Much of the time in CFRAC is spent testing the residues p2−nq2 for B-smoothness: factoring them
essentially by brute force, but Pollard’s p− 1, rho methods and ECM might be also employed. The
quadratic sieve, proposed by Pomerance [POM 1983, POM 1985], eliminates this burden almost
completely. It also tries to find small quadratic residues: those found by the quadratic sieve are
slightly larger than those found by CFRAC, but can, in practice, be tested much faster.

The method is based on the following observation: If f(X) ∈ Z[X ] is a polynomial with integer
coefficients and p is a prime number, then f(i) ≡ f(i + p) (mod p) for all i.

Suppose now that we want to check for smoothness the values of a polynomial f at several
consecutive values of i, say for i ∈ [0, . . . , L − 1].

We present a first idea for doing it. Start by building a table of values of f(i) with 0 � i < L.
For each prime p in the factor base, and for each i such that f(i) ≡ 0 (mod p), we replace our
tabulated value of f(i) by f(i)/pe(i) where pe(i) is the largest power of p dividing f(i). This is done
by computing the roots r of f(X) modulo p that satisfy 0 � r < p and then dividing f(r + kp)
by the largest power of p in it for all such roots and for all integers k � 0 such that r + kp < L.
After processing all primes in our factor base, if any table entry is +− 1, then the corresponding f(i)
was smooth. There are however too many evaluations and divisions. An alternative approach is the
following

Algorithm 25.14 Sieve method

INPUT: A polynomial f(X) ∈ Z[X], an integer L and a smoothness bound B.

OUTPUT: A list L of values i with 0 � i < L for which f(i) is B-smooth.

1. for i = 0 to L − 1 do si ← 0 [the si correspond to the f(i)]

2. for all p � B do [i.e., in the factor base]
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3. for all roots r of f(x) modulo p with 0 � r < p do

4. for all k � 0 with r + kp < L do

5. sr+kp ← sr+kp + ln p

6. for i = 0 to L − 1 do

7. if si is “close” to ln f(i) then if f(i) is B-smooth then L ← L∪ {i} .

8. return L

In practice the sieve values si and the values ln p are rounded, depending also on the base chosen
(which might be 2 or a power of 2) and represented by small integers. We do not enter into the
details how to check whether si is close to ln f(i) but one can usually approximate it fairly well (for
example by a linear function) for the range of values sieved. The values si after Line 5 are called
residual logarithms.

Let v(i) = i + �
√

n� for small i, then v(i)2 mod n = (i + �
√

n�)2 − n ≈ 2i
√

n. The above
sieve method is applied to f(i) := v(i)2 − n.

With B = Ln[1/2, 1/2] and assuming that
(
v(i)2 mod n

)
behaves as a random number close

to
√

n = Ln[1, 1/2], based on Lemma 20.7 we might infer that it is B-smooth with probability
Ln[1/2,−1/2]. This assumption is obviously incorrect: if an odd prime p divides

(
v(i)2 mod n

)
but not n, then

(
i+�

√
n�
)2 ≡ n (mod p) so that n is a quadratic residue modulo p (history repeats

itself), so that the cardinality of the effective factor base is ≈ π(B)/2. On the other hand, for
each prime p that might occur, one may expect two roots of f(X) modulo p. The result is that the
smoothness probabilities are very close to what one might predict naïvely.

Let then P be the chosen factor base. Since we have to find more than |P| = Ln[1/2, 1/2]
relations,

Ln[1/2, 1/2]
Ln[1/2,−1/2]

= Ln[1/2, 1] = O
(
e(1+o(1))

√
ln n ln ln n

)
different i’s have to be sieved. This justifies the assumption that i is small. Pomerance’s analysis
[POM 1983] shows that the total (heuristic) expected time of the quadratic sieve is Ln[1/2, 1]. See
also Lenstra’s survey in [LEN 2002].

Several ideas can be used to improve the performance of this algorithm, which will be explored
in the next sections.

25.3.4.c Multiple polynomials

We have seen that Ln[1/2, 1] different values f(i) must be sieved. The effect of the larger i’s
is noticeable because as i gets larger, the proportion of B-smooth numbers decreases. Davis and
Holdridge suggested the use of more polynomials, and a similar, more practical solution was pro-
posed by Montgomery and other authors. We now consider these proposals.

Montgomery [MON 1994] proposes quadratic polynomials of the form f(X) = a2X2 + bX + c
where b2 − 4a2c = kn with k = 1 if n ≡ 1 (mod 4) and k = 4 if n ≡ 3 (mod 4). Observe that

f(X) =
(

aX +
b

2a

)2

− b2 − 4a2c

4a2
≡
(

aX +
b

2a

)2

(mod n).

so if a, b, and c are small enough these polynomials can be expected to be equally useful as v(x)2.
In order to make the values of f(X) as small as possible on a sieving interval I, say of length
2m, we want first to center the interval at the minimum of the function f(X), which is attained for
X = ξ := −b/(2a2)· Thus I = [ξ − m, ξ + m]. We ask that |f(ξ)| ≈ |f(ξ + m)| subject to the
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condition b2−4a2c = kn. This leads us to discard the case when f(ξ) and f(ξ +m) have the same
sign and thus in the case f(ξ) < 0 < f(ξ + m) we pick

a2 ≈
√

kn/2
m

, b ≈ 0 and c ≈ −m
√

kn/8 < 0.

The largest polynomial value is about |c|, which is at most m
√

n/2. To sieve L values then one can
use L/(2m) different polynomials, sieving 2m values per polynomial. Therefore the largest residue
is about O

(
m
√

n
)

instead of O(L
√

n) as in the basic algorithm.
How to select a, b, and c? First, an odd prime value for a (with a ≈ (kn/2)1/4m−1/2) is selected

such that kn is a quadratic residue modulo a. Second, the equation b2
0 ≡ kn (mod a) is solved for

b0 and the equation (b0 + �a)2 ≡ kn (mod a)2 for �. Third, we set b = b0 + �a or b = b0 + �a−a2,
whichever has the same parity as kn. Last, put c = (b2 − kn)/(4a2), which is by construction an
integer and b2 − 4ac2 = kn.

Other authors (see, for example, Cohen [COH 2000]) suggest to take polynomials of the form
f(X) = aX2 +2bX + c with a > 0, δ := b2 − ac > 0 satisfying n | δ. These polynomials are also
equally useful as v(x)2 since

af(X) = (aX + b)2 − (b2 − ac) ≡ (aX + b)2 (mod n).

As soon as the values of one get too large for i large, a new polynomial is selected and sieving
resumes again with i = 0.

By arguments similar to those for Montgomery’s polynomials, we obtain that: a could be cho-
sen among the prime numbers close to

√
2n/m with

(
n
a

)
= 1. Then b should satisfy b2 ≡ n

(mod a). The easiest way to do it works for about half of the primes: if a ≡ 3 (mod 4), pick
b = n(a+1)/4 mod a. See Section 11.1.5 for more general square root algorithms. Finally, set
c = (b2 − n)/a. We have max

i∈I
{|f(i)|} ≈ m

√
n/2 as with Montgomery’s choice.

The resulting method is called the multiple polynomial quadratic sieve, or MPQS. There are
several ways this basic algorithm can be improved upon: we present here some of the most important
and general ideas.

25.3.4.d Self-initializing polynomials

The above description of the MPQS may lead us to think that we can try changing polynomials as
often as possible in order to make the residues as small as possible. Apart from the fact that this
might lead to collisions (i.e., small smooth residues found twice), this means, even with moderate
switching, that for each polynomial all roots modulo all primes � B have to be computed. Another
very time-consuming part is the inversion of the leading coefficient a2 (in Montgomery’s version)
or a (in Cohen’s version) modulo each prime in the factor base.

Self-initialization works choosing a not prime, but a product of a few t (about 10) medium-sized
prime numbers p with

(
n
p

)
= 1. The number of possible b, hence the number of possible polynomi-

als with leading term a, is equal to the number of solutions of b2
0 ≡ kn (mod a) or b2 ≡ n (mod a)

in Cohen’s case (in Montgomery’s case this is similar), which is equal to 2t−1. This procedure then
leads to a speedup of a factor about 2t−1 in the most time-consuming part of the root computation
during the sieve initialization phase. Faster root computation allows one to benefit by changing
polynomials more frequently, hence sieving on smaller residues that are more likely to be smooth.
The net result is about a factor of 2 speedup.

25.3.4.e Large prime variations

The sieving procedure of Algorithm 25.14 looks for values of i such that f(i) is B-smooth. It is
easily modified to also find values of i for which f(i) is a B-smooth number times one or more
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primes not much larger than B, by lowering the threshold used when inspecting logarithms after
sieving. The extra prime in the factorization of f(i) is called a large prime. If one finds two values
of i for which f(i) has the same large prime, then the corresponding congruences, which are called
partial relations, can be multiplied (or divided) together to obtain a new single relation, called a full
relation, that can be used in the rest of the algorithm.

Combined partial relations make the matrix somewhat less sparse. It is a consequence of the
birthday paradox that matches between large primes occur often enough to make this approach
worthwhile: indeed, one large prime more than halves the sieving time. Two large primes again
halve the sieving time and A. K. Lenstra claims that a third large prime has again the same effect,
see [LEN 2002, § 4.2.5].

Large primes can be interpreted as a cheap way to extend the size of the factor base — cheap
because they are not sieved with — but we cannot allow too many large primes. One reason is the
decrease in sparseness of the matrix in the linear algebra stage. The other reason lies in the way they
are recognized. After the sieving process, all powers of factor base elements are found. Therefore,
allowing one large prime requires one primality test per relation after the sieving stage, until one
is found, and then an additional comparison for all subsequent steps (in practice this primality test
is not needed for a single large prime since those that are kept are less than B2 and the residue is
not divisible by any primes up to B, so it must be prime). Allowing a remainder of the form �1�2

where �1 and �2 are large primes already requires the use of a fast special purpose factoring method
to extract �1 and �2, unless one wants to find �1 and �2 first in separate occasions and only then
checking if they appear – reducing drastically the efficiency of the whole idea. This is practical as
long as the large primes fit in a computer word, so our special purpose factoring method has to split
integers of size 264. The use of Pollard’s rho method and Lenstra’s ECM have been reported for
this purpose in the literature. The combination of relations having more than one large prime is an
intricate task. The basic case of two large primes was done in [LEMA 1994] and later extended to
four and applied to the number field sieve (see Section 25.3.4.g) and to the computation of discrete
logarithms.

This variation is compatible with the use of multiple polynomials.

25.3.4.f Small prime variation

During the sieving process (Algorithm 25.14) for collecting relations, the small primes and prime
powers take quite a long time to process since about 1/p numbers are divisible by p. In addition,
their contribution to the logarithms is smallest. So we do not sieve at all with prime powers less than
a carefully chosen threshold, say 100. This makes it necessary to keep numbers whose residual log-
arithm is further away from zero than usual, but experience shows that this makes little difference:
the important thing is to avoid ignoring some smooth numbers, at the expense of having to check
and reject a few more that are not smooth. As a bonus, this might indirectly help in finding some
large primes.

The small and large prime variations can also be used in a parallelized implementation of the
MPQS.

25.3.4.g The number field sieve

The number field sieve (NFS) is the fastest general purpose factoring algorithm that has been pub-
lished until now.

It is based on an idea by Pollard in 1988 to factor numbers of the form x3 + k for small k.
This method was quickly generalized to a factoring method for numbers of the form xd + k, a
method that is currently referred to as the special number field sieve (SNFS) to distinguish it from
the method used for factoring general integers, called the general number field sieve (GNFS). It
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proved to be practical by factoring the ninth Fermat number F9 = 229
+ 1. It was the first factoring

algorithm with runtime substantially below Ln[1/2, c] (for constant c) making cryptosystems based
on the assumed hardness of the integer factorization problem at once less secure than thought.
The heuristic expected runtime of the NFS is Ln

[
1/3, η] where η = (32/9)1/3 for the SFNS and

η = (64/9)1/3 for the GNFS. Coppersmith [COP 1993] has slightly improved the complexity of the
GNFS to η = 1

3 (92 + 26
√

13)1/3 at least theoretically.
The NFS follows the Morrison–Brillhart approach of collecting relations involving smooth quan-

tities, followed by linear algebra to find congruences among squares. Its better complexity com-
pared with previous smoothness based methods is due to the fact that the numbers that are tested
for smoothness are of order no(1) for n → ∞, as opposed to nc for some constant c for the older
methods. There are several reasons for the practicality of NFS. One is that recomputing roots is
very fast. Another is that polynomial selection allows a lot more freedom and can result in great
speedups. It also allows relatively easy use of more than two large primes, so that comparably small
factor bases can be used during sieving [DOLE 1995], although this is not always the case (for in-
stance, the GNFS RSA-130 factor base was 7 times the size of of the MPQS RSA-129 factor base).
Initially there was skepticism as to whether this method would be practical, but those doubts have
been dispelled by a series of remarkable improvements.

The content of a polynomial with integer coefficients is the gcd of its coefficients.
Suppose n is a composite integer to be factored. It is easy to check whether n is a prime number

or a prime power (using primality tests), so we assume that n is neither.
The algorithm has four main phases:

Algorithm 25.15 The number field sieve

INPUT: A rational integer n.

OUTPUT: A nontrivial factor of n.

1. Polynomial selection
Select two irreducible univariate polynomials f(X) and g(X) with content equal to one,
which have at least one common root m modulo n – i.e., f(m) ≡ g(m) ≡ 0 (mod n) –
but have no common factors over Q.
Let α and β denote complex roots of f and g respectively.

2. Sieving
Find pairs (ai, bi) with gcd(ai, bi) = 1 and such that

F (ai, bi) := bi
deg(f)f(ai/bi) and G(ai, bi) := bi

deg(g)g(ai/bi)

are both smooth with respect to a chosen factor base.

3. Linear algebra
Use linear algebra to find a set S of indices such that the two products

Y

s∈S
(as − bsα) and

Y

s∈S
(as − bsβ)

are both squares of products of prime ideals in Q[α] and Q[β], respectively.

4. Square root
Using the set S , try to find algebraic numbers γ ∈ Q(α) and δ ∈ Q(β) with

γ2 =
Y

s∈S
(as − bsα) and δ2 =

Y

s∈S
(as − bsβ).

Consider now the natural homomorphisms

φα : Q(α) → Z/nZ, α �→ m and φβ : Q(β) → Z/nZ, β �→ m,
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where m is the common root modulo n of f and g. The congruence

φα(γ)2 = φα(γ2) = φα

„Y

s∈S
(as − bsα)

«
≡
Y

s∈S
(as − bsm) ≡ φβ(δ)2 (mod n)

has the form (25.1): the two sides will be coprime to n if none of F (ai, bi) and G(ai, bi)
for i ∈ S share a factor with n.

Remarks 25.16

(i) On the selection of polynomials. A lot of research has been done in order to determine
what a “good” polynomial is in terms of root properties and coefficient sizes. For a
description of clever algorithms for finding such polynomials, see Murphy’s PhD. Thesis
on R. Brent’s web page [BRENT]. On the other hand, when n has a very special form the
choice of polynomial is much simpler. For the 162-digit Cunningham number (12151 −
1)/11, which had been factored in 1994 by a group led by Montgomery, the polynomials
12X5 − 1 and X − 1230 were chosen. For the ninth Fermat number, the polynomials
X − 2103 and X5 − 8 were chosen, with common root m = 2103.
In order to make arithmetic faster, one would want to pick f and g so that at least one
has “small” integer coefficients.
One common method is the base m method: for a small number d (usually 4 or 5) put
m = �n1/d� and define f as the monic degree d polynomial with the coefficients of the
base m expansion of n. Now f(X) and g(X) = X − m together with m satisfy the
requirements, unless f is reducible, in which case it almost surely can yield a nontrivial
factor of n.

(ii) On the sieving phase. In the classical sieving method we begin by choosing upper
bounds for a and b. Then we start sieving for a with b = 1 fixed and, when finished
with a, increase b until we reach its bound. The estimates for the smoothness are done
by approximated logarithms and the values F (a, b), G(a, b) computed from the remain-
ing pairs can then verified by trial division [GOLE+ 1994]. Since we already computed
the roots of f and g modulo each p, the first division by p for each candidate is exact.
At the end, the smooth value pairs are those that have been replaced in the meantime by
a pair of +− 1’s.
Here one can also use the small and large prime variations to speed up sieving.
The expressions F (a, b), G(a, b) are the norms of the algebraic numbers a − bα and
a−bβ, multiplied by the leading coefficients of f and of g, respectively. These algebraic
numbers generate ideals inQ(α) andQ(β). In other words in Line 2 we sieve ideals and
not just pairs of integers, by bounding their norms. What we have then is a set of smooth
ideals. The principal ideals (a − bα) and (a − bβ) factor into products of prime ideals
in the number fields Q(α) and Q(β), respectively. All prime ideals appearing in these
factorizations have small norm (since the norms are assumed to be smooth), so only a
few different prime ideals can occur.

(iii) On the square root computation. There are various methods to find the square roots in
Line 4 of the NFS, the most important being the methods of Couveignes, Montgomery
and improvements to the latter by P. Nguyen. See [ELK 1996, NGU 1998].

The interested reader can find more information in one of the excellent surveys on the subject
[LELE+ 1990, LELE 1993] and the book by Crandall and Pomerance [CRPO 2001].
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This chapter describes some aspects of the realization of arithmetic in dedicated hardware environ-
ments. It falls naturally into three main parts: the first one introduces some basic criteria applicable
to the design of cryptographic hardware, highlighting some of the specific constraints to be ob-
served for implementations in constrained hardware environments. The second one deals with the
realization of multiplication as the main arithmetic operation in hardware, which can be seen as the
foundation of nearly all public-key cryptosystems in use today. The motivation of this part is to
introduce the reader to some of the peculiarities of the implementation of basic arithmetic in con-
strained environments. In the third part we touch on some topics more relevant to the preceding
chapters, i.e., finite field arithmetic and modular inversion in hardware.

The main motivation for this dedicated treatment of arithmetic in hardware is that the hardware
environments in which elliptic and hyperelliptic curve cryptosystems can be implemented can differ
dramatically with respect to the computing power available: while a multiprecision arithmetical li-
brary on a PC can realize fast finite field arithmetic based on the arithmetic core operations provided
by the CPU, on a smart card or an embedded device the standard CPU used will not offer sufficient
support for this. Thus a dedicated piece of hardware will be added in order to offer support for these

617
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arithmetic operations. In order to make this support as efficiently as possible we need to analyze in
detail the realization of the basic arithmetic operations in hardware.

This chapter can only give a brief introduction to the main challenges when implementing arith-
metic operations in hardware. The interested reader should refer to the excellent books [KOR 2002]
and [PAR 2000] for more details and variants of the implementation of the operations described
here. Furthermore, these books also introduce important technical concepts that we cannot cover
here (e.g., pipelining).

26.1 Design of cryptographic coprocessors

The main purpose of a cryptographic coprocessor is to accelerate the execution of cryptographic
algorithms either on hardware with otherwise restricted computing power (e.g., on a security con-
troller used for a smart card or an embedded device) or in situations where an especially high
throughput is required (e.g., when generating digital signatures on a file server, etc.). In this section
we want to describe some of the criteria that are important when designing a cryptographic copro-
cessor.

26.1.1 Design criterions

The main criteria influencing the design of cryptographic hardware come from three different areas:

1. algorithmic considerations

2. hardware considerations

3. application considerations

Remarks 26.1

(i) We first look at the algorithmic side. These considerations are of a more general nature
and will be of interest to both application scenarios mentioned above.
The earliest cryptographic coprocessors were focused on supporting private-key algo-
rithms (e.g., DES or later triple DES). In this case the complete flow of one complete
DES operation is modeled in and executed by dedicated hardware.
The first cryptographic coprocessors that became available commercially focused on the
support of the public-key system available at that time, i.e., RSA. It is plain to see that
by offering hardware assistance for modular multiplication XY mod N and modular
squaring X2 mod N , it is relatively easy to implement the modular exponentiation,
which is the core operation of the RSA system.
For elliptic or hyperelliptic curves the situation is a little more complicated. This is due
to the higher algorithmic complexity of the operations on an elliptic curve opposed to
the case of RSA. For an elliptic curve coprocessor the main possibilities are:

• Supporting atomic finite field operations (e.g., multiplication, addition, subtrac-
tion, etc.).

• Supporting elementary operations on an elliptic curve or a Jacobian of a hyperel-
liptic curve (e.g., point addition, point doubling, etc.).

• Supporting complex operations on an elliptic curve or a Jacobian of a hyperelliptic
curve (e.g., scalar multiplication or the computation of a digital signature).
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(ii) All of these options have their own advantages and disadvantages:

• Supporting only atomic finite field operations leaves the implementer with the
choice of different ways to actually implement the arithmetic on elliptic curves
and Jacobians of hyperelliptic curves by choosing, for example, different coordi-
nate systems, group operation formulas, and scalar multiplication methods. The
implementer can make maximum use of special arithmetic properties of the un-
derlying finite field, the curves or Jacobians used and of cryptographic algorithms
to be implemented, which can lead to significant optimizations with respect to
both performance and security of the implementation. However, this option also
requires deep insights into the arithmetic and security of the objects involved.

• Supporting elementary operations on an elliptic curve narrows down the free-
dom of the implementer, but on the other hand allows a much easier, high-level-
approach to the implementation of, for example, scalar multiplication or even more
abstract cryptographic algorithms like digital signature algorithms. The flexibility
to make use of special properties is restricted to the higher level of scalar multi-
plication. Special properties of the underlying finite field or of the elliptic curve
can only be used if these are already built into the existing elementary operations
provided by the hardware. This option requires a good understanding of the more
high-level algorithms, but does not require an intimate knowledge of the arithmetic
of the underlying curves or Jacobians.

• Supporting complete operations on an elliptic curve (e.g., scalar multiplication)
allows us to quickly implement high-level cryptographic algorithms like a digital
signature algorithm or a key exchange without requiring a deep knowledge of the
underlying arithmetic or structures. However, the implementer is not able to make
use of any special properties that are not already available.

(iii) Besides the specific algorithmic constraints imposed upon a cryptographic coprocessor,
there are also technological and economical restraints one has to observe, and which
also influence the design of the coprocessor:

• Area consumption: the area and thus the number of gates available for a complete
smart card security controller is limited (normally less than 25mm2). Of these
25mm2 almost all is taken up by the different memory blocks. Thus the area avail-
able for the coprocessor is limited to a few mm2. This imposes severe constraints
on the complexity of operations that can be implemented in hardware.

Furthermore, each additional mm2 used will increase the price of the IC produced.
Thus there are both technological and economical constraints resulting from the
area consumption that will severely influence the architecture of the coprocessor.

• Power consumption: the energy available to a smart card or embedded device is
usually strictly limited. In contactless mode of operation, the total power can de-
crease to only a few mW, which will be another severely limiting factor for the
hardware design of a cryptographic coprocessor.

(iv) Finally, if there exists a specific application the hardware system is aimed at supporting,
this particular application will impose specific requirements and a specific environment
to be used. These will determine the algorithmic and technological constraints applica-
ble and will, finally, determine the architecture of a suitable cryptographic coprocessor.
A hardware unit designed for, say, generating fast elliptic curve-based digital signatures
in a server could well consist of a large arithmetic unit capable of multiplying two 256-
bit integers in one clock cycle, computing a modular inverse in a 256-bit sized finite field
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in only a few clock cycles and performing a complete hard-coded scalar multiplication
on an elliptic curve in a few ms. This is due to the fact that neither restraints in terms
of power nor due to area consumption will be applicable in this situation. A security
controller designed for a smart card will more likely offer arithmetic support of consid-
erably less computing power, or will make extensive use of special arithmetic properties
to offer a performance increase.
However, the algorithmic requirements, for example, with respect to the number of digi-
tal signature computations performed in a given time, will also differ dramatically: while
for a server application this could easily be something like several hundred per minute,
a security controller will most likely be required to generate only one signature during
a cryptographic algorithm, such as, an authentication scheme. Hence its more limited
computing power will still be enough to satisfy the performance requirements imposed
by the application.

We now turn to the technical part. We start by briefly recalling the representation of integers in
different complement representations.

26.2 Complement representations of signed numbers

Recall from Section 10.1 that there are several techniques available to represent signed numbers in
binary form. We will concentrate on the so-called complement representation. The name comple-
ment refers to the fact that the negative value −x of a number x is represented as the value M − x,
where M is a suitably chosen large complementation constant. If we want to represent numbers in
the range of [−N, +P ] we need that M � N +P +1, otherwise we would have an overlap between
representations of positive and negative numbers. The choice of M = N + P + 1 will yield the
most efficient version available.

Remark 26.2 The advantages of complement representation are:

• addition can be performed by adding the respective unsigned representations modulo M

• subtraction can be performed by complementing the subtrahend and adding the comple-
mented version.

The rules for addition in a complement number system can be summarized as follows:

Table 26.1 Operations in complement number systems.

Operation Computation mod M Result Overflow if:

(+x) + (+y) x + y x + y x + y > P

(+x) + (−y) x + (M − y) x − y if y � x NA

y − x if y > x

(−x) + (+y) (M − x) + y y − x if x � y NA

M − (x − y) if x > y

(−x) + (−y) (M − x) + (M − y) M − (x − y) x + y > N

In the most widely used case of ordinary binary representation, the choice of M = 2� is referred to
as two’s complement representation, generally known as radix complement.
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Remarks 26.3

(i) Recall from Section 10.1.2 that the computation of the two’s complement can be accom-
plished very easily by inverting bitwise and adding 1.

(ii) Note that the choice of M = 2� makes computation modulo M especially easy: if, for
example, a carry is produced in addition, we simply ignore this. Since such a carry is
worth 2�, we thus perform a reduction by 2�.

The range of numbers representable in the two’s complement is given by [−2�−1, 2�−1 − 1]. The
zero element has the (unique) representation

0 . . . 0︸ ︷︷ ︸
� times

.

Another possible choice of M is to set M = 2� − 1. The representation obtained by this choice of
M is known as the one’s complement or generally as a digit complement. The one’s complement of
a number x can be obtained by bitwise complementation. This is due to the fact that

(2� − 1) − x = xcompl.

Remarks 26.4

(i) In contrast to the two’s complement representation we do not need to add 1, therefore
obtaining the one’s complement is easier than obtaining the two’s complement represen-
tation.

(ii) However, performing the reduction modulo M is now slightly more complicated: when,
for example, performing addition, we have to drop the carry-out corresponding to sub-
tracting 2� from the result. We also have to produce a carry-in at position 0 which will,
together with the dropped carry-out, produce a reduction by 2� − 1. Note that in hard-
ware the new carry-in could be produced by feeding the carry-out from position � − 1
into the carry-in at position 0. This technique is referred to as end-around carry.

The range of numbers in the one’s complement is [−(2�−1), 2�−1], which is symmetric in contrast
to the range of numbers represented by the two’s complement system. In contrast to the two’s
complement system, where zero had a unique representation, in the one’s complement we obviously
have two representations

0 . . . 0︸ ︷︷ ︸
� times

and 1 . . . 1︸ ︷︷ ︸
� times

,

which are both valid.
A comparison of radix and digit complement is given in Table 26.2.

Which system is to be preferred? It turns out that the two’s complement representation is the
standard representation in almost all systems. The biggest disadvantage of two’s complement might
be the more complicated way of actually obtaining the complement representation of a number x.

However, the most interesting application of a complement representation will be the performance
of subtraction by actually performing an addition.

In this application the addition of the two’s complement of a number X can be achieved by
inverting all the bits of X and setting the carry-in at position 0 to 1. Hence subtraction can be
performed as an addition with building the two’s complement on the fly.

We will assume that some sort of complement representation is used, thus we will not deal ex-
plicitly with the topic of subtraction in what follows.
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Table 26.2 Comparison of radix and digit complement.

Property Radix complement Digit complement

Range of numbers represented Asymmetric Symmetric

Unique zero Yes No

Obtaining the complement Bitwise complement, add 1 Bitwise complement

Addition modulo M Drop carry-out End-around carry

26.3 The operation XY + ZXY + ZXY + ZXY + ZXY + ZXY + ZXY + ZXY + Z

Contrary to the relatively high mathematical complexity of the topics of the previous chapters, the
first question we want to address is a rather basic one: how to multiply two integers of fixed size
efficiently using elementary operations? In Chapter 10 the main algorithms needed to implement
multiprecision integer arithmetic were presented. Even in this presentation the core operation of
multiplying two elements u and v, both not larger than the base b, was assumed as given.

It is the aim of this section to precisely explain this operation, i.e., to explain the fundamentals of
realizing the multiplication operation in hardware.

Example 26.5 We consider the elementary multiplication method as it was described in Exam-
ple 10.10. The two values to be multiplied are u = (9712)10 and v = (526)10. Recall that the main
arithmetic operations used in order to compute u× v = 5108512 were the computation of the three
products 9712× 6, 9712 × 20, 9712 × 500 and the addition of the intermediate results.

The first point of relevance for a hardware implementation is that the operation 9712 × 20 can
be rewritten as 9712 × 2 × 10, where in decimal representation the multiplication by 10 can be
realized by a left shift of the decimal representation of 9712×2. The same argument applies for the
multiplication 9712× 500 where a double left shift needs to be performed.

Thus we obtain the following steps:

• first partial product is 9712× 6 = 58272
• second partial product is 9712 × 2 = 19424
• third partial product is 9712 × 5 = 48560
• shift second partial product one position to the left 9712 × 2 × 10 = 194240
• shift third partial product two positions to the left 9712× 5 × 100 = 4856000
• obtain first intermediate sum 9712× 6 + 9712 × 20 = 252512
• obtain second final result 252512 + 4856000 = 5108512.

Example 26.6 Consider the case of a 6 × 6 multiplication using the schoolbook method. The
most straightforward way of arranging the partial products as given in the algorithm above has the
graphical representation shown in Figure 26.3.

Remarks 26.7

(i) Taking a look at these two simple examples in a more abstract way we see that the
process of multiplication falls into two main steps:

• The first step generates a number of intermediate results, i.e., partial products de-
rived from the two multiplicands X and Y .
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• In the second step, the final result is produced by adding all the intermediate partial
products generated. This step is totally independent of the two multiplicands.

(ii) As surprising as it may be, this is exactly what happens in a hardware implementation of
multiplication, and thus the two steps described above are the main challenges one has
to overcome in order to implement an efficient multiplication method.

Figure 26.3 Schoolbook multiplication of two 6-digits numbers.

11 10 9 8 7 6 5 4 3 2 1 0
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • • • • • • • •

Goal 26.8 The main goal of this section is to show that the efficient realization of multiplication in
hardware needs to solve the following main tasks:

• efficiently generate partial products
• efficiently compute the sum of several integers.

As it was pointed out before, the standard method of performing a multiplication of two single
precision integers X and Y is a sequential algorithm generating partial products and accumulating
these correctly shifted partial products in order to obtain the final result.

Now we give a more detailed explanation of this elementary method.
The correct alignment of the partial products can be accomplished using either left or right shifts.
We will explain these two fundamental methods in the following two sections.

26.3.1 Multiplication using left shifts

The following algorithms describe a simple multiplication using left shifts.

Algorithm 26.9 Sequential multiplication of two integers using left shift

INPUT: Single precision integers X = (x�−1 . . . x1x0)2 and Y = (y�−1 . . . y1y0)2.

OUTPUT: The product P = XY = (p2�−1 . . . p1p0)2.

1. P (0) ← 0

2. for i = 0 to � − 1 do

3. P (i+1) ← (2P (i) + x�−i−1Y )

4. return P (�)
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Example 26.10 Consider the multiplication XY where X = (101)2 and Y = (111)2. We obtain
the following sequence:

P (0) 0 0 0 0 0 0

2P (0) 0 0 0 0 0 0

x2Y 1 1 1

P (1) 0 0 0 1 1 1

2P (1) 0 0 1 1 1 0

x1Y 0 0 0

P (2) 0 0 1 1 1 0

2P (2) 0 1 1 1 0 0

x0Y 1 1 1

P (3) 1 0 0 0 1 1

26.3.2 Multiplication using right shifts

By using right shifts we obtain the following algorithm:

Algorithm 26.11 Sequential multiplication of two integers using right shift

INPUT: Single precision integers X = (x�−1 . . . x1x0)2 and Y = (y�−1 . . . y1y0)2.

OUTPUT: The product P = XY = (p2�−1 . . . p1p0)2.

1. P (0) ← 0

2. Y ← 2�Y

3. for i = 0 to � − 1 do

4. P (i+1) ← (P (i) + xiY )2−1

5. return P (�)

Example 26.12 We again consider the multiplication XY where X = (101)2 and Y = (111)2.
We obtain the following sequence:

P (0) 0 0 0 0 0 0

x2Y 1 1 1

2P (1) 1 1 1 0 0 0

P (1) 0 1 1 1 0 0

x1Y 0 0 0

2P (2) 0 1 1 1 0 0

P (2) 0 0 1 1 1 0

x0Y 1 1 1

2P (3) 1 0 0 0 1 1

P (3) 1 0 0 0 1 1
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Remarks 26.13

(i) The right shift algorithm only uses �-bit addition, while in contrast to this the left shift
algorithm has to use 2�-bit addition in order to properly accumulate the partial products.
Hence the right shift algorithm is more efficient to implement in hardware.

(ii) Inspection of the right shift algorithm yields that the output after � steps is equal to
P (�) = XY + P (0)2−�. Therefore by setting P (0) to the value 2�Z where Z has � bits,
we see that we are able to compute XY + Z with nearly no extra costs compared to the
normal multiplication XY .

Since the multiplication operation falls into two main parts (generation and addition of partial prod-
ucts), the reduction of the number of partial products generated and the acceleration of the accumu-
lation of these partial products or, preferably, a combination of these two ideas, will obviously lead
to a speedup. We will discuss these ideas in the following sections.

26.4 Reducing the number of partial products

One way of reducing the numbers of partial products would be to examine more than one bit of the
multiplier in one step, but this would require the generation of Y, 2Y, 3Y, . . . which would increase
the complexity of each single step.

There are several algorithms that reduce the number of partial products while still keeping the
low complexity of the simple algorithm in each step. One of the first and most prominent is Booth’s
algorithm, also known as signed digit encoding.

26.4.1 Booth or signed digit encoding

The main observation is that fewer partial products can be generated for groups of either consecutive
ones or zeroes. If a group of consecutive zeroes appears, there is no need for the multiplier to
generate a new partial product, we simply have to shift the accumulated partial product one step to
the right or left (according to which basic algorithm you use) for every 0 appearing in the multiplier.
The procedure just described above is also referred to as recoding the multiplier in SD (signed digit)
representation. The algorithm below gives the original formulation of Booth’s algorithm.

Algorithm 26.14 Recoding the multiplier in signed-digit representation

INPUT: A multiplier X = (x�−1 . . . x1x0x−1)2 with x−1 = 0 and x� = 0.

OUTPUT: The recoded multiplier Y = (y�−1 . . . y1y0)s of X .

1. for i = −1 to � − 1 do

2. if xi+1 = 0 and xi = 0 then yi+1 = 0

3. if xi+1 = 1 and xi = 1 then yi+1 = 0

4. if xi+1 = 1 and xi = 0 then yi+1 = 1̄

5. if xi+1 = 0 and xi = 1 then yi+1 = 1

6. return (y�−1 . . . y1y0)s

Note that given xi+1 and xi, the computation of yi+1 can be represented by the formula

yi+1 = xi − xi+1.
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Remark 26.15 There are two major drawbacks of this SD recoding technique:

1. The number of add or subtract operations is variable, as is the number of shift operations
between two consecutive add or subtract operations. This can pose a serious problem
in a synchronous design where the steps of an algorithm have to be performed in a
fixed specified order and where input values from intermediate steps are expected at a
fixed point in time. In order to deal with varying computing time needed to generate
intermediate values, one would need to store other values in internal memories known
as latches in order to keep them available in all cases. This will lead to an increased
power and area consumption and to a higher overall complexity of the hardware design
and is thus best avoided.

2. The signed digit recoding can be very inefficient when isolated 1’s occur.

Example 26.16 Consider the binary number X = (001010101)2. A multiplication with X can be
realized using four additions. Using the SD recoding algorithm given above we obtain

(001010101(0))2 = (011̄11̄11̄11̄)s,

as recoding for X implies that, by using the recoded multiplier, we need eight instead of four
additions.

Inspecting more than two bits at a time can lead to significant performance gains (see a similar
signed digit recoding technique introduced in Section 9 in order to speed up generic scalar multi-
plication in a group). The following section looks at two possible algorithms especially suitable for
hardware implementation.

26.4.2 Advanced recoding techniques

Taking into consideration three consecutive bits at a time, the bits xi+1 and xi are recoded into yi+1

and yi while xi−1 has to be inspected as well. We call this Radix-4 SD recoding:

Algorithm 26.17 Recoding the multiplier in radix-4 SD representation

INPUT: A multiplier X = (x�−1 . . . x1x0x−1)2 where x−1 = 0.

OUTPUT: The recoded multiplier Y = (y�−1 . . . y1y0)s of X .

1. for i = 0 to � − 1 do

2. if xi+1 = 0 and xi = 0 and xi−1 = 0 then yi+1 = 0 and yi = 0

3. if xi+1 = 0 and xi = 1 and xi−1 = 0 then yi+1 = 0 and yi = 1

4. if xi+1 = 1 and xi = 0 and xi−1 = 0 then yi+1 = 1̄ and yi = 0

5. if xi+1 = 1 and xi = 1 and xi−1 = 0 then yi+1 = 0 and yi = 1̄

6. if xi+1 = 0 and xi = 0 and xi−1 = 1 then yi+1 = 0 and yi = 1

7. if xi+1 = 0 and xi = 1 and xi−1 = 1 then yi+1 = 1 and yi = 0

8. if xi+1 = 1 and xi = 0 and xi−1 = 1 then yi+1 = 0 and yi = 1̄

9. if xi+1 = 1 and xi = 1 and xi−1 = 1 then yi+1 = 0 and yi = 0

10. return (y�−1 . . . y1y0)s
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Remarks 26.18

(i) Again we note that a simple formula is the basis of this recoding technique; first com-
puting

xi + xi−1 − 2xi+1

and then representing this result as a 2-bit binary number in SD representation gives
yi+1 and yi as required.

(ii) Using this algorithm, the occurrence of an isolated 1 or 0 no longer poses a problem,
since if xi is an isolated 1, we have yi = 1 and yi+1 = 0, hence there is only a single
operation needed. Also, in the situation 101, we have yi = 0 and yi−1 = 1̄, so again
only one single operation is needed.

Example 26.19 Let us again consider (01010101(0))2. We see that this is recoded as (01010101)s,
hence the number of operations remains four. However, if we consider (00101010(0))2 we see that
this is recoded to (0101̄01̄1̄0)s, which implies that the number of operations required goes up to
four by the recoding process.

However, the number of patterns for which this phenomenon occurs is relatively small and the
increase in the number of operations is minimal. Using the radix-4 SD representation it is possible
to design a synchronous multiplier generating exactly �/2 partial products.

Remark 26.20 Note that all the multiples required by this encoding scheme can be generated us-
ing simple shift operations on the multiplicand (in order to obtain 2Y ) and the two’s complement
representation (in order to obtain −Y and −2Y ).

Remark 26.21 We can take this even further by changing the SD representation from radix-4 to
radix-8, which needs only �/3 partial products.

Now we have to investigate 4 consecutive bits of the multiplier for encoding. Each partial product
generated by this radix-8 encoded multiplier will come from the set {+− 4Y, +− 3Y, +− 2Y, +−Y, 0}.
As in the case of radix-4 encoding, the elements +− 4Y and +− 2Y can be generated using shift
operations and the two’s complement. However, using these operations, it is not possible to generate
the elements +− 3Y using these operations (therefore the element 3Y is sometimes referred to as the
hard multiple). In order to generate it, a full carry propagate addition is required. Fortunately,
we will not need the most general kind of adder (as described below), since an adder especially
designed for the operation Y + 2Y will suffice.

26.5 Accumulation of partial products

Once we have produced all the partial products needed for the multiplication operation, we have to
accumulate them in order to obtain the final result. Obviously this fast accumulation will also speed
up the overall multiplication process.

We start by giving an overview over the existing types of adders that can be used.

26.5.1 Full adders

A full adder (FA) is a logic circuit producing a sum bit si and a carry bit ci+1 from two input bits
xi, yi and an input carry bit ci. The output bits si and ci+1 are given by the equations

si = xi XOR yi XOR ci, ci+1 = xi ∧ yi + ci ∧ (xi ∨ yi).



628 Ch. 26 Fast Arithmetic in Hardware

Here x XOR y refers to exclusive disjunction, x∧ y to logical conjunction AND and x∨ y to logical
disjunction OR. Addition of two n-bit operands can be accomplished using n full adders by the
following algorithm.

Algorithm 26.22 Addition using full adders

INPUT: Operands X = (xn−1 . . . x1x0)2 and Y = (yn−1 . . . y1y0)2.

OUTPUT: The sum X + Y = (sn−1 . . . s1s0)2 and a carrybit c.

1. for i = 0 to n − 1 do

2. c0 ← 0

3. si, ci+1 ← FA(xi, yi, ci)

4. return (sn−1 . . . s1s0)2 and the carrybit cn

Remarks 26.23

(i) Although we have all the bits of the operands available from the very beginning of the
algorithm, the carries have to propagate from j = 0 until j = i in order to produce the
correct sum si and carry ci+1. Hence we have to wait until the carry ripples through all
the stages of the algorithm before we can be sure that we have obtained the correct final
result.

(ii) The adder at level i = 0 will always see the incoming carry c0 = 0, so it can be replaced
by a simpler adder called a half adder (HA), which produces s0 and c1 from

s0 = x0 XOR y0, c1 = x0 ∧ y0.

(iii) It might be necessary to keep the incoming carry c0 as a variable, if we want to be able
to perform not only addition but also subtraction using the same setup. Subtraction in
two’s complement is accomplished by complementing the subtrahend and then adding
it to the minuend. Therefore we add the one’s complement of the subtrahend and use a
forced carry as input to the FA at level 0 by setting c0 = 1.

(iv) A system of full adders imposes a carry propagation chain of length n when adding two
n-bit numbers. This is the main obstacle we have to overcome in order to achieve a
significant speedup for addition.

Two ideas come to mind immediately: to reduce the time the carry needs for propagation and to
change the system in such a way that enables us to see whether the carry propagation is finished
instead of waiting for a fixed time of n∆FA where ∆FA is the delay of a full adder.
We will develop these ideas in the next sections

26.5.2 Faster carry propagation

26.5.2.a Carry-look-ahead adders

One of the most well-known techniques available to accelerate the carry propagation is the use of a
carry-look-ahead adder.

The basic idea behind this type of adder is to simultaneously generate the carries at higher levels
instead of waiting for the carry of level 0 to ripple through the system.
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Remarks 26.24

(i) We first note that in some situations the output carry ci+1 is already known from the
input bits xi and yi, namely in the situation where xi = yi = 1. In this case the output
carry ci+1 = 1 can be computed immediately.

(ii) If xi = 1 and yi = 0 or xi = 0 and yi = 1, then an incoming carry can only be
propagated. It will not be annihilated, neither can an outgoing carry be generated.

(iii) Conversely, if xi = yi = 0, an incoming carry will be annihilated.
In order to be able to make use of this information, we define two more variables Gi

and Pi, which are called generated carry and propagated carry. They are defined by the
following equations:

Gi = xiyi, Pi = xi + yi.

Now the outgoing carry can be expressed as a function of Gi, Pi and ci as follows:

ci+1 = xiyi + ci(xi + yi) = Gi + ciPi.

Since also ci = Gi−1 + ci−1Pi−1 we obtain

ci+1 = Gi + Gi−1Pi + ci−1Pi−1Pi.

(iv) We can go on inductively until we obtain an expression for ci+1, which is only dependent
on Gj ,Pj for j � i and c0. Thus we are able to compute all the carries ci in parallel
from the input bits (xn−1 . . . x1x0)2 and (yn−1 . . . y1y0)2.

Example 26.25 Consider a 4-bit adder. Here the carries are:

c1 = G0 + c0P0

c2 = G1 + G0P1 + c0P0P1

c3 = G2 + G1P2 + G0P1P2 + c0P0P1P2

c4 = G3 + G2P3 + G1P2P3 + G0P1P2P3 + c0P0P1P2P3.

Remarks 26.26

(i) What do we gain in comparison to a carry-ripple adder if we use a full n-stage carry-
look-ahead adder?

• For each stage we have a delay of ∆G, which is needed in order to generate the Pi

and Gi. Assuming a two-level gate implementation of the formulas for the carries
ci given above we need 2∆G to generate all the carries ci.

• Furthermore, we need another 2∆G to generate the sum bits in a two-level imple-
mentation.

• Therefore we have a total time of 5∆G for the whole addition regardless of the
length n of the operands.

(ii) Consulting the above example we see that for typical values like n = 32 we will need
an enormous number of gates. Even worse, we will have n + 1 gate inputs. Thus we
have to balance the range of carry-look-ahead adders (and hence the complexity of the
implementation we use) against the speedup factor we want to achieve.

26.5.2.b Carry-look-ahead adders arranged in groups

One of the techniques available to deal with the problems just described is the following one: we
divide the stages of the total addition process into several groups, where each group will have a
separate carry-look-ahead adder. The different groups are then connected in carry-ripple fashion. A
natural way of doing this is to form groups of the same size.
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Remarks 26.27

(i) A commonly used option is to divide the complete n-level structure into groups of size
4, hence there will be n/4 groups (assuming that n is a multiple of 4, which is the case
for all common word sizes).

(ii) The propagation of a carry through one group is 2∆G, once the inputs Pi, Gi and c0 are
available. If ∆G is needed in order to generate all Pi and Gi, then (n/4)2∆G is spent on
propagating the carry through all levels and finally 2∆G is needed in order to compute
the sum bits.

(iii) In total we have a timing of(
2
n

4
+ 3
)

∆G =
(

n

2
+ 3
)

∆G,

which is about four times faster in delay than the delay of 2n∆G needed in the case of a
n-level carry-ripple adder.

Remark 26.28 We can further improve on this situation if we also apply the idea of carry-look-
ahead to the n/4 groups we used.

In order to achieve this we introduce a group-generated carry G∗ and a group-propagated carry
P ∗ by setting G∗ = 1, if we have an outgoing carry (for the whole group) and P ∗ = 1, if we have
an incoming carry that is propagated internally to an outgoing carry of the group.

If we assume a group size of four bits, we have the following expression:

G∗ = G3 + G2P3 + G1P2P3 + G0P1P2P3, P ∗ = P0P1P2P3.

Now we use this to combine several groups not in a carry-ripple but in a carry-look-ahead way,
obtaining a so-called carry-look-ahead generator.

26.5.2.c Conditional-sum adders and carry-select adders

While carry-look-ahead adders produce the actual incoming carry bits for all levels, we can also try
to base a system on the idea of dealing with the case that the incoming carry is either set or not set
simultaneously, which leads to the so-called carry-select adders or conditional-sum adders.

Assume that we generate two outputs for a set of m input bits, whereby each output consists of
a set of m sum bits and one carry bit. Now one set will be computed based on the assumption that
the incoming carry to the system will be set, while the other set is based upon the fact that it is not
set. Of course, once we know the value of the incoming carry we do not need to compute the output
of the adder; we just have to select the correct output from the two choices available. As before, we
will form subgroups of k operations.

Example 26.29 To illustrate this, assume that we divide 2m input bits into two groups of size
k = m each. While the lower m bits will be summed up directly, resulting in an m-bit sum and an
outgoing carry c, the higher m bits are summed up, generating two outputs, one corresponding to
c = 0 and the other corresponding to c = 1.

An adder using this approach will be called a carry-select adder.

Example 26.30 It is possible to take this approach even further and to divide the groups of size k
into further subgroups:

Assume for example that n is a perfect power of two, then we could divide the n bits into two
groups of size n/2 each.

This could then be continued in an inductive fashion so that in the end we would reach a group
size of 1. In this case we would need k = lg n steps.
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Remark 26.31 Comparing the conditional-sum adder to a carry-save adder, both have about the
same execution time. However, the design of a conditional-sum adder is considerably less modular
than the carry-lookahead adders described above. They are therefore more to difficult to adapt to
larger input sizes.

26.5.2.d Carry-skip adders

Yet another way of reducing carry propagation time is the carry-skip adder. The main observation
here is that in certain stages of addition no carry propagation can occur, namely in the situation
when we have xj �= yj or equivalently Pj = xj XOR yj = 1. Thus, several consecutive steps can
be skipped for carry propagation as long as we have Pj = 1.

How can we make use of this in an n-level addition? Again we divide this addition into several
consecutive stages, where each stage is built in carry-ripple fashion. However, if we have Pj = 1
for all the internal stages, we allow the incoming carry to this group to skip all the internal levels
and to generate a group-carry-out immediately.

Suppose we have a group consisting of the k bits in position j, j +1, . . . , j +k−1. We then have
the incoming Group-Carry-in and an internal normal carry cj+k at level j + k − 1. These allow the
Group-Carry-out to be expressed as

Group − Carry − Out = cj+k + Group− Carry − In × (Pj × Pj+1 × · · · × Pj+k−1).

The values of the Pj can be computed simultaneously at the beginning of the process.

Remark 26.32 What is the optimal value for the group-size k?
In order to compute this we assume that all groups will have the same size k and that n/k is an

integer. We relate the time tr a carry needs to ripple through a single stage of a group to the time
ts that is needed to skip a group of size k. The longest carry-propagation time one could imagine
occurs when a carry is generated in the first level, skips all the following steps till the last one and
then ripples through the last step.

The execution time for this comes down to

T = (k − 1)tr + (k − 1)tr + (n/k − 2)(ts + tb)

where tb denotes the time needed to combine the internal carry with the skipped carry. Assuming
we have an implementation in which tr = ts + tb = 2∆G for the gate delays, we obtain

T = (2k + n/k − 4) × 2∆G.

This expression is minimized if we choose k to be equal to

k =
√

n/2.

26.5.3 Analysis of carry propagation

A natural question to ask is what the typical length of carry-propagation in an addition of two n-bit
numbers is. More precisely, we call a carry-chain the sequence of positions starting with generation
and ending with absorbing or annihilating the carry. Thus a carry-chain of length zero corresponds
to no generation of a carry, while a carry-chain of length 1 corresponds to immediate absorbing of
the carry in the next position.



632 Ch. 26 Fast Arithmetic in Hardware

Table 26.4 Probabilities concerning carry propagation.

Event Probability

Generation of carry 1/4

Annihilation of carry 1/4

Propagation of carry 1/2

Remarks 26.33

(i) Considering binary numbers with random values, the different cases of carry propaga-
tion are summarized in Table 26.4.

(ii) Now consider the probability that a carry generated at position i is propagated up to
position j − 1 and annihilated at position j: it is given by 2−(j−i−1) × 1/2 = 2(j−i).
The expected length of a carry chain starting at position i is therefore given by

n−1∑
j=i+1

(j − i)2−(j−i) + (n − 1)2−(n−1−i) =
n−1−i∑

l=1

l2−l + (n − i)2−(n−1−i)

= 2 − (n − i + 1)2−(n−1−i)

+ (n − i)−(n−1−i)

= 2 − 2−(n−i−1),

where the identity
∑p

l=1 l2−l = 2 − (p + 2)2−p was used. The term (n − i)2−(n−1−i)

represents the fact that the carry has to stop at the last position n (since we consider n
bit numbers).

(iii) So in the case that i is much smaller than n the expected length of the carry-chain is 2.

Remark 26.34 Another question is what length the longest carry-chain occurring in the addition of
two n-bit numbers on average will be. A celebrated result by Burks, Goldstine and von Neumann
states that this value is given by lg n (see [BUGO+ 1946]).

Theorem 26.35 On average, the longest carry chain when adding n-bit numbers has length lg n.

Proof. Let ηn(h) denote the probability that the longest carry-chain in n-bit addition is of length
at least h. The probability of the longest carry-chain being exactly of length h is then given by
ηn(h) − ηn(h + 1). We can use recursive techniques in order to compute ηn(h).

How can a carry-chain of length at least h be generated? There are two ways in which this can
happen:

1. The least significant n − 1 bits have a carry-chain of length at least h.

2. If the above condition is not met, the most significant h bits, including the last bit, have
a carry-chain of (exact) length h.

We thus obtain that

ηn(h) � ηn−1(h) +
1
4
× 2−(h−1) (26.1)

where 1
4 and 2−(h−1) correspond respectively to the carry generation and the carry propagation of

exactly h − 2 steps. The inequality (26.1) in fact implies that ηn(h) � ηn−1(h) + 2−(h+1) holds.
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Assuming ηi(h) = 0 for i < h, we obtain

ηn(h) =
n∑

i=h

(ηi(h) − ηi−1(h))

� (n − h + 1)2−(h+1)

� 2−(h+1)n.

Let λ denote the expected length of the longest carry chain occurring. We have

λ =
k∑

h=1

h
(
ηn(h) − ηn(h + 1)

)
=

(
ηn(1) − ηn(2)

)
+ 2
(
ηn(2) − ηn(3)

)
+ · · · + k

(
ηn(n) − 0

)
=

n∑
h=1

ηn(h).

Now to further evaluate this sum we consider the first γ = �lg n� − 1 terms and the remaining ones
separately. We bound ηn(h) by 1 for h � γ and by 2−(h+1)n for h > γ, thus obtaining

λ =
n∑

h=1

ηn(h) �
γ∑

h=1

1 +
n∑

h=γ+1

2−(h+1)n

< γ + 2−(γ+1)k.

Now we write γ = lg n − 1 − ε where ε = lg n − �lg n�, and obtain

λ < lg n − 1 − ε + 2ε.

Here the transformation of the last terms follows simply from 2lg n = n. Now since 0 � ε < 1 we
have 2ε < 1 + ε, whence

λ < lg n − 1 − ε + 1 + ε = lg n

as claimed.

Remark 26.36 Experimental data verifies that the longest carry-chain in the worst case depends
logarithmically on n. However, lg 1.25n seems to be a slightly better estimate [HEN 1961].

26.5.4 Multi-operand operations

Until now we only looked at the case of addition with two operands. However, having produced
the partial products in a multiplication as outlined above we are faced with the problem of adding
several operands.

One solution is to iterate several times the algorithms described above. But this implies that
carry-propagation has to be done several times as well. If, for example we would like to add three
n-bit inputs X , Y and Z , we could for instance first add X and Y and then add the result X + Y of
this computation to Z , resulting to a double carry propagation.
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26.5.4.a Carry-save adders

The idea behind carry-save adders is to use a redundant representation of the sum of the input vectors
in the form S + C, where only one carry propagation is needed when adding S and C in the end.

Remark 26.37 In the case of three inputs mentioned before, the easiest way of implementing a
carry-save adder is to use a full adder with three 1-bit inputs x, y, and z, which generates the output
values s and c given by

s = (x + y + z) mod 2 and c =
(
(x + y + z) − s

)
/2.

Figure 26.5 illustrates how this principle applies to the case of three 6-bit inputs.

Figure 26.5 A carry-save adder for three 6-bit inputs X ,Y and Z .

X • • • • • •
Y • • • • • •
Z • • • • • •
S • • • • • •
C • • • • • •

We refer to this principle as a (3, 2)-counter, since the output essentially represents the weighted
binary representation of the number of 1’s in the inputs.

A full n-bit carry-save adder consists of n copies of a (3, 2)-counter acting in parallel without
links between their carry outputs. In order to obtain the final result we need to add the n-bit sum
vector and the carry vector together, using a standard two operand adder as described before.

Note that the carry output has to be shifted before it is added to the n-bit sum.

Example 26.38 Consider X = (100000)2, Y = (010101)2 and Z = (111111)2 with X+Y +Z =
(1110100)2. The carry-save adders generate the sum and carry bits as follows:

i Xi Yi Zi Sum bit Carry bit

0 0 1 1 0 1
1 0 0 1 1 0
2 0 1 1 0 1
3 0 0 1 1 0
4 0 1 1 0 1
5 1 0 1 0 1

Hence the final adder obtains the result

S 0 0 1 0 1 0
C 1 1 0 1 0 1 0

1 1 1 0 1 0 0

implying that the value of the sum is (110100)2 and that the carry bit is set.
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Figure 26.6 Addition of four 4-bit operands using carry-save adders.

CSA

CSA

CPA

26.5.4.b Accumulation of partial products using carry-save adders

We will now explain how carry-save adders can be used to accumulate up to n partial products
generated in a (n × n)-bit multiplication.

In general, we will have the following architecture: partial products will be generated as described
above (see section 26.4) and will then be fed into a tree architecture, accumulating them in carry-
save representation. Finally a carry-propagation adder will convert the result of the reduction tree
from carry-save representation to normal binary representation.

Example 26.39 In the most simple form we assume that all the n multiples of the multiplicand are
generated at once. Then we would use n-input carry-save adder to reduce the n partial products to
two operands for the final addition.

This could be accomplished using (n − 2) carry-save adder units and 1 carry-propagation adder.
Normally, one would expect that one has to use (n− 1) carry-save adders, however, note that the

first counter compresses three partial products.
A typical arrangement for the addition of the four 4-bit numbers x, y, z, and w with the 5-bit sum

S is shown in Figure 26.6.

There are much more efficient ways of setting up the carry-save adders, which result in a much
higher performance. The most common solutions are the Wallace tree and Dadda tree.

Remark 26.40 A k-input Wallace tree reduces its k n bit entries to two outputs of size

(n + lg k − 1).
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Figure 26.7 shows an example of a Wallace tree adding 7 numbers, each of size n bits.
Note that some of the outputs of the carry-save adders have to be shifted before they are added

again. By [i, j] we denote that the (j − i + 1) bit output is fed into the next block as bit i up to and
including bit j.

Figure 26.7 A Wallace tree for the addition of seven n-bit numbers.

n-bit CSA n-bit CSA

n-bit CSA

n-bit CSA

n-bit CSA

[1,n]  [0,n-1]  [0,n-1][1,n]

[1,n]

[1,n]

[1,n-1]
[2,n+1]

 [0,n-1]  [0,n-1]  [0,n-1]  [0,n-1] [0,n-1] [0,n-1]  [0,n-1]

n-bit CPA

 [1,n+1]

 [2,n+1] [2,n+1]

k+2  [2,n+1]  1  0

 [0,n-1]

Remarks 26.41

(i) We have the following recurrence for the smallest possible height h(k) of a k-input
Wallace tree:

h(k) = 1 + h(�2k/3�)

which is easily deduced using the fact that each carry-save adder reduces the number of
operands by a factor of 3/2. By applying this recurrence we can obtain the exact height
of an k-input Wallace tree, while setting h(k) = 1 + h(2n/3) enables us to obtain a
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lower bound for h(k) given by

h(k) � log3/2(k/2),

where equality holds for k = 2, 3.

(ii) Conversely we can also compute the maximal number of inputs n(h) for a Wallace tree
of given height. Again we obtain a recurrence relation for this given by

n(h) = �3n(h − 1)/2�.

By removing the floor operation, we obtain an upper bound for n(h) given by n(h) �
2(3/2)h and a lower bound n(h) > 2(3/2)h−1.

(iii) The number of levels needed for a k operand addition using Wallace trees is shown in
the following table:

Number of levels needed for given number of operands

Operands 3 4 5 � k � 6 7 � k � 9
Levels 1 2 3 4

10 � k � 13 14 � k � 19 20 � k � 28 29 � k � 42 43 � k � 63
5 6 7 8 9

(iv) The general philosophy in the Wallace adder is to reduce the number of operands as
quickly as possible, therefore we apply �m/3� full adders to m dots in one column.
This means that we make the final carry-propagation adder as small as possible, which
in turn will lead to the minimal possible delay at this stage.

Another philosophy is that of the Dadda tree. The Dadda tree aims at reducing the number of
operands, thus using the fewest possible number of full and half adders. In general, this means that
the carry-save adder tree will be simpler in the Dadda arrangement, while the final carry-propagation
adder will be larger.

Example 26.42 We consider the case of multiplication of two 4-bit numbers.
When using the conventional algorithm from Section 26.3.1, we would obtain the partial products

in the following form:

6 5 4 3 2 1 0

• • • •
• • • •

• • • •
• • • •

We can rearrange these elements in the following way:

6 5 4 3 2 1 0

• • • • • • •
• • • • •

• • •
•
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Table 26.8 Wallace tree for 4 × 4 multiplication.

1 2 3 4 3 2 1

FA FA FA HA

1 3 2 3 2 1 1

FA HA FA HA

2 2 2 2 1 1 1z }| {
4-bit adder

1 1 1 1 1 1 1 1

Table 26.9 Dadda tree for 4 × 4 multiplication.

1 2 3 4 3 2 1

FA FA

1 3 2 3 2 1 1

FA HA HA FA

2 2 2 2 1 2 1z }| {
6-bit wide CP adder

1 1 1 1 1 1 1 1

The Wallace tree design for accumulating these partial products is shown in Table 26.8, where FA
denotes a full adder, HA a half adder, and the integers represent the numbers of bits remaining in
one column. In the Dadda tree the structure described in Table 26.9 is used.

Note that in the Wallace tree we use 5 full adders, 3 half adders, and a 4-bit carry-propagation
adder. In the Dadda tree we use 4 full adders, 2 half adders and a 6-bit carry-propagation adder. See
[KOR 2002] for more details on these examples.

Remark 26.43 Since we gave an example for a 7-operand Wallace tree above, it is instructive to also
show how this example may be applied in a 7 × 7 multiplication. This is shown in Figure 26.10.

Note that in contrast to the simple addition of 7 operands as shown in Figure 26.7, in this situation
we have also to deal with shifted results due to the structure of the partial products generated. In total
we have 14 positions for the product value. At the top level, the 7 partial products corresponding to
positions [0, 6], [1, 7] up to [6, 12], are fed into the carry-save adder tree.

In contrast to the standard addition of 7 operands of 7 bits each, we have to use a 10 bit wide
carry-save adder and a 10-bit wide carry-propagation adder in the last two levels of the tree.

26.6 Modular reduction in hardware

Most of the modular reduction techniques described in Section 10.4 are directly applicable to hard-
ware implementations. Note that, in general, interleaved multiplication and reduction methods as
described in Algorithm 11.1 will be preferred for implementation in hardware since they guarantee
that the intermediate result will not require significant register space to be stored.

Hardware implementations of modular reduction will favor techniques that allow an easy determi-
nation of the reduction factor for the intermediate results. For example, Montgomery multiplication,
which is probably the most used algorithm for hardware implementations, (cf. Section 10.4.2) for
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example, reduces this task to a simple lookup of the most significant word of the intermediate result,
which can be be realized very efficiently in hardware.

As pointed out before, modular reduction implementations in hardware will most likely use an
interleaved multiplication-reduction approach, since this guarantees that the bit size of the inter-
mediate results can be stored in registers not much larger in size than the size of the input vari-
ables. One should note that there exist many different possibilities to realize a word-wise interleaved
multiplication-reduction algorithm. All these are equivalent from an algorithmic point of view, but
can differ greatly with respect to the suitability of implementation in hardware.

Figure 26.10 Carry-save adder tree for 7 × 7 multiplication.

7-bit CSA 7-bit CSA

7-bit CSA

7-bit CSA

10-bit CSA

[2,8]  [1,8]  [3,11][5,11]

[3,9]

 [0,6]  [1,7]  [2,8]  [3,9]  [4,10]  [5,11]  [6,12]

10-bit CPA

 [4,12] [4,13]

 [4,13]  1  0

 [3,12]

[6,12]

 [2,8] 

 [2,12]

 [3,12]

 [3,12]

Ignore  2 3

Remark 26.44 Considering Montgomery reduction, Acar, Kaliski, and Koç have carefully analyzed
the different ways of implementation in [KOAC+ 1996]. They classify algorithms according to
whether multiplication and reduction are separated or interleaved, where the interleaving can be
either coarse-grained or fine-grained, depending on how often multiplication and reduction alternate
(i.e., after processing an array of words, or just one word). Furthermore, they consider two general
forms of multiplication and reduction, one form being the operand scanning, where an outer loop
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moves through words of one of the operands, while the other form considered is product scanning,
where the loop moves through words of the product itself. This second aspect is independent from
the first; moreover, it is also possible for multiplication to have one form and reduction to have the
other form, even in the integrated approach.

Acar, Kaliski, and Koç come up with five variants and evaluate these according to the number of
elementary multiplications, additions, and read- and write-operations, as well as the memory space
used by the algorithm.

Based on implementations in C and assembler, they find that the so-called coarsely integrated
operand scanning method has the best performance. This method is based on an interleaved multi-
plication-reduction algorithm that multiplies one word of the first operand with the complete second
operand, then performs reduction on the intermediate result and also integrates the right shifting
of the reduced intermediate result into the reduction process itself. However, they note that on
processors with different arithmetic architecture, like digital signal processors, other algorithms can
outperform this method. This is a typical phenomenon, showing again that, as mentioned before,
there is no universal optimal choice of algorithms that will offer maximum performance on different
types of hardware platforms.

Remarks 26.45

(i) To give the reader an idea of different types of optimizations, we briefly present two
implementational options, each using different hardware and algorithmic options.

(ii) Incomplete reduction. In [YASA+ 2002] the authors consider the use of incomplete re-
duction for modular arithmetic, i.e., when computing modulo p the intermediate results
are allowed to remain in a range of [0, 2m − 1], where p < 2m − 1. This method is
especially suited for cryptographic hardware that supports word-wise arithmetic oper-
ations, when the exponent m is chosen in such a way that the elements of the interval
[0, 2m − 1] fit exactly into one or more words. What is the benefit of this approach?
Consider for example addition x + y mod p of two reduced numbers 0 � x, y < p.
This requires the comparison of the intermediate result s = x + y to p, if s � p holds
then the subtraction s − p has to be performed. Now a comparison operation can be
performed by bitwise operations on the most significant word of the intermediate result
s, however, these operations can be quite costly to implement, if no use can be made
of the cryptographic hardware, which is assumed to support a word-wise arithmetic. If
one performs addition using incomplete reduction, the comparison between x + y and
2m − 1 can be simply performed by using the word-wise oriented cryptographic hard-
ware, since 2m − 1 by assumption fits exactly into a number of words. The authors also
demonstrate that Montgomery multiplication can be easily adapted to the case of incom-
plete reduced numbers and that the two reduction algorithms differ only very slightly.
Based on a C implementation of their findings, the authors report that an incomplete ad-
dition is 34–43% faster than the complete addition for primes p of bit size of 161 to 256
bits. Similarly, the incomplete subtraction, which is an easy adaptation of the addition,
is 17–23% faster than the complete subtraction. Since the two Montgomery reduction
algorithms differ only very slightly, only a small speedup of 3–5% is reported for this.

(iii) Special moduli. It was reported before that special moduli can be used to obtain very
efficient modular reduction (cf. Section 10.4.3). This can be used in both dedicated
cryptographic hardware and systems that only use a standard controller without spe-
cific cryptographic functionality. Consider for example the case of Mersenne prime
p = 2k − 1. In Section 10.4.3, it was outlined that for 0 < x < p2 we can rewrite
x as x = x12k + x0 and reduce this element modulo p via the formula x ≡ x1 + x0
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(mod p). Thus the modular reduction can be achieved by a simple modular addition.
This operation is so simple that it can even be performed using the elementary addition
provided by a standard micro controller. The techniques also described in Section 10.4.3
extend these reduction methods to primes of the more general form p = 2m + c with
|c| small. Again the main arithmetic operation used in these reduction techniques is
addition and only a few multiplications, and thus can be realized even on a general pur-
pose microcontroller. Again it should be noted that the benefit of the implementation
of these special reduction techniques in hardware depends strongly on the application
the hardware is intended to support. If this is a closed application (i.e., one in which all
the system parameters are known in advance and can thus be chosen to allow the usage
of special moduli), then the use of such specialized hardware will lead to a substantial
performance gain and might even make the usage of general purpose hardware instead
of specialized cryptographic hardware. However, if the hardware must support different
moduli in an open application, where the system parameters like, for example, prime
fields can vary, no automatic performance gain can be expected, since it cannot be guar-
anteed that all users in the system will actually make use of the special moduli supported
by the hardware.

26.7 Finite fields of characteristic 22222222

While arithmetic modulo p can be realized using normal long-integer arithmetic together with spe-
cial reduction methods as described above, this does not hold for the case multiplication in a field
of characteristic 2.

The main difference is that in normal long-integer arithmetic, multiplication can be realized as a
combined shift-and-add operation involving carries, while addition in a field of characteristic 2 is
equivalent to the binary logical XOR function, which implies that no carries occur.

Therefore, special multipliers have to be designed for the F2d situation.

Remarks 26.46

(i) The following two ways of representing an element of a finite field F2d (see also 11.2.1)
are generally considered for hardware implementations:

• Using polynomial basis representation.

• Using normal basis representation.

(ii) From the point of hardware realization of multiplication, we can also distinguish be-
tween two different possibilities:

• bit parallel implementations

• bit serial implementations

(iii) Bit parallel implementations compute the product of two elements of F2d in one clock
cycle. This method has the highest area consumption and will thus in general not be
available in especially restricted environments. Therefore in the following only bit serial
multipliers will be investigated.
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26.7.1 Polynomial basis

Let two elements a(X) and b(X) in canonical basis be given as

a(X) =
d−1∑
i=0

aiX
i and b(X) =

d−1∑
i=0

biX
i.

The standard method to multiply these two elements in hardware is to use the Mastrovito multiplier:
this canonical basis multiplier is based on the fact that the F2d multiplication of a(X) and b(X) can
be described as a matrix product

Z × (b0, b1, . . . , bd−1)t,

where the matrix Z = (zij)1�i,j�d is a function of both the vector (a0, a1, . . . , ad−1) and the
(d − 1) × d basis reduction matrix Q = (qij) defined by

(
Xd, Xd+1, . . . , X2d−2

)t = Q ×
(
1, X, X2, . . . , Xd−1

)t
.

The values of zij are defined to be

zij =

{
ai : j = 0, i = 0, 1, . . . , d − 1

u(i − j)ai−j +
∑j−1

t=0 qj−1−t,iam−1−t : j = 1, . . . , d − 1, i = 0, 1, . . . , d − 1

where the step function u is defined via

u(t) =

{
1 if t � 0
0 otherwise.

Remarks 26.47

(i) The Mastrovito algorithm describes a way of directly implementing the matrix product
Z × (b0, b1, . . . , bd−1)t. It has a theoretical gate count of d2 AND gates and at least
d2 − 1 XOR gates. Here the lower limit for the bound on the XOR gates is attained if the
defining field polynomial m(X) is a trinomial with certain coefficient configuration.

(ii) The delay is bounded from above by TA + 2�lg d�TX for an irreducible polynomial of
the form Xd + X + 1.

In polynomial basis we can also use a bit-serial multiplier utilizing a shift-and-add, either with a
least-significant- or a most-significant-bit-first approach. Algorithms that can be used for this are
described in Section 11.2.2. Note that for a hardware implementation one will most likely choose
an algorithm that interleaves multiplication and reduction, as described in Algorithm 11.1 for the
case of modular reduction in odd characteristic. The main advantage of an interleaved algorithm is
that the intermediate result one needs to store has much smaller size, thus preventing the usage of
double sized registers.

Remark 26.48 A generalization of this method is a least- or most-significant-digit-first approach.
Choose a digit size D, then an element of F2d can be represented with kD digits, where 1 � kD �
�d/D�. Now write

b(X) =
kD−1∑
i=0

BiX
Di where Bi(X) =

D−1∑
j=0

bDi+jX
j.
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The multiplication a(X)b(X) mod m(X) can now be realized in the digit-approach by an algo-
rithm similar to the one described in Algorithm 11.37. This will lead to especially efficient imple-
mentations if the digit size D is chosen to be the width of the hardware multiplier used. In this
case the operation Bi(AtDi) can be realized with a few calls to the internal hardware multiplier.
Note that, in general, the possibility to use lookup tables as required in Algorithm 11.37 will lead to
additional area consumption and therefore cannot be taken for granted.

Algorithm 26.49 Least-significant-digit-first shift-and-add multiplication in F2d

INPUT: An irreducible polynomial m(X) over F2 of degree d, polynomials a(X) and b(X) of
degree d − 1 over F2.

OUTPUT: The product r(X) = a(X)b(X) mod m(X).

1. r(X) ← 0

2. for i = 0 to kD − 1

3. r(X) ← Bi(AXDi) + r(X)

4. r(X) ← r(X) mod m(X)

5. r(X) ← r(X) mod m(X)

26.7.2 Normal basis

The standard multiplier for normal basis multiplication was proposed by Massey and Omura. A bit
serial Massey–Omura multiplier uses the following main observation: let two elements A and B of
the field F2d be given in normal basis representation

A =
d−1∑
i=0

aiα
2i

and B =
d−1∑
i=0

biα
2i

.

The product C = A × B has the representation

C =
d−1∑
i=0

ciα
2i

.

The Massey–Omura circuit has the property that it computes the coefficient cd−1 from the inputs
(a0, a1, . . . , ad−1) and (b0, b1, . . . , bd−1). It will produce the remaining coefficients cd−2, cd−3, . . . ,
c1, c0, when the rotated input vectors

(ad−k, ad−k+1, . . . , ad−1, a0, a1, . . . , ad−k−1)

and
(bd−k, bd−k+1, . . . , bd−1, b0, b1, . . . , bd−k−1)

for 1 � k � d − 1 are used as inputs.
Thus using one Massey–Omura circuit we can compute the product of the two elements A and B

in d steps.

Remark 26.50 A different approach is to use a canonical basis multiplier in order to perform a
normal basis multiplication. It is described in [KOSU 1998].

The main observation here is that in some cases the basis B1 =
(
α, α2, α22

, . . . , α2d−1)
can

be rewritten as B2 =
(
α, α2, α3, . . . , αd

)
, which in turn implies that an element in normal basis
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representation can be rewritten in the shifted canonical basis B2. Thus, instead of using a canonical
basis multiplier, we first transform the operands from normal basis to canonical basis, then multiply
in canonical basis and finally convert back. Of course, this is only worth doing if the transformations
needed are not too expensive.

However, it turns out that the transformation can be obtained via a suitable permutation of the
coefficients, thus the transformation can be easily implemented in hardware.

26.8 Unified multipliers

Since elliptic curve cryptography can be implemented both over fields of characteristic 2 and of
characteristic larger than 2, it is desirable to support both these cases in hardware. Clearly, an
optimal solution would be to have one multiplier unit, which is able to perform modular reduction
for Fp, as well as multiplication of polynomials over F2 modulo an irreducible polynomial m(X)
for F2d support.

There are several such unified multipliers described in literature.

Remark 26.51 In 2000, Savas introduced a unified multiplier (see [SATE+ 2000]), which uses
Montgomery reduction for modular multiplication and an adaptation of Montgomery reduction for
the F2d multiplication, which was introduced in [KOAC 1998].

Analogous to Montgomery reduction in the modular case, instead of computing a × b ∈ F2d it
is proposed to compute a × b × r−1 for a special fixed element of F2d . Let m(X) be the defining
irreducible polynomial of degree d and r(X) = Xd, then r is the element given by r = r(X) mod
m(X). As in the original method, m(X) and r(X) need to be prime to each other, hence m(X)
should be not divisible by X . Since m(X) is irreducible over F2 this will always be the case. The
relative primeness of r(X) and m(X) implies the existence of r−1(X) and m̃(X), such that

r(X)r−1(X) + m(X)m̃(X) = 1

via the extended Euclidean algorithm. Now the Montgomery product of a and b is defined to be

c(X) = a(X)b(X)r−1(X) mod m(X).

A detailed description of the multiplication algorithm can be found in [KOAC 1998].
Note that we have to transfer elements a(X) of F2d to the Montgomery representation, that is

a(X)X−d mod m(X) in order to apply the Montgomery reduction as described.
This has the advantage that both multiplications with reduction essentially follow the same re-

duction algorithm. The implementation uses an array of word-size processing units organized in a
pipeline. Therefore the architecture is highly scalable. The word size of the processing unit and the
number of pipeline stages can be selected according to the desired area/performance relation.

Remark 26.52 Goodman and Chandrasekaran [GOCH 2000] presented a domain specific reconfig-
urable cryptographic processor (DSRPC), which provides a unified multiplier by means of a single
computation unit, equipped with data path cells that can be reconfigured on the fly. While modular
arithmetic is performed using Montgomery reduction, the F2d multiplication is based on an iterated
MSB-first approach.

Remark 26.53 Großschädl [GRO 2001] introduced a unified multiplier that performs modular mul-
tiplication in a serial-parallel way, where the reduction is performed during multiplication by con-
current reduction of the intermediate result using an MSB-first approach. The F2d multiplication in
this multiplier is simply achieved by setting all carry-bits of the intermediate result to 0 resulting
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in a shift-and-add reduction algorithm. Therefore, the area-cost of the modified multiplier is only
slightly higher than that of the original modular multiplier. Furthermore, the transformation into
Montgomery domain is not needed, and we also do not have to do precomputations.

26.9 Modular inversion in hardware

As it was pointed out before, the availability of a fast inversion algorithm is of great importance
for the efficient implementation of elliptic and hyperelliptic curve cryptosystems. Software-based
operations can normally rely on very fast inversion, which in turn implies that they will most likely
use affine coordinates. However, the situation is quite different on hardware platforms that are used
for embedded devices or smart cards. In the following we briefly discuss two main options.

If only the basic modular arithmetic operations (multiplication and squaring) are supported by
hardware, the only way to realize modular inversion is to either implement the extended Euclidean
algorithm on the main CPU, using some functionality of the cryptographic hardware, or to make
use of Fermat’s little theorem (see the introduction of Section 11.1.3). In most of these cases, the
second solution will be better, since modular exponentiation is normally available anyway.

Remarks 26.54

(i) Hardware support for modular inversion in odd characteristic usually focuses on differ-
ent variants of the Extended Euclidean algorithm as described in Section 11.2.4 for even
characteristic and in Section 11.1.3 for odd characteristic.

(ii) We first deal with the odd characteristic case. The analysis of the main arithmetic oper-
ations used in this algorithm shows that the following operations are most important:

(a) addition

(b) subtraction

(c) halving an even number

(d) computing the absolute value |A − B| of two odd numbers A and B.

While the first three operations are easy to implement (addition and subtraction are per-
formed by the main arithmetic unit, halving of an even number can be realized very
easily by a shift operation, and checking whether a number is even or odd can be ac-
complished by simply inspecting its least significant bit), the computation of the absolute
value |A−B| can be different to realize. This is mainly due to the fact that the absolute
value is normally obtained by first computing A − B, then inspecting the sign of this
result and finally computing the two’s complement if the outcome of the subtraction was
negative. Since the sign of the result will only be available after the end of subtraction,
the two’s complement building can only start once the subtraction operation is finished.
Summarizing, we see that the cost for the comparison of two integers is mainly domi-
nated by the cost of a subtraction. However, the computation of the absolute value will
cost some extra cycles.
If Montgomery multiplication is used, there are much more efficient inversion algo-
rithms available that have already been described in Section 11.1.3.

(iii) In even characteristic, the same two main options as in the odd characteristic case are
valid. The usage of the basic polynomial multiplication in order to compute the in-
verse of an element was described in Section 11.2.4.c. However, special properties of
polynomial arithmetic in characteristic two allow especially efficient implementations
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of the inversion according to the extended Euclidean algorithm. This is mainly due to
the fact that addition and subtraction are replaced by the simple XOR operation, which
does not have carry propagation. Furthermore, the comparison of two elements can be
accomplished by comparing single bits starting at the most significant bit.
The combination of these observations with specially designed hardware can lead to
very fast implementations of the modular inversion in even characteristic.

(iv) Analogously to the design of unified multipliers able to perform modular arithmetic in
both even and odd characteristic, designs for unified modular inversion also exist. These
designs obviously rely on the choice of an inversion algorithm that can be easily adjusted
to the case of even and odd characteristic. A good example of this is the Montgomery
inversion algorithm as described in [KAL 1995], which was used by Savas and Koç
to describe architectures for unified inversion in [SAKO 2002]. The main algorithmic
ingredient here is that the comparison of two integers u and v (i.e., the decision whether
u > v holds) is replaced by the comparison of the bit-sizes of u and v respectively, as
done in the characteristic two case. This replacement implies requiring the temporary
variables of this algorithm to be either positive or negative (which in turn implies that a
further bit has to be reserved to store the sign of these variables). However, as a result
of this modification, identical hardware can now be used for the comparison.

(v) Inversion in optimal extension fields, as introduced in Section 11.3, relies on a combina-
tion of the computation of a modular inverse in a (small) prime field Fp and a modular
exponentiation in an extension field Fpd . Due to the special nature of the prime p this
can be realized so efficiently that even without specific cryptographic hardware, fast
inversion implementations are possible (see [WOBA+ 2000]). Their implementational
results are based on an Infineon SLE44C24S, an 8051 derivative. For an OEF of ap-
proximately 135 bits field size their performance results are as follows: for a modular
multiplication 5084µs are needed, while an inversion is computed in 24489µs. Thus
they obtain a ratio multiplication/inversion below 5, which allows the usage of affine co-
ordinates in the implemented elliptic curve operations. This rather low ratio is achieved
by using an adaptation of the algorithm described in Section 11.3.4, where an addition
chain is used for the main exponentiation αr−1, and the inversion t−1 in the ground field
Fp is performed via table lookup.
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Although smart cards are now very common, this technology is still very new, with the first smart
cards appearing in the 1970’s. Since then, their evolution has been very rapid. Smart cards have
advanced from simple memory cards to very efficient “microcomputers” with multiple applications.

Equipped with a microcontroller, these cards are able to store and protect information using
cryptographic algorithms. They are also resistant to physical stresses such as twisting and bending.
The physical structure of the smart card consist of a small plastic rectangle with a magnetic stripe,
holograms, relief characters and an embedded chip. They are small, and easy to use and carry.
The security and portability of smart cards provide a safe, reliable, convenient, and effective way to
ensure secure transactions (banking, e-business, etc.), and to enable a broad range of applications.
Thus, modern smart cards can actually be used in any system that needs security and authentication.
They have been proven to be an ideal means of making high-level security available to everyone.

This chapter aims to present an overview of today’s smart card technology and show the lim-
itations that smart card manufacturers must take into account when implementing cryptographic
algorithms, for example, elliptic or hyperelliptic curve algorithms, in a smart card environment.

27.1 History

In the beginning of the 1950’s, the first plastic (PVC) cards appeared in the USA as a substitute
for paper money. They were initially aimed at the rich and powerful, and were only accepted by
prestigious hotels and restaurants. These cards were very simple with the owner’s name printed in
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relief, and sometimes the handwritten signature was added. These cards provided a more conve-
nient payment system than paper money. With the involvement of VISATM and MasterCardTM in
plastic money, credit cards spread rapidly around the world. Later a magnetic stripe was added to
reduce fraud and to increase security. Confidential digitized data was stored on this stripe, but this
information was accessible to anyone possessing the appropriate card reader.

Between 1970 and 1973 there was a significant development in plastic cards with the addition
of microcircuits to the card. Many patents were filed during this time; the best known inventors
include: J. Dethleff, K. Arimura, and R. Moreno. The term “smart card” was proposed by R. Bright.
It was not until 1984 that the smart card was first put into commercial use by the French PTT (postal
and telecom services) with their first telephone cards (smart cards with memory chips). In 1986,
millions of these smart cards were sold in France and other countries. After telephone cards, the
next big application was their use as banking cards. This development was more difficult because
they contained more complicated chips that were able to compute cryptographic calculations. The
French banks were the first to introduce this technology in 1984. A number of ISO standards were
created to encourage interoperability of smart cards. By 1997, bank cards were widely used in
France and Germany. The microcontrollers continued to advance and became more powerful with
larger memory capacity. This allowed for sophisticated cryptographic algorithms, providing higher
levels of security.

Nowadays, smart cards are present all over the world, and their use is likely to spread even further.

27.2 Smart card properties

Smart cards are physically similar to the classic embossed plastic cards. The older model cards are
used as the base design for the newer smart cards. There are two different categories of smart cards:
memory only cards, which are the cheapest and the simplest, and the microprocessor cards, which
are more expensive, but have more applications and security features. The structure of smart cards
is standardized by ISO, principally: ISO 7816 [ISO 1999a, ISO 1999b, ISO 1999c, ISO 1999d],
and ISO 7810 [ISO 1995].

The following sections look at the different aspects of the smart card properties.

27.2.1 Physical properties

The most widely used smart card format, ID-1, is part of the 1985 ISO 7810 standard [ISO 1995].
Most smart cards are made from PVC (polyvinyl chloride), which is also used for credit cards.
Some are made from ABS (acrylonitrile-butadiene-styrol), but they cannot be embossed; an example
application is a mobile phone card.

The body of the card includes the following components: magnetic stripe, signature stripe, em-
bossing, imprinting of personal data (picture, text, fingerprint), hologram, security printing, invisible
authentication features (fluorescence, UV), and a microprocessor chip.

27.2.1.a The chip module and its embedding

The chip module, also called the micromodule, is the thin gold contact on the left side of the smart
card. This module needs to be firmly attached to the plastic of the card. Its purpose is to protect the
card and the microprocessor chip. The contacts for contact-type smart cards can also be in the chip
module.

Many embedding techniques have been tested and used with the aim to optimize overall card
resilience to everyday physical and mechanical stresses (temperature abrasion, twisting, bending,
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etc.) while keeping the production costs as low as possible.

27.2.1.b Contact and contactless cards

There are two main ways a smart card can communicate with the card terminal: through physical
contact or by using a contactless connection. The contact cards were the first types of smart cards on
the market. However, with new advances in microcircuit technology, contactless cards have become
physically feasible.

Contact cards

This is currently the most common type of card. It communicates via a card reader where the
information passes through the contacts. There are metal contacts inside the card reader and on the
chip module of the smart card. The position and dimensions of these contacts (power supply, data
transfer, etc.) are set in the ISO 7816-2 standard [ISO 1999b]. Another standard, AFNOR, is still
in use by some cards in France, but is likely to disappear in the near future.

Figure 27.1 Pin layout for contact smart cards.
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C 3

C 2

C 1

C 4 C 8

C 5

C 6

C 7

GND

I/O

VPPRESET

VCC

CLK

RFU RFU

There are 8 contact areas C1, . . . , C8:

C1: Supply voltage, VCC, C5: Ground, GND,
C2: Reset, C6: External voltage programming,
C3: Clock, CLK, C7: Input/Output for serial communication,
C4: Not in use, reserved for future use, C8: Not in use, reserved for future use.

Contactless cards

These cards contain special circuits, which allow data transmission over short distances without
mechanical contact and without a direct supply of power. This technology is not new but is difficult
to apply to smart cards. At the moment it is possible to incorporate a battery into the card, but it
increases the size and cost of the card. Research is ongoing to reduce this problem.

Not only is there a problem supplying power to the smart card circuits, but data and clock signals
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also need to be transmitted between the card and the terminal. The technique of capacitive and
inductive coupling, at this time, is the most suitable for smart cards and has been standardized in
ISO/IEC 14443 [ISO 2000]. This standard presents a method for capacitive and inductive coupling
where the card’s conductive surfaces act as capacitor plates. One or several coupling loops are
integrated into the card to receive energy from the terminal. A carrier frequency in the range 100-
300 kHz is used, which allows very rapid transmission.

Dual interface or “combi-cards”

In the future it is likely that “combi-cards” will become more common. They combine the ad-
vantages of contact and contactless cards. In ISO/IEC 10536 the application is described as “slot
or surface operation.” Depending on the operation, the card must either be inserted in a slot to
make contact or placed on a certain surface for contactless transaction. This type of card allows
applications such as credit, debit, membership, and mass transit to be used on the same card.

27.2.2 Electrical properties

The electrical properties of a smart card depend on its embedded microcontroller, since this is
the only component of the card with an electrical circuitry. The basic electrical requirements are
defined by the ISO/IEC 7816-3 standard, Part 3: Electronic signals and transmission protocols
[ISO 1999c]. Electrical characteristics and class indication for operating at 5 V, 3 V and 1.8 V
are described within Amendment 1. Amendment 2, which describes an USB interface for smart
cards, is currently under preparation. The GSM mobile telephone network (GSM 11.11) should be
mentioned here, because it also contributes to the requirements in this area. Further modifications
of the ISO/IEC 7816 standard are driven by the UMTS specification.

27.2.2.a Supply voltage

A smart card supply voltage is 5 V, with a maximum deviation of +− 10%. This voltage, which is
the same as that used for conventional transistor-transistor-logic (TTL) circuits, is standard for all
cards currently on the market. Since all modern cellular telephones are built with 1.8 V technology
(GSM 11.18), modern smart cards are designed for a voltage range of 1.8-5 V +− 10%, which results
in an effective voltage range of 1.6-5.5V. They can be used in both, 1.8 V and 5 V terminals, to keep
the advantage of simple and straightforward card usage.

27.2.2.b Supply current

The built-in microcontroller obtains its supply voltage via contact C1 (see Figure 27.1). According
to the GSM 11.11 specification, the current may not exceed 10 mA, so the maximum power dis-
sipation is 50 mW, with a supply voltage of 5 V and an assumed current consumption of 10 mA.
Table 27.2 gives an overview of the actually defined maximum power consumption classes, speci-
fied by ISO 7816 and GSM.

The current consumption is directly proportional to the clock frequency used, so it is also possible to
specify the current as a function of the clock frequency. State-of-the-art smart card microcontrollers
use configurable internal clock frequencies for their processor and their arithmetic coprocessor.
Hence, the current consumption is not only dependent on the external clock, but also on the given
configuration of the microcontroller itself and the setting of the coprocessor. The coprocessor can
be programmed to keep power consumption under a set value, for example, the GSM values.
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Table 27.2 Smart card power consumption specified by ISO 7816 and the GSM specifications.

Specification ISO 7816-3 GSM

Notation Class A Class B GSM 11.11 GSM 11.12 GSM 11.18

Supply voltage 5 V 3 V 5 V 3 V 1.8 V

Supply current 600 mA 50 mA 10 mA 6 mA 4 mA

Frequency 5 MHz 4 MHz 5 MHz 4 MHz 4 MHz

Power consumption 300 mW 150 mW 50 mW 18 mW 7.2 mW

27.2.3 Memory

Smart cards can be divided into two main components: the processor (including coprocessor) and
memory. Memory can again be divided into volatile and non-volatile memory. Table 27.3 shows the
different types of volatile and non-volatile memory. Since a smart card needs to be able to function
as an independent unit, most cards will be found with a combination of RAM, ROM, and EEPROM.

Table 27.3 Types of memory found in smart cards.

Memory types found in smart cards

Volatile memory Non-volatile memory

RAM ROM

PROM

EPROM

EEPROM

Flash EEPROM

FRAM

27.2.3.a Read-Only Memory (ROM)

ROMs are non-volatile memory that can be randomly accessed during reading. There is no limit
to the number of times the memory can be read, but it can only be written during production. This
type of memory requires no voltage to hold the information, so when the power is disconnected, the
data is still retained. This is excellent memory for storing vital programs that the smart card needs
to run, like the operating system and the diagnostic functions. The data is imprinted onto the chip
by using lithographic techniques. ROM cells require the least amount of area per cell compared to
other available types of memory.

27.2.3.b Random Access Memory (RAM)

RAM is the work area for the smart card. It can quickly read and write data, and there is no limit to
the number of writes a RAM cell can handle. However, since it is volatile memory, constant power
needs to be supplied, or otherwise the contents will be lost. The method for accessing this memory
is what gives it its name; random access means that the memory is selected and directly accessed
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without having to sequentially traverse the memory block.
In smart cards, the most common form of RAM is static RAM (SRAM), which, unlike dynamic

RAM (DRAM), does not need to be periodically refreshed. SRAM has flip-flops as the basic com-
ponent while DRAM uses capacitors with refresh circuitry.

Smart card chip designers try to keep the amount of RAM to a minimum, since it requires a large
area per cell. Indeed, RAM cells require seventeen times more area than a ROM cell.

27.2.3.c Programmable read-only memory (PROM)

Programmable read-only memory is similar to ROM in that once it has been written it cannot be
rewritten. The difference is that the code does not need to be written with lithographic techniques.
PROM has a serious drawback; access needs to be granted to the address, data, and control buses
for the writing process. This leaves a security hole in the smart card that a hacker could use to read
the data stored on the chip. PROM is not used in smart cards because of this vulnerability.

27.2.3.d Erasable programmable read-only memory (EPROM)

An EPROM is essentially an n-channel MOSFET (metal-oxide-semiconductor field effect transis-
tor) with an extra polysilicon gate called the floating gate. In Figure 27.4 the left curve has a
relatively low Vt and is normally chosen as state “1.” This state is also called the “preprogrammed”
state.

Figure 27.4 Threshold voltage curves for programmed and preprogrammed state.
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Threshold voltage
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A voltage needs to be applied between the drain and source to program the EPROM to the “0” state
(see Figure 27.5). On the select gate a voltage of 17 V to 25 V needs to be applied. Since smart card
controllers use a supply voltage between 3 and 5 V, a cascaded voltage-multiplier circuit, or charge
pump, needs to be used to generate the required voltage levels.

The device acts as a regular n-channel enhancement MOSFET when there is no charge present on
the floating gate. With the voltages present, a tapered n-type inversion layer is formed at the surface
of the substrate. The drain-to-source voltage accelerates the electrons through the channel. The
electric field formed by the voltage on the selected gate attracts the hot electrons (the accelerated
electrons) towards the floating gate. At the floating gate the electrons collect, causing the gate to
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become negatively charged. This process continues until enough of a negative charge is formed on
the floating gate to reduce the strength of the electric field to the point of not being able to accelerate
any more hot electrons.

Figure 27.5 EPROM during programming.
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The negatively charged floating gate repels electrons away from the surface of the substrate. To
compensate for the loss of electrons in the region, a larger select gate voltage is required to form an
n-channel. This will shift the iD − vGS characteristic graph upwards, as can be seen in Figure 27.4
[SESM 1991].

For the microcontroller to read the state of the EPROM, the unit only needs to apply a test VGS

between the two iD − vGS curves. If the current flows, the EPROM is in state “1” and if it does not
flow then it is in state “0”.

For smart cards, EPROM was used by the French PTT in their first telephone cards, since, at that
time, it was the only ROM type memory available [RAEF 2000]. As with other ROM types, it does
not require a supply voltage to retain the data. EPROM can be reprogrammed, but it first requires
ultraviolet light to erase the old data. This method is not feasible for smart cards, so this technology
has been abandoned for newer erasable ROMs.

27.2.3.e Electrically erasable programmable read-only memory (EEPROM)

As with regular computers, sometimes data needs to be read, altered and then stored with the possi-
bility that the voltage supply is disconnected. Computers use hard drives to store the data for longer
periods of time, but smart cards do not have this option. Instead they use a type of ROM that can
handle multiple writes. EPROM can only be erased with ultraviolet light, which makes it unsuitable
as a multi-write memory. The solution is found with another type of ROM that can be electrically
erased, the electrically erasable programmable read-only memory (EEPROM), see Table 27.7.

EEPROM operates similarly to the method described in Section 27.2.3.d. There are two main
differences between EPROM and EEPROM. The first difference is how the electrons travel from
the substrate to the floating oxide layer. The method described in Section 27.2.3.d uses hot electron
injection, while standard EEPROM uses the tunnel effect (Fowler–Nordheim effect). A high positive
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voltage at the select gate causes electrons to migrate through the tunnel oxide to the floating gate,
where they collect. Eventually, the floating gate becomes negatively charged.
The second difference between EPROM and EEPROM is how the data is erased. As stated earlier,
EPROM requires ultraviolet light to reset its state. For EEPROM a negative voltage applied to the
select gate forces the electrons from the floating gate back to the substrate. After this process, the
EEPROM is classified again as discharged and the Vt is low.

Similar to RAM and other types of ROM, EEPROM can be read an unlimited number of times.
However, there is a limit to the number of writes that can be performed. The life expectancy is
limited by the quality, type, and thickness of the tunnel oxide layer, which is the oxide layer between
the floating gate and the substrate (see Figure 27.5). During production, the tunnel oxide is one of
the first layers to be produced. As the rest of the production continues, it undergoes large thermal
stresses that cause minute faults in the oxide layer. This allows the tunnel oxide to absorb electrons
during the programming cycle, which are not returned to the substrate when the data is erased. The
trapped electrons then collect at the channel between the drain and source. This process continues
until enough electrons collect that they influence the threshold voltage to a greater degree than the
floating gate. The threshold voltage then stays in one state, regardless of whether the floating gate
is charged or not; the EEPROM is then useless.

27.2.3.f Flash electrically erasable programmable read-only memory (flash EEPROM)

Flash EEPROM is a mixture of EEPROM and EPROM technology. It operates with hot electrons
but uses an erase technique similar to EEPROM. Most manufacturers implement a combination of
flash EEPROM and regular EEPROM onto their chips. Each memory type has its benefits when it
comes to endurance and space requirements. A typical application for regular EEPROM is transient
data or constants that may need to be occasionally changed. Flash EEPROM is better suited for
program code, which may need to be upgraded or changed only a few times during the products,
life cycle [BUR 1999].

EEPROM uses both, a read and a write transistor, while flash memory uses only one transistor.
Also, each cell of the regular EEPROM requires signal routing and complex address-decoding logic,
since each word has its own control signals. Flash memory, on the other hand, employs less com-
plex word decoders that allow for more compact units. This leads to a trade-off in programming
flexibility and write time.

With regular EEPROM any word can be altered by accessing that memory location, erasing the
word, then writing in the new data. This is not possible with the word decoder of flash memory.
Before any data can be changed, the whole array must be erased and then completely rewritten. This
leads to a large difference in operating speed. EEPROM can be reprogrammed in a few milliseconds,
whereas flash memory may take from a few microseconds to a second to reprogram.

Another key factor that makes regular EEPROM able to better handle transient data is the en-
durance of its cells. Flash EEPROM can only handle about 1000 write cycles, which is too short for
most application requirements. Since application data does not change that often, it is perfect for it
to be programmed onto flash EEPROM. It can be upgraded after manufacture giving it an advantage
over ROM or PROM. Most smart cards now incorporate some flash EEPROM in their system.

27.2.3.g Ferroelectric random access memory (FRAM)

Ferroelectric Random Access Memory (FRAM), a relatively new type of memory, has recently
become available to the microprocessor manufacturers. The characteristics of FRAM are similar
to those of both RAM and ROM. It is a non-volatile memory, but with a write speed considerably
faster than flash or EEPROM memory.

Instead of using a floating oxide layer as the dielectric, FRAM employs a ferroelectric film. The
composition of the film is usually either PZT

(
Pb(Zr, Ti)O3

)
, PLZT

(
(Pb, La)(Zr, Ti)O3

)
, or SBT
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(Sr Bi2Ta2O9). Figure 27.6 shows the crystalline structure of PZT. Polarization through electric
fields has a dual advantage over the injecting of hot electrons or tunneling effect method, it is
faster at writing and it requires less power (see Table 27.7 for the comparison between the different
memory types).

Figure 27.6 View of the crystalline structure of ferroelectric material.
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Lead (Pb)

Oxygen (O)

Zirconium / Titanium (Zr 

Table 27.7 Comparison of different memories [FUJITSU].

Memory SRAM DRAM EEPROM FLASH FRAM

Type Volatile Volatile Non-volatile Non-volatile Non-volatile

Read cycle 12 ns 70 ns 200 ns 70 ns 180 ns

Write cycle 12 ns 70 ns 5 ms 1 s 180 ns

Data write method Overwrite Overwrite Erase & Write Erase & Write Overwrite

Write Endurance ∞ ∞ 104 103 1010

27.2.3.h Memory management unit (MMU)

The physical memory is divided into memory pages with the assistance of the MMU. Inside the
MMU a translation of the memory address occurs, and the visibility of the storage space is changed.
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Each segment of the physical memory is placed into the logical memory. Figure 27.8 shows the
behavior of the address translation.

Figure 27.8 Memory segmentation.
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Physical addresses

0x00000x0000

Virtual addresses

The size of one segment is programmable by the processor and can comprise the whole physical
memory or only a small portion of it. It is only limited by the maximum number of allowed seg-
mentations. The processor view of the memory may differ from the real memory alignment, since
there is no direct connection between the processor and the memory.

In most cases, the MMU is not enabled after power-on or a global reset. At this point, the
processor operates in “system” mode and the virtual addresses are equal to the physical addresses.
All special function registers (SFR) of the MMU are accessible by the CPU; these registers perform
the address translation.
When an application is executed from the code space the MMU is enabled and it is then in “user”
mode. Direct access to the SFR is disabled to protect other applications. Thus, each application
can only use its own memory region. This region contains the shared ROM for the program code,
and a part of the RAM for the variable data (see Figure 27.9). Memory protection is distinctively
important for the non-volatile data in the EEPROM, since that is where applications store sensitive
data, and it is necessary to protect this information against spying or loss of power.

27.2.4 Environment and software

Smart card systems consist of two parts: the host system, residing in the terminal (or in a PC with a
card reader) and the card system, inside the smart card. This section looks at the smart card software,
including the system software and the user applications that run on the card system.

Developing a smart card application traditionally was a long and difficult process. Most smart
card development tools were built by the smart card manufacturers using generic assembly lan-
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guage tools and dedicated hardware emulators obtained from the silicon chip vendors. Therefore,
developing smart card applications was limited to a group of highly skilled and specialized pro-
grammers who had intimate knowledge of the specific smart card hardware and software. They
had to deal with very low-level communications protocols, memory management and other minute
details, dictated by the specific hardware of the smart card. Upgrading software or moving appli-
cations to a different platform was particularly difficult or even impossible. Furthermore, because
smart card applications were developed to run on proprietary platforms, applications from different
service providers could not coexist and run on a single card. Lack of interoperability and limited
card functions prevented a broader deployment of smart card applications. The development of the
Java Card technology changed this situation. This language, designed by SUN technology, offers
new possibilities for smart cards, as will be seen in the following sections.

Figure 27.9 Example for the processor view.

MMU ROMCPU
address bus

Virtual

RAM

EEPROM

address bus
Physical

27.2.4.a Operating System (OS)

Each operating system depends on the manufacturer’s philosophy. The conventional operating sys-
tem is the one based on standard instructions, which is designed such that it can be implemented for
any application on the component. Smart card operating systems support a collection of instructions
that the user’s applications can access.

Many operating systems have been designed for smart cards: Windows R© for smart cards, which
is no longer used, Multos, Java Card, etc. There is no real standard for a smart card operating
system. The OS is strongly linked to the manufacturer, and standardizing it would affect the in-
tellectual property of the manufacturer. The group SCOPE, directed by GlobalPlatform, tried to
design a document specifying the main functionality that should be supported by a smart card OS.
The ISO 7816-4 [ISO 1999d] standardizes a wide range of instructions in the format of the appli-
cation protocol data unit, APDU. A smart card operating system may support some or all of these
APDUs as well as the manufacturer’s additions and extensions.

The operating system on a smart card has fewer operations to deal with than those present in
standard personal computers. Its purpose is essentially to regulate the input and output (I/O), timers,
exceptions, communications between the server and the terminal, memory management, and to
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securely load and run specific programs. In Figure 27.10, the OS is composed of the following
elements:

• the BIOS: for the protocol communication T (0, 1, both, or others), the timers, the
exceptions, the EEPROM management,

• the Java Card Virtual Machine (VM),
• some native applications used for access rights on memory.

The majority of applications are applets, native applications and the link with the Java Card VM.
No external instruction is allowed to interfere with the operation of the card. System crashes or
uncontrolled reactions due to a faulty instruction or as result of failed EEPROM sections must not
occur under any circumstances.

Figure 27.10 Architecture of the smart card.
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27.2.4.b Java Card

Java CardTM offers a way to overcome obstacles hindering smart card acceptance. It allows smart
cards and other memory-constrained devices to run applications (called applets) written in the Java
programming language. Essentially, Java Card technology defines a secure, portable, and multi-
application smart card platform that incorporates many of the main advantages of the Java language.
This type of platform has found wide acceptance and is currently being shipped in high volume. A
Java Card platform-based smart card runs Java based applications in the form of byte-code. These
are loaded into the memory of the smart card’s microprocessor where they are run by the virtual
machine (typically in the EEPROM). The advantages provided are:

• Multiple application management: multiple Java applications (electronic purse, authen-
tication...) can reside on a single card. These applications can be upgraded with new or
updated applets without the need of issuing a new or a different card.

• Security: the different applets present on the card are each separated by the applet fire-
wall. It ensures their integrity and eliminates program tampering; the level of access to
all methods and variables is strictly controlled.

• Hardware independence: Java Card technology is independent of the type of component
used. It can run on any smart card (8, 16, or 32 bits) because the applets are written on
top of the Java card platform.

• Compatibility: any card can run any application. Java Card technology is based on the
Java Card international standard ISO 7816, applets can interoperate not only with all
Java smart cards but also with existing card acceptance devices.

• High level development: applet developers do not have to deal with the details of micro-
controller, with the exception of cryptographic algorithms.

The main elements in Java Card are:

• The Java Virtual Machine: necessary to compile the byte codes of the applet and to run
the applications.

• The different applets that can be loaded in EEPROM or stored on ROM for some special
applications.

• The APIs: these are the classic APIs of the functions used in the card, for example the
cryptographic functions. These are designed and standardized by Sun to ensure that
applets are portable.

For more detailed information, the Java Card environment is described in the book Java Card Tech-
nology for Smart Cards: Architecture and Programmers Guide [CHE 2000].

27.3 Smart card interfaces

27.3.1 Transmission protocols

This section explains the structure of transmission and specific control in half-duplex transmis-
sion protocols. Three types of protocols are defined in the ISO/IEC standards 7816 [ISO 1999a,
ISO 1999b, ISO 1999c, ISO 1999d] and 14443 [ISO 2000, ISO 2000a, ISO 2000b, ISO 2000c,
ISO 2000d]: one character protocol (T = 0), and two block protocols (T = 1 and T = CL). The des-
ignation T = CL is currently in the final stage of specification, which is why it does not appear in
literature. Every smart card must support at least one of these protocol types, while terminals need
to support all of them.
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Table 27.11 Transmission protocols [RAEF 2000].

Protocol Explanation Specification

T = 0 Asynchronous, half-duplex, byte-oriented ISO/IEC 7816-3

T = 1 Asynchronous, half-duplex, byte-oriented ISO/IEC 7816-3

T = 2 Asynchronous, half-duplex, byte-oriented ISO/IEC 10536-4

T = 3 Full-duplex –

T = 4 Asynchronous, half-duplex, byte-oriented, –

extension of the T = 0 protocol

T = 5-13 Reserved for future use –

T = 14 Reserved for national use

(in Germany: Deutsche Telekom) Proprietary standards

T = 15 Reserved for future use and extensions –

Altogether, the ISO/IEC standards comprise of fifteen types of transmission protocols. Up to now,
only three of them are fully specified while the rest is either still under definition, reserved for future
use, or reserved for national use (see Table 27.11).

The half-duplex block transmission protocol T = CL addresses the special needs of contactless
card environments and is not listed in Table 27.11. It sets out the requirements for contactless smart
cards to operate in the vicinity of other contactless cards that conform to the ISO/IEC 10536 and
ISO/IEC 15693 standards.

Which transmission protocol is to be used for subsequent communication between terminal and
smart card is indicated within the answer-to-reset (ATR) interface bytes and shall always be T = 0
or T = 1 for cards with contacts. If the interface bytes are absent, T = 0 is assumed by default.
For contactless cards only T = CL is designated. In Europe only Germany uses the T = 1 protocol,
whereas the rest of Europe uses T = 0 protocol.

27.3.1.a Protocol T = 0

The half-duplex asynchronous transmission protocol T = 0 (cf. standards [ISO 1999a, ISO 1999b,
ISO 1999c, ISO 1999d]) is the basic protocol for cards with contacts. It is the oldest transmission
protocol and is designed for a minimum of technical requirements. For this reason, it is used in the
present GSM technology for mobile phones. The protocol T = 0 is completely byte-oriented and it
uses the following character frame format: a character consists of 10 consecutive bits:

• 1 start bit in state “Low,”
• 8 bits, which comprise the data byte,
• 1 even parity checking bit.

A character is the smallest data unit that can be exchanged. The interval between two consecutive
character’s leading edge start bits is comprised of the duration of the data plus a guard time. The
minimum value of this guard time is 2 Elementary Time Units (ETU). Thus, for T = 0 the minimum
duration between two consecutive start bits is 12 ETU. With the ATR parameter N, the guard time
value can be changed. Its value represents the number of ETU to be added.

During the guard time, both communication partners are in receive mode (I/O line in state
“High”). The transmitter checks the state of the I/O line by sampling the I/O port. In the event
of an error-free transmission, the I/O line remains in the “High” state and the next character is
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expected after the guard time has expired.
If the card or the terminal detects a parity error in the received character, it sets the I/O line to

the “Low” state for one or two ETU to indicate an error. Since the transmitter samples the I/O port
during the guard time, it detects the “Low” state and identifies it as a parity error. After detection of
the error signal, the sender repeats the character instead of transmitting the next one.

The error signal and character repetition procedure is mandatory for all cards offering the T = 0
protocol.

27.3.1.b Protocol T = 1

The half-duplex asynchronous transmission protocol T = 1 (cf. standards [ISO 1999a, ISO 1999b,
ISO 1999c, ISO 1999d]) consists of block frames exchanged between the two communication
partners. They convey either application data transparent to the protocol or transmission control
data including transmission error handling. The protocol T = 1 is designed using the layering
technique found in the Open System Interface (OSI) model [RAEF 2000], with particular attention
paid to the minimization of interactions across boundaries.

A block is the smallest unit exchanged. It is defined as a sequence of bytes, whereby each byte
is conveyed in a single character, see Section 27.3.1.a for the definition of a character. The protocol
always starts with a block sent by the terminal and continues with alternating the right to send a
block. The block structure allows us to check the received data before processing the conveyed
data.

Within a block, the standard duration between the start bit leading edges of two consecutive
characters is 12 ETU. The error signal and character repetition procedure, as defined for T = 0,
does not take place in the T = 1 block protocol. Thus, the minimum delay between the leading
edge of the start bits of two consecutive characters may be reduced from 12 ETU to 11 ETU. If the
corresponding ATR interface parameter indicates N = ’FF’ (N = 255), this leads to a guard time of
only 1 ETU.

A block consists of the following three fields where the items in brackets indicate optional re-
quirements (see Figure 27.12):

• The “Prologue” field consists of a “Node Address” byte (NAD), a “Protocol Control
Byte” (PCB) and a “Length” byte (LEN).

• The “Information” field is optional. If present, it is comprised of 0 to 254 bytes (INF).
• The “Epilogue” field consists of one or two mandatory bytes for the “Error Detection

Code” (EDC).

Figure 27.12 Structure of a T = 1 block frame.

1 byte
PCB CID

1 byte 1 byte
NAD INF EDC

Prologue field Information field Epilogue field

0 to 254 bytes 1 to 2 bytes
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27.3.1.c Protocol T = CL

The half-duplex block transmission protocol T = CL controls the special needs of contactless smart
card environments [ISO 2000, ISO 2000a, ISO 2000b, ISO 2000c, ISO 2000d] and supports
both type A and type B frame formats (see Figure 27.13). An extra guardtime is inserted between
the characters in type B frame, which is used to separate the single characters. As already annotated,
this protocol is currently in the final stage of specification with the designation T = CL, which is
the reason why it does not appear in current literature. This protocol is designed according to the
principle of layering in the OSI reference model, with particular attention to the minimization of
interactions across boundaries, which is similar to T = 1 (cf. Section 27.3.1.b).

Figure 27.13 Type A and type B frame formats.

Type A

b0 b1 b2 b3 b4 b5 b6 b7 PS b0 b1 b2 b5 b6 b7 PS E. . .

1st byte nth byte

Type B

SOF character1 EGT character2 EGT characterN EOF

Another similarity with T = 1 is the method of transferring the character frame formats. The protocol
T = CL also exchanges block frames between terminal and smart card. A block is the smallest data
unit that can be exchanged, and it may be used to convey application data or transmission control
data, including transmission error handling. This is one reason why in T = CL the error signal and
character repetition procedure, as specified for the T = 0 protocol, does not take place. Another
reason is that T = CL uses different frame formats than the T = 0 or the T = 1 protocols.

Figure 27.14 Character and next character transmission.

b0 b1 b2 b3 b4 b5 b6 b7 PS GT b0 b1 b2 b3 b4 b5 b6 b7 PS GT

Character Next Character

t < CWT
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The protocol starts with a first block sent by the terminal and continues with alternating the right to
send a block. As shown in Figure 27.14, a block consists of the following three fields, where the
items in brackets indicate optional requirements:

• The “Prologue” field consists of up to three bytes, where the first byte (PCB) is manda-
tory and the two other bytes (CID and NAD) are optional.

• The “Information” field is optional. If present, it comprises 11 to 253 bytes (INF).
• The “Epilogue” field consists of two mandatory bytes for the “Error Detection Code”

(EDC).

Figure 27.15 Structure of a T = CL block frame.

1 byte
PCB CID

1 byte 1 byte
NAD

11 to 253 bytes
INF

2 bytes
EDC

Prologue field Information field Epilogue field

27.3.2 Physical interfaces

There exist different interfaces in the smart card environment. The ‘universal asynchronous receiver
transmitter’ (UART) is the most used interface for data exchange. There also exist the ‘universal
serial bus’ (USB) and, for special cases, radio frequency waves. The UART and the USB are
investigated in the following sections.

27.3.2.a UART

The UART enables hardware supported data transfer at the serial I/O line. In former smart card
architectures, the software, in conjunction with the OS, exclusively handled the process of trans-
mitting and receiving data. This was sufficient as long as the desired baud rate did not exceed
approximately 111 Kb/s. However, with higher rates, the received bits could not always be identi-
fied as valid, since the verification time was too short. An error-free communication was then no
longer possible.

Today’s smart card applications are becoming more complex. Apart from the increasing baud rate
mentioned above, the security requirements, like cryptographic algorithms, need CPU time for their
computation. Another factor is the possibility of several applications running simultaneously during
a card session. These developments result in an increasing effort by the CPU, OS, and software to
manage all requests in a satisfactory manner.

Using a UART is an efficient solution to increase the speed of data exchange without loading the
CPU (see Figure 27.16). The hardware and software, for the UART implementation and control,
are of a manageable size. The UART decouples the CPU from direct I/O data handling during
communication. In this way, high baud rate can be achieved without decreasing the speed of the
running applications. The UART autonomously organizes the transfer via the I/O lines, and, when
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necessary, prepares the data for the CPU. Also, there is a UART extension for direct memory access
(DMA) operation. The function allows the UART to exchange the data with the memory without
assistance of the microprocessor.

Figure 27.16 Example for an UART environment.
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27.3.2.b USB

The universal serial bus (USB) specification [USB] is a standardized peripheral connection devel-
oped in 1995 by leading companies in the PC industry. The major goal of USB is to define an
external expansion bus, which makes adding of peripherals to a PC as easy as possible. In the
smart card world, the USB interface serves as a high speed connection between smart card chip and
external peripheral components.

With an implemented USB interface, the same smart card chip can be used for communication
(card and reader).

The employment of a standard smart card chip on the reader side leads to a cheaper system, since
developing one chip for both sides reduces the costs. This results in a shorter development period.
A standard USB interface consists of three components: the Interface Logic, the Serial Interface
Engine, and the USB Transceiver. The transceiver (see Figure 27.17) transforms the differential
signal at ports D+ and D- into traditional digital logic.

27.4 Types of smart cards

27.4.1 Memory only cards (synchronous cards)

This is the first type of card to be widely used. The prepaid telephone cards mentioned in the
introduction are an example of this type of card. The data required for the applications are stored in
the EEPROM memory (EPROM for the first cards). In the simplest case the cards use memory that
can only be written once, and after use, the memory is deleted and made inoperable (the Thomson
ST1200 SGS, introduced in 1983 for the French telephone card, worked in this way). The addition
of a security logic device allows more control over the memory access. There now exist more
complex memory cards, which can perform simple encryption.
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Figure 27.17 Example for an USB interface.
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These types of cards are easy to use, the electronics are simple, the chip is small, and the price
is low. However, memory space and flexibility are limited, and they are not adapted to security
applications.

27.4.2 Microprocessor cards (asynchronous cards)

These cards are equipped with an “intelligent circuit”: a processor connected to memory blocks
capable of carrying out complex calculations. The added functionality of the microprocessor allows
for higher security and application choices. However, as a result, these cards are larger and more
complex. It is possible to connect other devices to the microprocessor for communication, special
operations or security. Figure 27.18 shows many of the possible components that can be added to
the microprocessor card. In smart cards, there are many different types of microprocessors. All of
them function as a secured unit, protected from unauthorized access.

Figure 27.18 Components of the microprocessor.
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Table 27.19 Characteristics of CISC and RISC based processors.

CISC RISC

Extensive instruction set Small instruction set

Complex and efficient machine instructions Simple instructions

Advanced instructions microencoded Hardwired machine instructions

Extensive addressing capabilities for memory operations Few addressing modes

Few registers Many registers

All microprocessors (and most computers) employ the principle of stored program digital computer.
This means that data and instructions, which are stored in a memory area, must first be loaded into
registers. Then the central processing unit, CPU, operates on these registers and places the results
back into the memory areas.

The CPUs used in smart cards are usually built around proven modules from other applications.
Many CPUs are based on the CISC (complex instruction set computer) architecture, which requires
several clock cycles per instruction. However, CPUs based on the RISC (reduced instruction set
computer) architecture are becoming more common. Table 27.19 shows the different characteristics
between the CISC and RISC type processors. Many current CISC type processors are based on
either one of the two main families: the Intel 8051 or the Motorola 6805 family. Manufacturers,
such as Philips, Infineon, and ARM, take the base design of either a CISC or RISC processor and
add their own functionality as needed.
The processing speed of the smart card is controlled by a clock circuit normally set to 5 MHz.
Modern smart card processors use clock multipliers (by two or four) to increase this operating clock
speed for internal calculations. Using clock multipliers, smart cards are able to operate at speeds
between 20 and 48 MHz.

The area occupied by the microprocessor on the chip has a big influence on its manufacturing
costs and its resistance to bending and shearing forces. Therefore, effort is made to reduce the
chip’s size as much as possible. The chip’s surface area must be less than 25 mm2. Using current
chip technology, 0.25 or 0.30 µm, this means that the microprocessor contains between 150, 000 and
200, 000 transistors. Future microprocessors will be produced using newer 0.18 µm technology.

To provide additional functionality to the smart card, manufacturers add specialized processors
and coprocessors to perform only specific tasks. The next section takes a closer look at coprocessors
in smart cards.

27.4.2.a Coprocessors

Coprocessors are used on the majority of current chips for special operations and to optimize stan-
dard operations. Among those used for cryptography are:

• a coprocessor for DES encryption/decryption,
• a random number generator coprocessor: allows the use of random values in algorithms,
• an arithmetic coprocessor: dedicated to arithmetic operations (modular operations) on

long integers; for example, 160-bit or longer integers.

An arithmetic coprocessor element is essential for asymmetric cryptography algorithms such as
DSA, ECDSA, etc. Now there are more coprocessors that are not only optimized for RSA operations
but also for elliptic and hyperelliptic curves operations. The first ECC cards started to appear around
2001 and 2004 the first smart card using HEC was produced.
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Adding such coprocessors has a significant impact on the cost of the chip, increasing it by as much
as a factor of ten. This being the case, one may wonder why with increasingly powerful processors
it continues to be necessary to add coprocessors. But at the same time, cryptographic algorithms
require longer keys to keep them secure, so coprocessors are likely to remain necessary for high
performance cards.
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28.1 Introduction

From the very first use of cryptography, people have always tried to decrypt enciphered messages
in order to gain access to the sensitive and hidden information. We have seen, in the mathematical
part of this book, different signature or cipher schemes based on the use of elliptic or hyperelliptic
curves. These are considered to be secure from a theoretical point of view if the parameters are well
chosen.

But, as far as a cryptosystem can be theoretically secure against actual cryptanalysis, in real im-
plementations (for instance, in a smart card), it faces other threats than the mathematical ones; in
particular side-channel attacks, SCA for short. As we have seen in the previous hardware Chap-
ter 27, a smart card is very complex with many constraints such as speed and storage limitations.
Side-channel attacks exploit the behavior of the chip while computing. Analyzing power consump-
tion, Electromagnetic Emissions, calculation time, reactions to perturbations and fault injections,
can reveal information on secret keys present in memory.

In this chapter, we are first going to deal with invasive attacks, which can be considered the most
detectable because they partially modify (or destroy) the product. Then we will discuss non-invasive
attacks, which can be performed on elliptic and hyperelliptic curves including: timing attacks, power
analysis, electromagnetic analysis, and differential fault analysis.

669
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28.2 Invasive attacks

The techniques in the following discussion originate from the failure analysis domain, but have
also been used to attack electronic devices such as smart cards. We are not going to discuss in
detail the most sophisticated types of attacks due to cost constraints and the complexities involved.
For more details on these techniques we refer the reader to [MFA 2004]. Equipping a laboratory
is very expensive, typically costing several million US$. However, price is less important as it is
possible to rent a full laboratory station. Depending on the complexity of the work involved and the
available knowledge of the chip being targeted, it can take many days or even weeks of work in a
very specialized laboratory (see [CAMB] and [KÖKU 1999] for more details). Moreover, the owner
of the card should notice these attacks in most cases because of the (partial) destruction of the smart
card, and warn his provider. Nevertheless, it is important to bear in mind that such attacks could
fatally undermine an entire security system. For instance, shared master keys should not be present
into a card; in that case only the secret proper to the card attacked could be extracted.

28.2.1 Gaining access to the chip

Removal of the chip module from the card in order to connect it in a test package is quite easy; with
a sharp knife, simply cut away the plastic behind the chip until the epoxy resin becomes visible.
A smarter solution is to heat the card. This softens the glue of the chip which can then easily be
removed by bending the card.

Once the chip module has been separated from the card, any remaining resin must be removed.
A number of techniques are available depending upon the nature of the coating and of the targeted
result (e.g., keep the module functional or not).

For instance, dropping fuming nitric acid completely dissolves the resin after a while. The process
can be accelerated by heating the nitric acid. Then, the chip is plunged into acetone in order to wash
it, followed by a short bath in deionized water and isopropanol.

Functional tests have proven that nitric acid damages neither the chip nor the EEPROM content.
This is important as protected information is stored in non-volatile memory.

The chip is now ready for reconnection into another package, with fine aluminum wire, in a man-
ual bonding machine. Now that access to the chip has been gained, analysis of the microelectronic
characteristics can begin.

28.2.2 Reconstitution of the layers

The next step of the invasive attack involves reverse engineering the chip layout. This type of attack
can be sufficient to provide direct access to sensitive data in the memory. It can also give rise to
more complex scenarios such as micro-probing of critical signals or chip reconfiguration. Reverse
engineering mainly consists of removing layers sequentially. The oxide layers can be selectively
removed using a plasma machine, or chemically (for instance, fluoric acid). Metal layers are also
chemically etched (for example, chloric acid for aluminum lines). Polishing techniques can also be
used.

Images of each layer can be made using an optical or electronic microscope. Then by combining
these images it is possible to regenerate the layout of the device (or at least a part of the device).
Once the different layers and interconnections between them have been rebuilt, it becomes possible
to regenerate the electronic schemes of the chip and so to explain how it really works.

In Figure 28.1, on the left, there is a top view of a chip with all the metal layers (3 layers). On the
right, this is the same chip , but after removal of the upper metal layers.
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However, even if a complete reverse engineer of a circuit is possible, the increasing complexity of
devices can make this quite unrealistic.

Figure 28.1 Reverse engineering, layer observation.

28.2.3 Reading the memories

In the previous section we explained that it is possible to determine the electric design of the circuit.
In the same way, non-volatile memory contents can be “directly” read. Nevertheless, the remaining
effort depends upon the kind of memory or the scrambling of the memory plan. In a ROM, for
example, reading of the bits’ values can be performed directly by optical observation of the first
metal layer in the case of hard-wired memory. For diffused memory it will be necessary to reach
the bulk level (lift off all layers until reaching the active one). Then, additional selective etching
techniques could be necessary to highlight the diffusion area. In case of canal-implanted ROMs,
dopant-selective crystallographic etching techniques or AFM (atomic force microscope) would be
needed, cf. [BEC 1998].

In Figure 28.2, on the left, there is a view of the ROM before chemical treatment. On the right,
this is the same ROM, but after chemical operation. The dark spots indicate the transistors set to
transmit 0 volt by ion implantation (the bit is equal to 0). The bright spots indicate the transistors
set to transmit 5 volt (the bit is equal to 1).

Other non-volatile memories such as EEPROM, Flash, and FRAM can, theoretically, be read by
similar techniques. Nevertheless, because of the nature of the data coding, it is much more difficult
to achieve the sample preparation without losing part of the memory content.

Finally, in most smart card products, the memories are fully scrambled and sometimes encrypted.
So even if it is possible to access the memory, it is also necessary to completely rebuild the scram-
bling/ciphering process.

28.2.4 Probing

Previous sections deal with directly obtaining information through reverse engineering. But these
analyses are intrinsically useful for additional attack paths such as the probing of internal signals.
Indeed, if it is possible to observe data flow into internal buses then one can gain direct access to
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sensitive data. Different kinds of techniques can be used to observe the internal signals: galvanic
probing (using a probe station cf. Figure 28.3); voltage contrast on a scanning electron microscope
(SEM) or even light emission during transistor flips.

Figure 28.2 Crystallographic attack.

Figure 28.3 Microprobing station.

28.2.5 FIB and test engineers scheme flaws
Attackers also have a lot of interest in focused ion beam (FIB) workstations. This useful tool is
a vacuum chamber with an ion gun (usually gallium), which is comparable to a scanning electron
microscope. A FIB can generate images of the surface of the chip down to a few nm resolution
and operates circuit reconfiguration with the same resolution. The first basic usage consists in
increasing the “testability” of the circuit by managing access to deep internal signals. The FIB
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could be used to add test pads (probing) on critical signals. But the FIB can also be used to modify
the internal behavior of the device by changing the internal connections. Finally, FIB is used to
facilitate physical analysis of the device by making localized cross sections.

Figure 28.4 shows some typical FIB modification results. On the left, the image shows the cre-
ation of a connection between the second metal layer and the third one with a platinum strap. On
the right the image has been annotated to explain what has been done in this FIB manipulation.

Figure 28.4 FIB circuit modifications.

It is clear that such equipment presents a security threat to smart cards. It is possible, for instance,
to disable security sensors. In particular it can be used to bypass some layout protections such as
active shields.

It can also be used to rebuild a security fuse that has been blown after test during manufacture.
We have seen above that some invasive attacks can be performed in order to access sensitive data.

Nevertheless they are very expensive in terms of time, resources, and equipment. In addition,
technological advances are enabling the design of more and more complex and compact circuits,
increasing the difficulty of such attacks as a side effect.

28.3 Non-invasive attacks

Non-invasive attacks destroy neither the chip nor damage the packaging around it. So, they are less
likely to be detected by the owner of the card. They are extremely dangerous for this reason and also
because the equipment needed to perform them is relatively inexpensive. Smart cards are nowadays
utilized in many security domains and applications: bank cards, mobile communication and secure
access, etc. Thus, groups of attackers or illegal organizations could create laboratories in order to
process such attacks on the different products that are widely available within our society.

28.3.1 Timing attacks

Most of the programs and the code naturally designed contains conditional branching operations.
Therefore, algorithm implementations have no constant time and thanks to these variations, it is
possible to retrieve information. That is why the running time of an algorithm can constitute a
side channel and give information on data operated during computations, which is the principle of
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timing attacks. In 1996, taking advantage of the variation in the algorithm execution time as a result
of input changes, Kocher performed the first timing attacks on real PC implementations of several
cryptographic algorithms (RSA, DSA, etc), cf. [KOC 1996].

The first timing attack on smart card was performed in 1998 by Dhem et al. in [DHKO+ 2000].
Take for example, the following algorithm computing a reduction modulo the secret integer N :

Algorithm 28.1 Modular reduction

INPUT: Two integers x and N of size respectively �1 and �2 bits with �1 > �2.

OUTPUT: The integer x mod N .

1. t ← 2�1−�2 × N

2. for i = 0 to (�1 − �2) do

3. if x � t then x ← x − t

4. t ← t/2

5. return x

As one can see in this algorithm, if x is not greater than the integer t, Line 3 is not computed.
Where x � t the calculation takes longer and it is possible to deduce information on the value of
the number x, particularly, the bit at the ith step. The attacker will analyze the running times of
different computations of known or chosen messages in order to recover the modulus N .

Although it is an efficient attack, it’s quite easy to thwart by implementing constant time algo-
rithms, for instance by doing dummy computations.

For example, the following reduction algorithm will avoid timing attacks:

Algorithm 28.2 Modular reduction against timing attacks

INPUT: Two integers x and N of size respectively �1 and �2 bits with �1 > �2.

OUTPUT: The integer x mod N .

1. t ← 2�1−�2 × N

2. for i = 0 to (�1 − �2) do

3. if x � t then x ← x − t

4. else u ← x − t [dummy computation]

5. t ← t/2

6. return x

In this reduction algorithm, the subtraction is always computed, but the result is discarded in the
variable u if the computation is not relevant for the reduction.

Moreover, nowadays, smart cards can prevent such attacks thanks to hardware countermeasures:
dummy cycles, internal clocks, etc. To summarize, the cryptographic programmer has to implement
algorithms in such a way that their execution times are independent of the input data. So, a timing
attack proof algorithm is constant in time and, therefore, always longer than an efficient algorithm.

This type of attack has not been detailed here but they are not the most used against smart cards.
For further details, we refer the interested reader Koeune’s Thesis [KOE 2001]. Moreover, almost
no timing attacks against ECC or HEC have been published yet, mainly because power analysis
attacks, which have been deeply studied, are more powerful. Moreover, power consumption of the
smart card gives more information about the secret key than the running time and can be more dif-
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ficult to thwart. In [KAKI+ 2004], the authors give an example of attacking hyperelliptic curves.
Nevertheless, the attack is not really practical as only the general case is implemented in hyperel-
liptic curves on smart cards, whereas the attack is based on degenerated cases.

28.3.2 Power consumption analysis

Kocher, Jaffe, and Jun first presented the idea of using the measure of power consumption of an
electronic device to retrieve information about the secret keys inside a tamper-proof device. In
[KOJA+ 1999], Kocher et al. described two methods for extracting the keys, which they named
simple power analysis (SPA) and differential power analysis (DPA).

An electronic device such as a smart card is made of thousands of logical gates that switch differ-
ently depending on the complexity of the operations executed. These commutations create power
consumption for a few nanoseconds. Thus the current consumption is dependent on the operations
of its different peripherals: CPU, cryptographic accelerators, buses and memories, etc. In particu-
lar, during cryptographic computations, for the same instruction, the current consumption changes
if the value of registers and data processed are different. Simply monitoring the power consumption,
eventually followed by a statistical treatment, one can expect to deduce information on sensitive data
when they are manipulated. With some experience and knowledge on the cryptographic algorithms,
such analysis can be applied to many smart cards.

To mount these attacks the necessary equipment is a numerical oscilloscope, a computer, and a
modified card reader to communicate with the card. For the most complicated attacks (such as DPA)
other softwares are also necessary: to acquire the consumption curves, to treat the curves (signal
processing), and process the attack (see Figure 28.5). So, nowadays the setup required to attack
recent devices is still affordable for small organizations.

Figure 28.5 Setup for power analysis.
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28.3.2.a Simple power analysis

SPA needs only a single observation of the current consumption curve. The attacker can find in-
formation just by looking carefully at the curve representing the execution of a cryptographic algo-
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rithm. This is carried out by a detailed analysis of the curve. The power consumption curve of a
smart card is different according to the executed instruction and data manipulated. For instance, a
multiply instruction executed by the CPU needs more clock cycles than a XOR operation, or in a
circular rotation operation, where the value of the carry could be observed.

As the implementation variants are limited and mainly known for a given algorithm, an attacker
can deduce the structure of the implementation (from the sequence of double and add, the attacker
can find which coordinate system is used during the computation of Q = [n]P on an elliptic curve).
With a straightforward implementation of a cryptographic algorithm, he can perhaps determine lots
of details about it, for instance, to see precisely when the key is used and finally to retrieve all the
bits of the key.

For example, we can analyze the scalar multiplication of [n]P for a smart card using the double
and add algorithm. If n is the secret exponent, an attacker monitoring the power consumption of the
smart card can guess the bits of n with a single curve. Moreover, with some experience it is easy to
know if the trace is a double or an addition. Furthermore, an addition should consume more than a
double (at least for projective coordinates). In any case, as it is not possible in the double and add
algorithm for two additions to be consecutive, it must be two doubles. So the attacker can guess
when a bit of n is a zero or a one and with the whole consumption curve discover all the secret
exponents.

This general technique can be performed against implementations of elliptic curves scalar mul-
tiplication based on the double and add algorithm with affine or projective coordinates. In a more
general way, every algorithm that treats the bits scanned of the secret parameter differently if it
equals zero or one, is vulnerable to simple power analysis. In the same way, it is obvious that SPA
can also be efficient against implementations of hyperelliptic curves.

Techniques to counteract SPA are quite simple and generally implemented nowadays by pro-
grammers. For instance a solution is to avoid conditional branching operations or to compute the
same operations in all cases. Unfortunately, that mean slowing down the overall execution time and
a compromise must be found between timing and security.

In the following the double-and-add-always algorithm is protected against a SPA attack:

Algorithm 28.3 Double and add always

INPUT: A point P and an integer n = (n�−1 . . . n0)2.

OUTPUT: The point Q = [n]P .

1. Q ← P

2. for i = (� − 2) down to 0 do

3. Q0 ← [2]Q

4. Q1 ← Q0 ⊕ P

5. Q ← Q�i

6. return Q

Another generic countermeasure is the use of the Montgomery ladder Algorithm, [JOYE 2000].
This can be viewed as a variant of the double and add algorithm, since point doubling and addition
are performed for any input bit. Some other elliptic forms have been proposed, like the Jacobi
form [LISM 2001] and the Hessian form [JOQU 2001], and as we have seen in the mathematical
part, they have the same formulas for adding and doubling. Unfortunately, they are excluded from
recommended curves by standards, such as NIST or Certicom curves, as their order is a multiple of
4 or 3, respectively.



§ 28.3 Non-invasive attacks 677

Manufacturers also try to make SPA more difficult by including hardware countermeasures. We
can quote the most frequently used: noise generators, dummy cycles, clock jitters, power filtering,
variable frequency oscillators, and trying to make instructions cycles consuming identically.

28.3.2.b Differential power analysis

As we said above, DPA was first introduced by Kocher et al. Nowadays any symmetric or asymmet-
ric algorithm implementation can be threatened by DPA including computations based upon elliptic
and hyperelliptic curves.

Today most chips are designed in CMOS technology. The power consumption depends mainly
on the number of cells switching at a given time. Consumption for an instruction varies depending
on the Hamming weight of the data manipulated. For instance, consider a multiplication operation
between two registers. The power consumption needed for this operation is different if most of the
bits equal zero compared to the case where most of the bits are equal to one. Thus for the same
operation the chip power consumption varies according to the data manipulated, for instance a XOR

between 0x33 and 0x01 will not have the same power consumption as a XOR between 0x33 and
0xFF.

DPA uses statistics to amplify and reveal these differences that cannot be easily exploited and
seen with SPA. To be performed DPA requires several hundreds or even thousands of power con-
sumption traces corresponding to the computations of the algorithm in the smart card. The aim is to
retrieve information on the key used at each of these executions. Therefore other software has to be
developed for signal processing and computing the differential traces. Of course, DPA works only
if the key or the secret parameter the attacker wants to retrieve is constant during the monitoring of
the power consumption traces.

Principle of an attack on an algorithm FFFFFF

Let F (K, M) be a cryptographic algorithm, with a key K on a message M .

An attacker collects many consumption curves Ci of the execution of F (K, Mi) on the smart
card for k (random or chosen) known messages Mi for i = 1, . . . , k. Then the attacker wants to
guess bits of the secret key used. He makes a supposition on the bits and uses these to generate
some intermediate values of the algorithm. Then he supposes that at an instant t in the algorithm
(corresponding to certain cycles of operation) the data will vary depending on the value of some bits
of K: for instance � bits of K . At this instant t the value computed in the algorithm is D(Mi, K1...�)
with D(. , .) a known function. With this function the attacker wants to separate the curves in two
sets G0 and G1 where basically:

• G0 = {Ci | at instant t the power consumption is low (D(Mi, K1...�) and has one (or
several) bit(s) to zero)}

• G1 = {Ci | at instant t the power consumption is high (D(Mi, K1...�) and has one (or
several) bit(s) to one)}

Then by subtracting the means of the two groups for each supposition we obtain 2� differential
traces Tj , with j = 0, . . . , 2� − 1. For the correct guess h the trace Th will show many peaks of
consumption. Indeed only in this case the separation will create two groups of different average
consumptions. Basically one can choose a bit of D(Mi, K1...�) to make the selection if it equals
to zero (G0) or not (G1) but many more evolved methods exist to select the curves into sets and to
process the attack.

To perform such an attack we need to know the value of inputs and the structure of the algorithm
implemented.
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We observe that in ECDSA or in HECDSA, the scalar multiplications are not vulnerable to DPA,
indeed at each signature step it takes a new random scalar to undertake it. However, DPA can be
mounted on elliptic curves; an example is the attack against the EC ElGamal type encryption by
Coron [COR 1999]. The attacker knows (or guesses in SPA) which algorithm is used to perform the
scalar multiplication. Let the double and add be the algorithm used by the smart card.

Figure 28.6 DPA example on DES: correct supposition (left) and wrong supposition (right).

Let P1, . . . , Pj , . . . , Pk be k random points on the curve. The attacker knows for instance the first bit
of the exponent, generally it equals 1. Then he wants to guess the next one. Either it equals to 1 and
then the card computes Cj = [3]Pj or not and then [3]Pj will never be calculated. So, the attacker
wants to verify its supposition. He collects k curves C1, . . . , Ck corresponding to the computations
[n]P1, . . . , [n]Pk by the card. He divides the power consumption curves C1, . . . , Ck collected into
two groups G0 and G1 according to a chosen (or many) bit(s) of [3]Pj (most significant or least
significant for instance) or to the hamming weight of a byte of [3]Pj . If the difference between the
means of the two groups is not zero then we observe peaks of consumption and we know that [3]Pj

has been computed. This means that the second bit of n equals one.

Where Figure 28.7 shows a significant peak (it reveals at the same time the moment in the algo-
rithm when [3]Pj is computed or used in the next computation), the bit is equal to one. The attacker
then guesses the third bit of n: if this bit is equal to one, [7]Pj is computed and not otherwise. By
repeating this attack until the last bit of n he can recover the whole secret key.

The same attack can be used against the double and add always algorithm (see Algorithm 28.3) to
find the second bit of n, indeed the attacker does not exploit the value [3]P that is always computed
but the value [6]P that is computed in the next step only if the second bit is one.

Similarly the Montgomery ladder algorithm can be attacked in DPA; either the second bit is one
and the value [7]P will be computed by the smart card, otherwise it is equal to zero and the value
[5]P will be computed. Differential traces are computed for the value [7]P and [5]P and the trace
showing peaks will indicate the right supposition, cf. Figure 28.8.

To speed up the attack, instead of guessing the key bit per bit, the attacker can guess k bits but
must check 2k hypotheses. It is also the case if sliding window methods are implemented.
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Figure 28.7 Means for a correct ([3]P ) and a wrong guess on the 2-nd bit of n on the double and
add.

Figure 28.8 Means for a correct ([7]P ) and a wrong guess ([5]P ) on the 2-nd bit of n on Montgomery
ladder.
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Countermeasures

As previously, when we studied SPA, we can identify two types of countermeasures against DPA:
hardware protections and software countermeasures.

Since DPA is based on the ability of the attacker to predict one temporary variable of an algo-
rithm by guessing a few bits of the secret key, a solution for preventing DPA is to randomize the
value of the temporary variables of the algorithm with a random number. For elliptic curves the
possibilities are numerous: randomizing the scalar n and randomizing the coordinates (projective,
Jacobian, etc.), blinding of the message [COR 1999], random elliptic curve, or field isomorphism
[JOTY 2002].

Hardware countermeasures are included in the chip design. We presented some of them in the
SPA paragraph, the effects are mainly desynchronization of the curves and more noise in the signal,
so reducing the efficiency of the attack. However this kind of countermeasure might be sometimes
bypassed by signal processing techniques and by increasing the number of curves and messages.
Then more powerful countermeasures are appearing: dual rails encoding should theoretically elim-
inate the correlation between the hamming weight of the data and the power consumption but such
designs increase the size of the chip and cannot always be used. Moreover the final chip can be still
sensitive to DPA for manufacturing reasons. Manufacturers can also replace synchronous technol-
ogy by an asynchronous one, in this case the consumption curve may be more difficult to exploit.

Statistics have been studied to improve DPA and some techniques exist to decrease the number
of power consumption curves needed to perform the attack, see [COKO+ 2001] and [BEKN 2003].
In [BRCL+ 2004] the authors present correlation power analysis attacks that exploit the correlation
factor and a linear model of consumption. These methods have been proven both theoretically and
practically as more efficient than classical DPA, but they must only be considered as an optimization
of DPA.

28.3.2.c High order power analysis

Kocher et al. [KOJA+ 1999] also present an enhanced type of DPA called high order DPA, HODPA
for short. We briefly introduce it in this paragraph. The idea is that instead of studying a single
moment t in the algorithm corresponding to an interval T1 of points in the consumption curve in
DPA, one has to study many moments t1, . . . , tn and then n intervals T1, . . . , Tn of points. Basi-
cally, for a second order DPA (n = 2), the attacker predicts a few bits at these two different places
corresponding to two different intermediate values V1 and V2 of the computation of the algorithm.
If those bits are “masked” with the same value, (i.e., XOR with this value), this “mask” can be elim-
inated if a supposition is made on a combination of V1 and V2 value (XOR for instance). Then the
attacker constructs for each power curve a new one equal to T1−T2 (for instance) and performs the
DPA with those new curves. Indeed, as seen by Messerges in [MES 2000a], “masking” a value is
not sufficient to protect DPA attacks. To be protected against high order DPA, several masks have
to be used, instead of just one.

Even if HODPA is generally used against symmetric implementations, where countermeasures
are often based on masking methods, a theoretical second order DPA attack has been recently pre-
sented in [JOY 2004] against the Additive Randomization countermeasure. However, high order
DPA is complex to set up and not so easy to use against most of the asymmetric algorithm counter-
measures.

28.3.2.d Goubin’s refined power analysis attack

Here we will see how difficult it can be to secure elliptic curves and, even more, hyperelliptic curves
against power analysis. Indeed Goubin [GOU 2003], shows that even an algorithm protected against
SPA and DPA with the random (projective coordinates, random elliptic curves isomorphism, or field
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isomorphism) countermeasures can still be vulnerable to DPA. We will only present the elliptic case
as the hyperelliptic case does not differ a lot. We will just give some remarks regarding that case.

The idea of the attack is to find a divisor that, given a correct guess of a scalar bit during the scalar
multiplication, leads to the neutral divisor or at least one of its coordinates leads to 0. It, therefore,
leads to a significant difference in the consumption traces.

We will describe the attack on the protected double and add always algorithm, introduced in Sec-
tion 28.3.2.a, but the result would be similar with an algorithm that, for instance, uses Montgomery
ladder method; for further details we refer the reader to [GOU 2003]. Let us assume that the at-
tacker knows the most significant bits n�−1 . . . ni+1 of the scalar multiplier and that the elliptic
curve E(Fp) contains a “special” point P0, we mean in that sense that one of its coordinates x or y
is 0.

In Algorithm 28.3, knowing a point P , the point Q at the end of the (� − i − 1)-th step of the
loop is the following:

Q =

⎡
⎣ �−1∑

j=i+1

nj2j−i + ni

⎤
⎦P

During the next step of the loop, depending on the value of ni, we have the two following cases:

• if ni = 0, Q0 =

⎡
⎣ �−1∑

j=i+1

nj2j−i+1

⎤
⎦P and Q1 =

⎡
⎣ �−1∑

j=i+1

nj2j−i+1 + 1

⎤
⎦P .

• if ni = 1, Q0 =

⎡
⎣ �−1∑

j=i+1

nj2j−i+1 + 2

⎤
⎦P and Q1 =

⎡
⎣ �−1∑

j=i+1

nj2j−i+1 + 3

⎤
⎦P .

Depending on the value of ni, we construct the point P1 in the following way.
If ⎛

⎝ �−1∑
j=i+1

nj2j−i+1 + 1 + 2ni

⎞
⎠

is coprime to |E(Fp)|, which means no restriction, since |E(Fp)| must be a prime number or a prime
number times a cofactor less than or equal to 4 for most standardized elliptic curves, then

P1 =

⎡
⎢⎣
⎛
⎝ �−1∑

j=i+1

nj2j−i+1 + 1 + 2ni

⎞
⎠

−1

mod |E(Fp)|

⎤
⎥⎦P0.

Let us now assume that one of the DPA countermeasures discussed previously has been imple-
mented. In that case the computation in the card of [n]P1 will at the step (� − i) lead to a point
with one coordinate equal to zero. We collect k curves C1, . . . , Ck of these computations, these
consumption curves are different for repeated computations of [n]P because of the randomization
of the countermeasure. Then we compute the average trace

TP1 =
1
k

k∑
j=1

Cj .

If the guess for ni is correct then in all curves Cj one coordinate at the step (�− i) equals 0 and then
we can observe notable peaks due to its computation. In the same way, we can recursively recover
the remaining bits ni−1, . . . , n0.
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Remarks 28.4

(i) For elliptic curves, special points do exist [GOU 2003].

(ii) For hyperelliptic curves, these kind of divisors also exist, but in a different way. First, we
can achieve that attack with a divisor with 0 coordinates, which means that the degree
of the divisor is inferior or equal to g + 1, g being the genus of the curve. This can
be well exploited, as in a smart card. All different cases cannot be implemented, and
just the more common case is actually in the card. Secondly, this attack can also work
in the general case, if we choose a degree g divisor, having in Mumford representation
its first polynomial with some 0 coefficients. Let us say, for a genus 2 curve, D =
[u(x), v(x)] = [x2 + u1 + u0, v1x + v0], with u1 = 0 or u0 = 0 (choosing carefully the
divisor, we even can have v1 = 0 or v0 = 0).

We stress here to the reader that this idea has recently been extended by Akishita and Takagi in
[AKTA 2003], to other points that do not contain a 0 among their coordinates but lead to 0 in the
intermediate computation of the double or addition of a point.

As Goubin’s attack is based on the prediction of the scalar multiplier and knowing the base point,
a solution for preventing this attack can be to randomize the secret scalar or make it impossible to
choose the base point. So, the first two countermeasures of Coron [COR 1999] can be applied, in
addition to the third one (and for hyperelliptic curves also): randomizing the private exponent and
blinding the base point. A better solution has been proposed by Smart using isogenies for elliptic
curves in [SMA 2003], but it is much slower to implement on a smart card.

28.3.3 Electromagnetic radiation attacks

Electromagnetic analysis (EMA) is quite similar to power analysis but we analyze here the electro-
magnetic emanations of the chip instead of its power consumption.

The threat through EM radiation leakage has been well known for a long time in visual display
units and the use of EM against smart cards is not more complicated. At the beginning of this
century, some declassified U.S. Government Tempest documents [NSA] and preliminary claims
by researchers at international cryptographic conference rump sessions (such as Eurocrpypt 2000)
made public the threat of EM radiation.

The current consumed by the chip creates electromagnetic fields that can be measured with a spe-
cific probe. Thus one can monitor the radiation emitted by a precise part of the chip on a numerical
oscilloscope and analyze the signal obtained.

Such analysis allows isolating and observing the activity of particular areas of the chip, depending
on the position of the probe on its surface. Thus countermeasures against power analysis could be
bypassed by EMA. For instance, if an attacker wants to analyze elliptic curve computations he can
place its probe on the crypto accelerator to analyze its operations and consumption. In practice,
however, this is not so easy. Better results could be obtained when the probe is placed on specific
power lines. Reverse engineering and a scanning of the chip can also give information on the best
place to put the probe.

The equipment needed for these attacks is not much more expensive than PA. The attacker needs
one magnetic or electric probe, an amplifier and a system with precision movement. A careful study
that has shown efficient results [GAMO+ 2001] has been made with very small (a few mm) but
simple hand made probes. These consist of small solenoids made of coiled copper wire.

To refine the analysis of the EM radiations, one may need AM or FM demodulators which can be
very expensive [AGAR+ 2003]. Techniques used in power analysis can be adapted to EMA: simple
electromagnetic analysis (SEMA); differential electromagnetic analysis (DEMA).
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However, cards secured against power analysis can be vulnerable to EMA. For instance, compar-
isons of bytes that were not visible in the power curve could be seen in EMA; noise generators
or dummy operations effects can be eliminated and then an EM curve contains more information
than the power curve. Thus DEMA can be successful when DPA has failed. Accesses to memories
can be observed, perhaps a dummy addition in the double-and-add-always algorithm can be seen
because the memory treatment is different.

The DPA software countermeasures that aim at preventing an attacker to predict intermediate
values are still efficient against DEMA. However, hardware countermeasures against SPA can be
inefficient against EMA and then specific countermeasures need to be added. It can take the form
of shielding to contain or blur the emanation, by including a metal layer on top of the other layers,
or by generating noisy fields.

One can observe that EMA is not really a non-invasive attack, as is the DPA, but a semi-invasive
attack. Indeed to place the probe on the chip the card must be de-packaged. Keep in mind that the
efficiency of these attacks is dependent upon the equipment, the quality of the EM probe, and the
amplifier.

28.3.4 Differential fault analysis (DFA) and fault injection attacks

The effects of faults and perturbations on electronic devices have been observed since the 1970s.
The first faults were accidentally obtained because the chips were used in particular contexts such as
in the aerospace domain. Later we observed that fault injections and perturbations into a component
during computations could lead to information leakages and reveal sensitive data.

The first attack, known as the Bellcore attack, presented by researchers from Bellcore, was pub-
lished in [BODE+ 1997]. The authors use fault injection during a RSA CRT computation to recover
the two prime factors that compose the public modulus. A few months later in [BISH 1997], Bi-
ham and Shamir adapted this idea on symmetric algorithms. Basically, any kind of algorithm can
be threatened by fault attacks. Firstly considered as non-exploitable, these attacks are today a real
threat for smart cards. They must nowadays be considered very seriously and countermeasures must
be added into products to protect them. These attacks are being increasingly studied because the
possibilities have not been fully exploited today.

These attacks rely on generating errors in the chip during the execution of the algorithm. Then,
the comparison between the genuine outputs and the outputs generated with errors gives information
on the key. For instance, for RSA using speedup based on Chinese remainder theorem, a key can be
retrieved either with the knowledge of a faulty signature and a correct one, or with the knowledge
of a message and its erroneous signature. For an elliptic curve, the method is different: faults in
the base point or in the definition field lead to solving the discrete logarithm problem in easier
subgroups than in the original elliptic curve group.

There are several techniques available to perform a fault attack. The most common types are pre-
sented below:

• Glitch attacks induce glitches on one of the contacts of the card: the VCC pad, the
Reset pad or the clock. A brief injection of power during computations can perturb a
component behavior so that it will not return the right value. The equipment necessary
for such an attack can be made of a pulse generator or a function and waveform generator
or a pattern generator. Nevertheless, for more precise attacks it can be necessary to use
a very precise generator together with highly sophisticated synchronization systems in
order to perturb only chosen instructions during computation.
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• Light attacks have been presented by Anderson and Skorobogatov in [SKAN 2003].
They used a simple camera flash placed on a microscope to focus light on the surface
of the chip and then perturb it. More generally the principle is to use the energy of a
light emission to perturb the silicon of a chip. Indeed, because silicon is very sensitive
to light, such an attack will create parasitic currents sufficient to perturb the electrical
behavior of the circuit. Contrary to glitch attacks, light attacks are semi-invasive because
the card must be opened to allow light to reach the surface of the chip. The two main
ways to process light attacks are the use of a camera flash, and for more precise and
powerful attacks one can use a laser.

To illustrate these types of attacks, based upon [BIME+ 2000], we present two ways to exploit flaws
in implementing hyperelliptic curves.

For further details on fault attacks, we refer the interested reader to [BACH+ 2004, GITH 2004,
CIE 2003].

28.3.4.a Flaw in input points

This attack is a little bit different as it does not need to generate any faults. Indeed, the flaw exploits
the fact that faulty points can be interpreted in order to find the key if the device does not check
that the input points belong to the curve. Here, we will treat the example of a hyperelliptic curve
following [BIME+ 2000].

Let H be a genus 2 hyperelliptic curve , on F in the following equation:

H : y2 + h(x)y = f(x) (28.1)

with:
h(x) = h2x

2 + h1x + h0, h ∈ F[x]

and
f(x) = x5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0, f ∈ F[x] (28.2)

We will denote JH the Jacobian of the hyperelliptic curve H and D = P1 + P2 − 2P∞ a divisor of
JH. We can assume that our divisor is of degree 2.

As is well-known, not all the coefficients for elliptic curves are used in the formulas of addition
and doubling. The same holds for hyperelliptic curves; in that case f0 and f1 are not used in explicit
formulas, as we can see in Chapter 14.

We choose D′ = P ′
1 + P ′

2 − 2P∞, which is not a divisor of JH, but one of JH′(with H′ given
by (28.3)) such that

f ′
1 =

c1 − c2

x′
1 − x′

2

, f ′
0 =

c2x
′
1 − c1x

′
2

x′
1 − x′

2

where, for i = 1, 2

ci = y′
i
2 + h2x

′
i
2
y′

i + h1x
′
iy

′
i + h0y

′
i − x′

i
5 − f4x

′
i
4 − f3x

′
i
3 − f2x

′
i
2
.

So, H′ has the following equation:

H′ : y2 + h(x)y = f ′(x) (28.3)

with
f ′(x) = x5 + f4x

4 + f3x
3 + f2x

2 + f ′
1x + f ′

0

We calculate the cardinality of JH′ , and denote by r a small divisor of |JH′ |. Let D′
1 = |JH|

r D′,
it has order r. We know that with D′ as an input, the output [n]D′ is still in JH′ . Therefore, we
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change the discrete logarithm problem from a secure hyperelliptic curve into the discrete logarithm
problem in a subgroup of order r. We found a value n′ such as n ≡ n′ (mod r). Then, thanks to
the Chinese remainder theorem cf. Section 10.6.4, we repeat that operation with other input divisors
until we have enough r such that

∏
r > ord(D).

Note that this algorithm is even more efficient if, instead of choosing the divisor D′, we first
chose the hyperelliptic curve H and then compute the divisor. In the case of an elliptic curve, it is
very efficient as we can construct an elliptic curve. For hyperelliptic curves, it is still quite difficult,
and no method is known to compute the cardinality in the general case. Algorithms are still under
development cf. [GASC 2004a] and [MACH+ 2002].

28.3.4.b Flaw in output points

This time, creating a fault during the computation, we can recover the key, if the device does not
check that output points belong to the curves.

Actually, we can apply exactly the same method as previously described. Assuming that the input
is correct, we succeed in provoking a fault, just before the beginning of the computation of [n]D.
Indeed, we assume that the correct input D has been provided, but while computing, the device has
taken a divisor D′ that only differs from D in one bit. Therefore, reduce the problem the same way
as in Section 28.3.4.a, even if we do not know the divisor D′. Indeed, we first find a hyperelliptic
curve H′, thanks to [n]D′ and then recover D′ as there are only a few possibilities.

The authors in [BIME+ 2000] also explain how to perform DFA attacks even if we don’t know the
position of the fault during the scalar computation. They basically calculate two different outputs,
one correct and one faulty. Then they guess at which step of the loop of a double and add algorithm
the fault occurs further simulating the computation until the output point is produced. Doing that,
they recover MSB or LSB block bits — depending on the choice of the algorithm — of the secret
key n. So, recursively, they recover the remaining bits with other random faults.

Even though the way to find the secret scalar n is very different from the previous attack, it does
exploit the same characteristic: it uses faulty output points.

Countermeasures against fault injection attacks are not always as easy as it seems to implement
and can be time-consuming. Moreover, improvements on the fault injection techniques could suc-
ceed in bypassing insufficient countermeasures. Semaphores for critical parts of the programs are
sometimes used, for instance, verifying that the final result computed belongs to the curve.
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This chapter has been influenced by Avanzi’s report [AVA 2005c], which provides an excellent
overview of side-channel attacks on curves and their countermeasures — including a historical
perspective. Also Joye’s chapter [JOY 2005] in [BLSE+ 2005] has been a source of inspiration.
For the most recent research on SCA one should consider the proceedings of the CHES workshop
series. A good overview with many links is the side-channel lounge [SCA LOUNGE].

In Chapter 28 attacks against implementations of cryptosystems were introduced. For restricted
devices like smart cards it is possible for an attacker to derive side-channel information on the op-
erations performed. This additional information can be the timing of the total operation or (more
precise) the power consumption at different time points during the execution of the algorithm. For
the introduction to side-channel attacks (SCA), we refer to Chapter 28. Here, we concentrate on
software countermeasures, i.e., different methods of implementing the same group operations in
such a manner that the information obtained from the side-channels is useless. Obviously, these
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countermeasures apply only to non-invasive attacks, but these are the most likely to occur in prac-
tice. In applications, software and hardware countermeasures complement each other.

In this chapter we provide alternative ways of performing group operations and of computing
scalar multiplications on the Jacobian of elliptic and hyperelliptic curves in order to avoid side-
channel attacks. The main ideas of these mathematical countermeasures are as follows.

• Against simple side-channel attacks (cf. Section 28.3.2.a, Section 29.1) make the infor-
mation uniform, i.e., independent of the operation performed.

• To avoid differential side-channel attacks (cf. Section 28.3.2.b, Section 29.2) insert ran-
domness, e.g., by modifying the scalar or by changing the internal representation.

• To avoid Goubin type attacks (cf. Section 29.3) insert randomness but additionally one
needs to ensure that there is no set of elements unchanged under these methods.

• To detect and thwart fault attacks (cf. Section 28.3.4, Section 29.6) one should check the
in- and output elements and also make sure that error messages leak no information.

In Chapters 13 and 14 we have described the most efficient ways of performing group operations
on the Jacobian of elliptic and hyperelliptic curves but on devices like smart cards that are used in
hostile environments, security becomes the main issue. The solutions we present in the sequel try
to achieve security while keeping a certain level of efficiency. To avoid simple side-channel attacks
the easiest method described already in Chapter 28 consists of performing the double and always
add Algorithm 28.3, which strongly decreases the efficiency but makes the side-channel information
useless. Our countermeasures will be more efficient than this direct one. Furthermore, combinations
of different side-channel attacks have to be taken into account, for instance the double and always
add algorithm is vulnerable against fault attacks and if the same scalar is used multiple times it does
not provide any security against differential attacks.

We like to stress that no perfect countermeasures exist. The situation is similar to classical (math-
ematical) attacks. One has to make an estimate of the attacker’s resources and abilities and design
the countermeasures in a way that the device can resist at least these attacks.

For the time being there is no sound theory of side-channel cryptanalysis as this area is still
relatively new. Hence, the implementor should carefully choose the most efficient countermeasure
the constraints like performance and chip area allow.

This chapter is organized as follows: we first present countermeasures against simple side-channel
attacks, then deal with differential and timing attacks and consider fault attacks. Finally we briefly
state additional approaches for special curves like Koblitz curves.

For the scalar multiplication we assume that the result is computed by a sequence of additions,
subtractions, and doublings by using addition chains. For full details and the windowing methods
we refer to Chapter 9. We fix the following notation: the secret scalar is denoted by n and one uses
an expansion of length l given by (nl−1 . . . n1n0)b to some base b. Furthermore, as we are working
in the Jacobian of a curve, we assume that an addition and a subtraction need about the same time
unless we work on a very low atomic level. To give the number of field operations needed for the
group operations we use the notation S to denote a squaring, M for a multiplication and I for an
inversion.

29.1 Countermeasures against simple SCA

simple side-channel attacks (SSCAs) obtain information from a single scalar multiplication by ob-
serving leaked information. We stress that also short term secrets like the nonces in signatures
(cf. Sections 1.6.3 and 23.5.2) need to be protected as their knowledge is sufficient to obtain the
long-term secret key.
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To harden a cryptographic primitive against simple side-channel attacks one makes the observable
information independent of the secret scalar. The attacker only sees a fixed sequence of operations
that cannot be linked to the bits of n being processed. This can be achieved by one of the following
three approaches: insert dummy arithmetic instructions, use indistinguishable or unified addition
and doubling formulas, or apply Montgomery’s ladder for scalar multiplication. Furthermore, these
strategies can be applied on different levels. We like to point out that some approaches belong to
more than one category and that this distinction is sometimes too strong. We explain the method in
that section where we deem it to be most suitable and give references in the other ones.

29.1.1 Dummy arithmetic instructions

The double and always add Algorithm 28.3 already mentioned in the introduction and in the previ-
ous chapter inserts dummy group additions such that after each group doubling one performs one
addition. This is one example of inserting dummy operations on the top level. We also show how to
insert dummy field operations to make the observable information uniform and thus predictable.

29.1.1.a Dummy group operations

The methods described here are universal and work for any group no matter how different addition
and doubling are. However, the big drawback is that much more operations are needed — on average
l/3 additions or subtractions are used in a non-shielded implementation using an NAF of n, which
compares to the fixed number of l additions needed with the double and always add algorithm. For
the scalar multiplication methods used here we refer to Chapter 9.

Obviously, this drawback is less dramatic when applied together with a (fixed) window scalar
multiplication algorithm. A width w expansion of n is given by

n =
�l/w�−1∑

i=0

ni2wi, where ni ∈ [0, 2w − 1].

The likelihood of zero coefficients ni is much lower than in a binary expansion and the absolute
number of dummy group additions (inserted only if ni = 0) is accordingly also much lower. On the
other hand, these methods need storage, which is often a concern on the small devices we consider
in this context.

For curve-based cryptography where the negations are efficiently computable one might try to
keep the advantages of signed expansions. Hitchcock and Montague [HIMO 2002] provide a
method transforming an NAF into a sequence consisting of the fixed blocks DBL, DBL, ADD,
which is achieved by inserting dummy additions and doublings. Compared to the unprotected NAF
this method needs 1.5 times as long in the worst case. On average 44% additions are saved com-
pared to the double and always add algorithm while 11% extra doublings are needed. The advantage
of this method is that no storage is needed except for the dummy operations. If the negation could
be detected, one more group element is needed to store the negative of the base. Alternatively one
could perform a negation before each addition that might be a dummy negation.

Actually a similar but more efficient idea can be found in [GIE 2001]. The NAF representation of
n is grouped into double-bits from 00, 01, 01̄, 10, 1̄0. For each double-bit they perform 2 doublings
and one addition — which is not used only in the case of the double-bit 00. Thus, compared with
the NAF they started with, they have the same number of doublings but for every two coefficients
they perform an addition instead of one only for one third of the coefficients. This leads to a density
of 1/2, which is much better compared to density 1 obtained above, using the obvious method and
does not introduce a larger complexity except for a bit of bookkeeping. We like to mention that
the computations of the two doublings and one addition can be interleaved to need fewer inversions
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in affine coordinates or to save some multiplications in other coordinate systems. This way this
method differs from using a sliding windowing method with inserted dummy operations.

As dummy operations can be detected by fault induction attacks (cf. Section 29.6), Möller pro-
posed in [MÖL 2001a, MÖL 2001b] to use windowing methods with coefficients from [1, 2w −
1] ∪ {−2w} or [1, 2w−1] ∪ [−2w−1 − 1,−1] ∪ {−2w}. Okeya and Takagi [OKTA 2003] achieve
expansions without zero coefficients requiring storage of 2w−1 elements. We like to point out that
these methods do not use dummy operations, but we decided to mention them in this context as the
efficiency is similar to the combination of dummy operations and windows of width w except that
one avoids the drawback of having (possibly detectable) dummy operations. If only the positive
scalar multiples are stored one needs to pay attention that the negation cannot be detected. This
can be done by always inserting a negation that might be a dummy negation in case of a positive
coefficient.

For elliptic curves, both methods can be combined with fast repeated doublings (cf. Chapter 13).
For hyperelliptic curves it can be expected that such formulas will be published in the near future.
In [IZTA 2002a], Izu and Takagi report on a parallel implementation resistant against simple power
analysis using Möller’s coefficients. They additionally apply countermeasures against DPA attacks.

29.1.1.b Dummy field operations

One can also introduce dummy operations on the low-level of field operations inside the group
operations and achieve that the side-channel information is identical for group additions and dou-
blings. As each group operation consists of several field operations, it can be expected that this
approach leads to faster shielded algorithms compared to the ones of the previous section. On the
other hand we need to point out that this way the total number of group operations is leaked by the
time the scalar multiplication takes. If the length of the scalar and, hence, the number of doublings
is known, this means that the Hamming weight of the used expansion is obtained by the attacker.
For extreme low or high weight a brute force attack is possible. For attacks using this leakage we
refer to [CAKO+ 2003]. Note that this is less problematic if the method is combined with sliding
windowing techniques, as they tend to unify the Hamming weight of the scalar. Additionally, scalar
randomization techniques can be used to thwart differential attacks, and they change the Hamming
weight, too.

We now state the explicit formulas for elliptic curves first over binary fields and then in odd
characteristic. For hyperelliptic curves we only give the references.

For nonsupersingular binary elliptic curves (cf. Section 13.3.1.a) both a doubling and a group
addition require I + 2M + S but in a straightforward implementation they can nevertheless be dis-
tinguished by the different sequences of operations. Let P = (x1, y1), Q = (x2, y2) be points on
an elliptic curve E/F2d given by

E : y2 + xy = x3 + a2x
2 + a6. (29.1)

The formulas for addition and doubling differ mainly in the slope λ which is given by

λ =

⎧⎪⎪⎨
⎪⎪⎩

y1 + y2

x1 + x2
if P �= +−Q,

x1 +
y1

x1
if P = Q.

Then R = (x3, y3) = P ⊕ Q reads x3 = λ2 + λ + a + x1 + x2 and y3 = λ(x2 + x3) + x1 + y2.
Based on these observations, in [CHCI+ 2004] the following algorithm is provided, that allows us
to compute an addition with the same sequence of field operations as a doubling by inserting only
two field additions. This is a very cheap countermeasure using dummy operations as field additions
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are the cheapest operations in a finite field. The input registers T1, T2, T3, T4 contain the x- and
y-coordinates of the points P, Q ∈ E(F2d) and the left column is used for P �= +−Q while the right
one performs a doubling P = Q.

Algorithm 29.1 Atomic addition-doubling formulas

INPUT: The points P = (T1, T2) and Q = (T3, T4) on E(F2d).

OUTPUT: The points P ⊕ Q or [2]P .

Addition: P ← P ⊕ Q Doubling: P ← [2]P

1. T1 ← T1 + T3 [x1 + x2] 1. T6 ← T1 + T3 [fake]

2. T2 ← T2 + T4 [y1 + y2] 2. T6 ← T3 + T6 [x1]

3. T5 ← T2/T1 [λ] 3. T5 ← T2/T1 [y1/x1]

4. T1 ← T1 + T5 4. T5 ← T1 + T5 [λ]

5. T6 ← T 2
5 [λ2] 5. T1 ← T 2

5 [λ2]

6. T6 ← T6 + a2 [λ2 + a2] 6. T1 ← T1 + a2 [λ2 + a2]

7. T1 ← T1 + T6 [x3] 7. T1 ← T1 + T5 [x3]

8. T2 ← T1 + T4 [x3 + y2] 8. T2 ← T1 + T2 [x3 + y1]

9. T6 ← T1 + T3 [x2 + x3] 9. T6 ← T1 + T6 [x1 + x3]

10. T5 ← T5 × T6 10. T5 ← T5 × T6

11. T2 ← T2 + T5 [y3] 11. T2 ← T2 + T5 [y3]

12. return (T1, T2) 12. return (T1, T2)

The choice of the numbers of the extra registers was done in such a way that with a simple assign-
ment of two variables depending on the bit of the scalar, both group addition and doubling can be
implemented with the same algorithm using no if/else conditional branching.

The big advantage of this idea is that only cheap dummy operations are introduced and that the
scalar multiplication can make use of windowing techniques to have a sparse representation. The
above algorithm can be modified to deal with subtractions, too, by inserting one more addition at
the beginning to change y2 to y2 + x2 if necessary.

For elliptic curves over fields of odd characteristic, a direct application of this method would imply
that one needs to insert a dummy squaring in each addition as an addition needs I + 2M+ S while a
doubling needs I+2M+2S. First of all, squarings take a non-negligible effort and furthermore, for
the environments we consider in this chapter, inversion-free coordinate systems are more useful. To
circumvent this difficulty, [CHCI+ 2004] introduce the concept of side-channel atomicity. Instead
of trying to make the group operations look identical, they split the operations into identical blocks,
each consisting of one field multiplication (which could also be a squaring), one field addition, one
field negation, and one further field addition. An attacker can only observe a sequence of identical
blocks and cannot link them to the operation that is performed. For elliptic curves over Fpd with
p odd, [CHCI+ 2004] implement a curve doubling in Jacobian coordinates using 10 blocks and
an addition in 16 blocks. The computational overhead involved in this countermeasure is almost
negligible, introducing only a few further field additions and negations but no multiplications.

The security is based on the assumption that real and dummy operations cannot be distinguished
and that multiplications cannot be told from squarings, which is often a valid assumption in odd
characteristic. (This might not hold if higher order differential attacks can be used, cf. Section 29.4.)
When the scalar multiplication is computed with these addition and doubling algorithms, it becomes
a computation of a series of atomic blocks and the side-channel information becomes uniform. This
difference is visualized in the following two pictures. Figure 29.1 shows the view of the attacker
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Figure 29.1 Attacker’s view on algorithm.

. . . . . .

Figure 29.2 Actual operations inside blocks.

. . . . . .
ADD14 ADD15 ADD16 DBL1 DBL2 DBL3 DBL4 DBL5

who only sees a uniform sequence of operations. In Figure 29.2 one sees that the first three steps
belonged to an addition while the following ones show the beginning of a doubling.
We do not state the original formulas in atomic blocks for odd characteristic but state a simplified
version in Algorithms 29.2 and 29.3. Unlike in the original version, we only list a ∗ to denote a
dummy operation while in [CHCI+ 2004] the authors state the access to the registers by a uniform
algorithm in a compact representation given by a matrix. In total 10 registers are used to hold the
variables for doubling and addition and the dummy operations are performed by different registers.

Our tables come from Mishra’s approach [MIS 2004a] to combine side-channel atomicity and
pipelined implementations on two processors to achieve a high throughput. Also, he considers
mixed additions, i.e., additions in which one point is in affine coordinates while the other is in
Jacobian. In Section 13.2.2 this was identified to be the fastest system for unprotected implementa-
tions and using the cheap countermeasure of side-channel atomicity, Mishra obtains a very efficient
pipelined implementation, which we detail in the following.

We now list the algorithms for doubling in Jacobian coordinates and mixed addition. Like before
the sequence of field operations is M, A, Neg, A, where Neg denotes a field negation. A ∗ denotes
a dummy operation of the respective type. Note that no dummy multiplications appear. The value
of the current variable is given in brackets. The intermediate point is stored in Jacobian coordinates
in (T6 : T7 : T8) and the result is written back to these registers. The notation refers to the
abbreviations used in Section 13.2.1.c.

Algorithm 29.2 Elliptic curve doubling in atomic blocks

INPUT: The point Pi = (Xi : Yi : Zi) = (T6 : T7 : T8).

OUTPUT: The point [2]Pi = (Xi+1 : Yi+1 : Zi+1) = (T6 : T7 : T8).

∆1. R1 ← T8 × T8 ∗ ∗ ∗
ˆ
Z2

i

˜

∆2. R1 ← R1 × R1 ∗ ∗ ∗
ˆ
Z4

i

˜

∆3. R1 ← a4 × R1 ∗ ∗ ∗
ˆ
a4Z

4
i

˜

∆4. R2 ← T6 × T6 R3 ← R2 + R2 ∗ R2 ← R3 + R2
ˆ
X2

i

˜ ˆ
2X2

i

˜ ˆ
3X2

i

˜
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∆5. T8 ← T7 × T8 T8 ← T8 + T8 ∗ R1 ← R1 + R2

[YiZi]
ˆ
Zi+1

˜
[B]

∆6. R4 ← T7 × T7 R2 ← R4 + R4 ∗ ∗
ˆ
Y 2

i

˜ ˆ
2Y 2

i

˜

∆7. R4 ← T6 × R2 R4 ← R4 + R4 R4 ← −R4 R5 ← R4 + R4
ˆ
2XiY

2
i

˜
[A] [−A] [−2A]

∆8. R3 ← R1 × R1 T6 ← R3 + R5 ∗ R4 ← T6 + R4
ˆ
B2
˜ ˆ

Xi+1

˜
[Xi+1 − A]

∆9. R2 ← R2 × R2 R2 ← R2 + R2 ∗ ∗
ˆ
4Y 4

i

˜ ˆ
8Y 4

i

˜

∆10. T7 ← R1 × R4 T7 ← T7 + R2 T7 ← −T7 ∗
[B(Xi+1 − A)] [−Yi+1]

ˆ
Yi+1

˜

Algorithm 29.3 Elliptic curve addition in atomic blocks

INPUT: The points P = (Tx, Ty) and Pi = (Xi : Yi : Zi) = (T6 : T7 : T8).

OUTPUT: The point P + Pi = (Xi+1 : Yi+1 : Zi+1) = (T6 : T7 : T8).

Γ1. R1 ← T8 × T8 ∗ ∗ ∗
ˆ
Z2

i

˜

Γ2. R2 ← Tx × R1 ∗ R2 = −R2 ∗
[A] [−A]

Γ3. R3 ← Ty × T8 ∗ ∗ ∗
[Y Zi]

Γ4. R3 ← R3 × R1 R1 ← R2 + T6 R1 ← −R1 ∗
[C] [E] [−E]

Γ5. T8 ← R1 × T8 ∗ ∗ ∗
ˆ
Zi+1

˜

Γ6. R4 ← R1 × R1 ∗ ∗ ∗
ˆ
E2
˜

Γ7. R2 ← R2 × R4 R5 ← R2 + R2 ∗ ∗
ˆ−AE2

˜ ˆ−2AE2
˜

Γ8. R1 ← R4 × R1 R1 ← R1 + R5 R3 ← −R3 R5 ← R3 + T7
ˆ−E3

˜ ˆ−E3 − 2AE2
˜

[−C] [F ]

Γ9. T6 ← R5 × R5 T6 ← T6 + R1 ∗ R2 ← T6 + R2
ˆ
F 2
˜ ˆ

Xi+1

˜ ˆ
Xi+1 − AE2

˜

Γ10. R2 ← R5 × R2 ∗ R1 ← −R1 ∗
ˆ−F (Xi+1 − AE2)

˜ ˆ
E3
˜

Γ11. T7 ← R3 × R4 T7 ← T7 + R2 ∗ ∗
ˆ−CE3

˜ ˆ
Yi+1

˜

If, instead, a subtraction should be performed, i.e., one wants to add the negative (−Tx, Ty), this
can be incorporated as R2 = −Tx in Γ1 and by replacing the first step of Γ2 by R2 = R2 × R1.
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Table 29.3 EC-operations in the pipeline.

DBL-DBL DBL-ADD ADD-DBL

Time PS1 PS2 PS1 PS2 PS1 PS2

k
...

...
...

...
...

...

k + 1 ∆(i)
1 — ∆(i)

1 — Γ(i)
1 —

k + 2 ∆(i)
2 — ∆(i)

2 — Γ(i)
2 —

k + 3 ∆(i)
3 — ∆(i)

3 — Γ(i)
3 —

k + 4 ∆(i)
4 — ∆(i)

4 — Γ(i)
4 —

k + 5 ∆(i)
5 — ∆(i)

5 — Γ(i)
5 —

k + 6 ∆(i+1)
1 ∆(i)

6 Γ(i+1)
1 ∆(i)

6 ∆(i+1)
1 Γ(i)

6

k + 7 ∆(i+1)
2 ∆(i)

7 Γ(i+1)
2 ∆(i)

7 ∆(i+1)
2 Γ(i)

7

k + 8 ∆(i+1)
3 ∆(i)

8 Γ(i+1)
3 ∆(i)

8 ∆(i+1)
3 Γ(i)

8

k + 9 ∆(i+1)
4 ∆(i)

9 Γ(i+1)
4 ∆(i)

9 ∗ Γ(i)
9

k + 10 ∗ ∆(i)
10 Γ(i+1)

5 ∆(i)
10 ∆(i+1)

4 Γ(i)
10

k + 11 ∆(i+1)
5 ∗

... Γ(i+1)
6 ∗ Γ(i)

11

k + 12
... ∆(i+1)

6

... Γ(i+1)
7 ∆(i+1)

5 ∗

Table 29.3 shows the pipelining for all 3 possible cases — 2 doublings in a row, a doubling followed
by a mixed addition and a mixed addition followed by a doubling. This scheduling introduces
complete dummy blocks in the wait stages, but this is the usual drawback one needs to take into
account when using more than one processor. As in a scalar multiplication each addition is followed
by a doubling, the last two columns always appear together. This implies that each group operation
consumes 6 atomic blocks, i.e., a scalar multiplication using an NAF of the scalar needs on average
8 atomic blocks per bit of the scalar.

Additionally, this method can be combined efficiently with windowing methods as the SCA re-
sistance is implied by the atomic block structure [MIS 2004b]. The generalization to genus 2 curves
was done in [LAMI 2004] in which the authors provide the expressions for performing parallel dou-
bling or addition in atomic blocks. In even characteristic affine coordinates are chosen and due to
the large similarity of addition and doubling, each group operation is made one big atomic block.
In odd characteristic new coordinates (cf. Section 14.4.2) are used and it turns out that the atomic
blocks proposed for implementing elliptic curves remain optimal. These formulas also apply to
nonparallel implementations and achieve the lowest number of registers.

Countermeasures inserting dummy operations are always vulnerable to fault attacks (cf. Sec-
tion 29.6). If the faults can be induced very precisely it may be possible to distinguish real from
dummy operations, as a fault in the latter does not influence the result. Nevertheless, these attacks
are less likely for the quick dummy operations appearing in the atomicity approach, but they are a
real threat in the double and always add algorithm.

29.1.2 Unified addition formulas

Using unified formulas means that in the scalar multiplication algorithm the same set of formu-
las is invoked with different inputs. The operations are valid for both addition and doubling. To
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avoid leakage from the if/else instruction one should use arithmetic operations to schedule which
of the inner paths is taken in the few places where the formulas still differ. We point out that these
differences will not be between doubling and addition.

So far such formulas have been obtained only for elliptic curves. There is some ongoing research
for hyperelliptic curves but so far nothing is published. Hence, we concentrate on elliptic curves for
the remainder of this section.

In the previous section we have shown how to make addition and doubling on a binary curve
use the same sequence of field operations, such that the side-channel information looks the same.
There this was done by inserting dummy field additions. Here we achieve this aim without dummy
operations. We first deal with general elliptic curves over arbitrary fields and then consider counter-
measures for more special types of curves.

29.1.2.a Unified formulas for general curves

Here we consider elliptic curves given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

for ai ∈ Fq, for some prime power q. By writing the slope λ in a different manner one can also
obtain really unified addition formulas needing identical computations for addition and doubling.
Building on [BRJO 2003] it is shown in [BRDÉ+ 2004] that in arbitrary characteristic we have:

λ =
y2 − y1

x2 − x1
=

y2 − y1

x2 − x1

y1 + y2 + a1x2 + a3

y1 + y2 + a1x2 + a3

=
x2

1 + x1x2 + x2
2 − a1y1 + a2(x1 + x2) + a4

y1 + y2 + a1x2 + a3

=
x2

1 + x1x2 + x2
2 − a1y1 + a2(x1 + x2) + a4 + (y1 − y2)m

y1 + y2 + a1x2 + a3 + (x1 − x2)m

=
x2

1 + x1x2 + x2
2 − a1y2 + a2(x1 + x2) + a4 + (y2 − y1)m̃

y1 + y2 + a1x1 + a3 + (x2 − x1)m̃
,

where m = m(x1, y1; x2, y2) is an arbitrary polynomial and m̃ = m(x2, y2; x1, y1). The very
same expression holds also for doublings. We remark that it is necessary to introduce both m
and m̃ as the first version [BRJO 2003], corresponding to the second line, was vulnerable to the
exceptional procedure attack [IZTA 2003b] (cf. Section 29.3). Namely, the algorithm would fail if
y1 + y2 + a1x2 + a3 = 0, i.e., if the y-coordinate of P equaled the y-coordinate of −Q.

By defining λm as in the last line whenever y1 + y2 + a1x2 + a3 + (x1 − x2)m = 0 and as
in the one to last line otherwise, this expression is valid for all points for appropriately chosen
m. For nonsupersingular binary elliptic curves as given in (29.1) and curves over fields of odd
characteristic, one can choose m = 1.

In affine coordinates this means that λm can be evaluated with I+5M including 2M with the con-
stants a1 and a2. In odd characteristic these constants can be chosen to be zero and in characteristic
2 one has a1 = 1. In characteristic 2, affine coordinates are often the fastest method of computation
as inversions are not much more expensive than multiplications. In odd characteristic, one tries to
avoid inversions and moves to projective or Jacobian coordinates. The same ideas can be applied to
the differently defined slope λm given above. For isomorphic transformations and ways to derive
inversion-free formulas we refer to Sections 13.2 and 13.3.

In particular, the inversion-free systems in odd characteristic suffer from the loss of speed due
to the countermeasure. If the curve has points of order 2 or 3, other representations of the curve
leading to faster unified group operations can be designed.
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29.1.2.b Unified formulas for Hessian curves

In Section 13.1.5.b Hessian coordinates were introduced. Let q ≡ 2 (mod 3) and consider an
elliptic curve E over Fq with an Fq-rational point of order 3. The Hessian form is given by

H : X3 + Y 3 + Z3 = cXY Z

for some c ∈ Fq.
Joye and Quisquater [JOQU 2001] suggested using Hessian curves to avoid simple side-channel

attacks. It is possible to compose the scalar multiplication of additions only as

[2](X1 : Y1 : Z1) = (Z1 : X1 : Y1) ⊕ (Y1 : Z1 : X1)

and (Z1 : X1 : Y1) �= (Y1 : Z1 : X1). An addition needs 12M + 6S, which compares favorably
to the general unified formulas presented before. Hence, the use of unified addition formulas is
immediate. Additionally, Hessian curves allow for fast parallel implementation [SMA 2001].

29.1.2.c Elliptic curves in Jacobi model

A further set of unified formulas is obtained in [LISM 2001] by viewing the curve as intersection
of two quadrics. They need that E(Fq) contains a copy of Z/2Z × Z/2Z. Their formulas were
improved in [BIJO 2003] and the approach was generalized to curves having one affine point of
order two only. The extended Jacobi form of an elliptic curve is given by

EJ : Y 2 = εX4 − 2δX2Z2 + Z4.

The sum of P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) is given by (X3 : Y3 : Z3) with

X3 = X1Y2Z1 + X2Y1Z2, Z3 = (Z1Z1)2 − ε(X1X2)2,
Y3 = (Z3 + ε(X1X2)2)(Y1Y2 − 2δX1X2Z1Z2) + 2εX1X2Z1Z2(X2

1Z2
2 + X2

2Z2
1 ),

with the only exception Q = −P = (−X1 : Y1 : Z1). Hence, the formula holds also for P = Q.
Olson [OLS 2004] generalized the approach in [BIJO 2003] by showing how to obtain an iso-

morphic projective quartic curve with weighted inversion-free coordinates, in which doubling and
addition need the same formulas. This can be done for each elliptic curve but is highly inefficient
in the general case requiring 31M. If the curve contains a point of order 2, i.e., with Y = 0, his
transformation yields the curve considered above. Another case leading to a simple equation is a
curve containing a point with X = 0 as this results in a quartic

W 2 = S4 − βS − a4/4

and the unified formulas are efficient.

29.1.3 Montgomery arithmetic

The Montgomery ladder 9.5 was introduced in Chapter 9 with a reference to side-channel attacks.
In fact this idea thwarts simple side-channel attacks as for each bit of the scalar a doubling and an
addition are performed. The difference to the double and always add approach is that the additions
are used additions; hence, the method is not subject to fault attacks.

We briefly recall the algorithm here in the setting of JC the Jacobian of an elliptic or hyperelliptic
curve C and

__
D ∈ JC . Then we consider issues specific to elliptic and hyperelliptic curves.
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Algorithm 29.4 Montgomery’s ladder

INPUT: An element
__
D ∈ JC and a positive integer n = (nl−1 . . . n0)2.

OUTPUT: The element [n]
__
D ∈ JC .

1.
__
D1 ←

__
D and

__
D2 ← [2]

__
D

2. for i = l − 2 down to 0 do

3. if ni = 0 then

4.
__
D1 ← [2]

__
D1 and

__
D2 ←

__
D1 ⊕

__
D2

5. else

6.
__
D1 ←

__
D1 ⊕

__
D2 and

__
D2 ← [2]

__
D2

7. return
__
D1

This algorithm can be applied universally for any group. However, it suffers from the additional
group operations like the double and always add method and additionally doubles the storage re-
quirements. On the other hand, fault attacks cannot be applied, which made [IZTA 2002b] use this
method against SPA.

For elliptic curves and hyperelliptic curves of genus 2 we have shown in Chapters 13 and 14
that one does not need the Y coordinate, respectively the second polynomials v(x), to carry out the
scalar multiplication with Algorithm 29.4 and that this coordinate can be recovered uniquely.

We do not repeat the formulas here and refer to Sections 13.2.3 and 13.3.4 for Montgomery
coordinates on elliptic curves in odd and even characteristic. In the latter case they can be evaluated
efficiently for arbitrary curves but for odd characteristic they are more efficient for curves having a
group order divisible by 4. We present both cases in the section on efficient arithmetic.

For genus 2 curves different approaches exist depending on whether the group order is divisible
by 2. Like in the case of elliptic curves a larger rational 2-torsion part facilitates the arithmetic. For
the more efficient case, due to Duquesne [DUQ 2004], the formulas are given in Section 14.4.4.

Lange’s [LAN 2004a] approach is valid for arbitrary curves over fields of odd characteristic but
it is less efficient. Both methods are better than the double and always add approach but far less
efficient than the introduction of dummy field operations considered in Section 29.1.1.b.

The drawback of the Montgomery method is that one cannot use precomputations to speed up
the scalar multiplications. On the other hand, Montgomery arithmetic can be parallelized efficiently
even for small devices as reported in [FIGI+ 2002]. As fault attacks cannot be applied the imple-
mentation is hedged against non-differential attacks.

29.2 Countermeasures against differential SCA

Differential side-channel attacks (DSCAs) are usually applied only if the simple side-channel attacks
do not succeed, e.g., if the leaked information cannot be linked directly to the bits of the secret
scalar. If one has access to side-channel information of several scalar multiplications involving the
same secret scalar and different group elements, differential techniques can be applied. Note that
we consider averaging over several measurements of the same scalar multiplication, i.e., the same
scalar and same base point, as an enhanced simple side-channel attack and not as a differential one.
Furthermore, this situation is very unlikely to occur in practice.

To mount a differential attack one needs to be able to simulate the operations in the attacked
device. In particular one needs to know the internal representations as the operations are likely to
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depend on this. The common strategy in all countermeasures is therefore to introduce randomness
in the representation of the points, of the curve or of the scalar such that the simulation cannot be
achieved. In practice, these countermeasures are often combined.

The next sections deal with these methods. We like to mention that these countermeasures are
only needed if a long-term secret is involved. If the scalar is changed at each iteration of the protocol
they are not needed. However, still one needs to make sure that the implementation does not leak
information on the bits of the nonces in signature schemes, as this can be used in a lattice based
attack as shown in [BOVE 1996, HOSM 2001, NGSH 2003].

29.2.1 Implementation of DSCA

Suppose that by applying the countermeasures from the previous section the implementation is
secured against SSCA. DSCA on a double and add scalar multiplication algorithm computing [n]

__
D,

where n is a secret scalar used for several executions works as follows:
Let n = (nl−1nl−2 . . . n0)2, and suppose that the first digits nl−1nl−2 . . . nj+1 are known. The

attacker wants to find nj . He proceeds as follows:

1. The attacker first makes a guess: nj = 0 or 1.

2. He chooses several inputs
__
D1, . . . ,

__
Dt and computes

__
E i =

[∑l−1
k=j nk2k−j

] __
Di.

3. He picks a Boolean selection function B to construct two index sets

St =
{
i : B(

__
E i) = true

}
and Sf =

{
i : B(

__
E i) = false

}
.

For instance, B might be the least significant bit of the representation of
__
E i in case this

influences the computation.

4. He puts SCi = SCi(t) to be the side-channel information obtained from the compu-
tation of [n]

__
Di. This is a function of the time t. In the case where electromagnetic

emission is used, this function is in fact also a function of space, for example, of a point
on the surface of the card: namely SCi = SCi(t; x, y).

5. Let 〈SCi

〉
i∈S denote the average of the functions SCi for the i ∈ S. If the guess of nj

was incorrect, then one expects〈
SCi

〉
i∈St

−
〈
SCi

〉
i∈Sf

≈ 0

i.e., the two sets are uncorrelated as the selection function was not related to the opera-
tion actually carried out. On the other hand, if the guess of nj was correct then〈

SCi

〉
i∈St

−
〈
SCi

〉
i∈Sf

as a function of time (and possibly space) will present spikes, i.e., deviations from zero,
cf. Figures 28.7 and 28.8.

This means that the cases of correlation and uncorrelation should be easy to distinguish, provided
that the selection function captures the properties of the algorithm and enough samples are obtained.
Once nj is obtained, the attack is used on the next digit.

Note that in practice the attacker does not choose the
__
Di but waits for further operations involving

the private key or issues elements
__
Di on which [n]

__
Di is computed. Usually the attacker has no

influence on the choice of the
__
Di so they are assumed to be random.

Additionally we like to mention that this method does not require making fresh measurements
after each bit nj obtained but can work as an offline attack. In a short time many samples of
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side-channel leakage are recorded and stored. Then they allow us to recover the secret key bit-
by-bit by following the above steps for each nj , l − 2 � j � 0 in an offline computation. This
has the drawback that the complete side-channel traces need to be recorded, increasing the storage
requirement — but it might be harder to notice the attacker.

29.2.2 Scalar randomization

The idea of this countermeasure is to change the representation of the scalar (bit-pattern or window-
ing expansion) such that it is not linked between the different executions of the algorithm. This can
be achieved by either changing the scalar itself or by only changing the addition chain used for the
scalar multiplication.

29.2.2.a Varying the scalar

In all applications the group order  is assumed to be known. We have [n]
__
D = [n + i]

__
D for any

integer i. Random choices of i should randomize the binary pattern of the applied scalar and thus the
representations during the execution. In [OKSA 2000] it has been shown that this randomization
leaves a bias in the least significant bits of the scalar. For elliptic curves, Möller [MÖL 2001a]
combines this method with an idea of Clavier and Joye, and suggests the computation of [n]

__
D =

[n + k1 + k2]
__
D 	 [k1]

__
D, where k1 and k2 are two suitably sized random numbers. In the context

of group-based cryptography this method is called Coron’s first countermeasure [COR 1999]. It
induces a performance penalty depending linearly on the bit lengths of the random quantities k,
respectively k1 and k2.

These countermeasures can be combined with any of those described in the following section to
provide stronger defense.

29.2.2.b Varying the representation

The insertion of random decisions during the execution of the scalar multiplication algorithm
also helps in preventing side-channel analysis. In general, these decisions amount to randomly
choosing among several different redundant weighted binary representations of the same integer
[HAMO 2002, OSAI 2001]. Such methods must be used with care, and indeed their soundness has
been questioned [WAL 2004], sometimes under the assumption that no SSCA-countermeasures are
implemented [OKSA 2002, OKSA 2003].

Liardet and Smart [LISM 2001] propose not only unified addition formulas as explained in the
previous section but also a countermeasure against DSCA. Assuming the indistinguishability of
addition and doubling, they present three general-purpose randomized signed window methods for
performing SCA-resistant scalar multiplication.

However, their argument depends heavily on the unified group operations. Under the hypothesis
that additions are distinguishable from doublings, Walter [WAL 2002a] shows that repeated use of
the same secret key with the algorithm of Liardet and Smart is insecure. Another randomized 2k-ary
method is given in [ITYA+ 2002].

It is also possible to apply a variant of MIST [WAL 2001, WAL 2002b]. The basic idea is to
randomly choose between several different representations on a mixed base number system and
at the same time select small addition chains for the different parts of the computation that are
composed from similar sub-blocks of group operations. Ideally, such a technique would provide
both SSCA and DSCA resistance. However, especially in the presence of long keys, this method
alone can also leak some information on the exponent [WAL 2003].
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29.2.3 Randomization of group elements

The methods described in this section leave the scalar invariant but change the representation of the
base group element. Hence, it is no longer possible to simulate the attack as the internal representa-
tion is unknown.

29.2.3.a Blinding of group elements

In any group it is possible to apply Coron’s second countermeasure [COR 1999]. Let n be the
long-term secret. To implement this countermeasure one chooses a group element

__
E ∈ Pic0

C from
a list stating pairs (

__
E, [n]

__
E ) for various

__
E and computes [n]

__
D = [n](

__
D ⊕

__
E ) 	 [n]

__
E . So, the

computation is hidden due to the blinding addend
__
E .

Besides the precomputations this method only adds an addition and a doubling per scalar multi-
plication. The list should be large enough and kept secret, to avoid brute force attacks. The element__
E should be changed at each execution.

29.2.3.b Randomization by redundant coefficients

A particularity of cryptography based on curves is that the groups come with a natural way of
redundant representation. In inversion-free coordinate systems like projective or Jacobian coordi-
nates a point is not uniquely represented. In Jacobian coordinates the points (X1 : Y1 : Z1) and
(λ2X1 : λ3Y1 : λZ1) are equal for any λ ∈ F∗q . This means that it is possible to change the repre-
sentation of a point by 4M + S and even less in projective coordinates. The same approach can be
used in all inversion-free coordinate systems [JOTY 2002] and it applies to elliptic curves as well
as to the divisor class group of higher genus curves [AVA 2004b]. In addition to those results, we
mention that in the meantime also projective formulas for genus 3 curves were published. Hence,
this method can be applied there as well. The randomization can also be applied additionally at
random places during the scalar multiplication.

Note that the final inversion to obtain affine coordinates and to change between the systems needs
to be performed in the secure environment. Otherwise, i.e., if the triple is the direct result of a scalar
multiplication without further randomization, [NAST+ 2004] show that the previous operations
(doublings or additions) can be distinguished.

It is important that this attack was found, however, in practice one would either provide the
result in affine coordinates (which is standard in transmission to reduce the bandwidth) or perform
a further random blinding with a new choice of λ.

However, there are some coordinates that are not changed by multiplication by λ. Namely if
the respective field element is 0 then it is unchanged by this method. Goubin’s attack [GOU 2003]
makes use of this observation together with the fact that a zero coordinate leads to shorter com-
putation times in most operations. We like to point out that this method is not restricted to zero-
coordinates but it can also work if just some coefficients in the representation of Fq as vector space
over Fp are zero. We discuss this in more detail in the following Section 29.3.

29.2.4 Randomization of the curve equation

So far we implicitly identified isomorphic affine equations for curves and different representations
of the finite fields. However, it is possible to use the isomorphisms as secret maps to prevent the
attacker from simulating the scalar multiplication.
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29.2.4.a Isomorphic field representations

Using a different irreducible polynomial of degree d leads to an isomorphic description of Fpd . This
method does not depend on the curve and, hence, [JOTY 2002] covers this idea for general curves.
There are a few drawbacks attached to this method: computations in the isomorphic fields might be
considerably slower than usual as less efficient field representations (e.g., perhaps no binomials) are
used. Furthermore, the field isomorphism is often only given by a (d × d) matrix over Fp.

29.2.4.b Isomorphic curve equations

In Sections 13.1.5 and 14.1.3 we introduced isomorphic transformations on the curve equation.
The resulting curve is given by a different equation and the representation of the group elements
is changed, too. If the isomorphism is secret the attacker has no information on the representation
of the group elements, and hence, cannot simulate the computation. This countermeasure was
proposed for elliptic curves in [JOTY 2002] and generalized to hyperelliptic curves in [AVA 2004b].
We present the version from the latter reference in the setting of hyperelliptic curves.

Let C and C̃ be two hyperelliptic curves of genus g � 1 over a finite field Fq. Suppose that
ψ : C → C̃ is an Fq-isomorphism that is easily extended to an Fq-isomorphism of the divisor class
groups ψ : Pic0

C → Pic0
eC

. Let us further assume that ψ, and the inverse ψ−1, are computable in a
reasonable amount of time, i.e., small with respect to the time of a scalar multiplication. We do not
require a priori the computation time of ψ to be negligible with respect to a single group operation.
Then, instead of computing

__
E = [n]

__
D in Pic0

C we perform:
__
E = ψ−1

(
[n] ψ(

__
D)
)

so that the bulk of the computation is done in Pic0
eC

. We visualize it in the following commutative
diagram.

__
D ∈ Pic0

C

multiplication by n

��

ψ
��

Pic0
C � [n]

__
D

ψ(
__
D) ∈ Pic0

eC

multiplication by n

��
Pic0

eC
� [n]ψ(

__
D)

ψ−1

��

and we follow it along the longer path. The countermeasure is effective if the representations of the
images under ψ of the curve coefficients and of the elements of Pic0

C are unpredictably different
from those of their sources. This can be achieved by using randomly chosen isomorphisms ψ, which
boils down to multiplying all the quantities involved in a computation with “random” numbers.

In Section 14.1.3 we gave examples of isomorphisms and in the following sections, optimal
equations for each isomorphism class of curves were obtained. Applying random isomorphisms
means that this optimal equation cannot be used. We briefly recapitulate the effects of isomorphisms
on hyperelliptic curves, implying elliptic curves.

Let C, C̃ be two hyperelliptic curves of genus g defined by Weierstraß equations

C : y2 + h(x)y − f(x) = 0 (29.2)

C̃ : y2 + h̃(x)y − f̃(x) = 0 (29.3)

over Fq , where f, f̃ are monic polynomials of degree 2g +1 in x and h(x), h̃(x) are polynomials in
x of degree at most g. All Fq-isomorphisms of curves ψ : C → C̃ are of the type

φ : (x, y) �→
(
s−2x + b, s−(2g+1)y + A(x)

)
(29.4)
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for some s ∈ F∗q , b ∈ Fq and a polynomial A(x) ∈ Fq[x] of degree at most g. Upon substituting
s−2x + b and s−(2g+1)y + A(x) in place of x and y in equation (29.3) and comparing with (29.2)
we obtain {

h(x) = s2g+1
(
h̃
(
s−2x + b

)
+ 2 A(x)

)
f(x) = s2(2g+1)

(
f̃
(
s−2x + b

)
− A(x)2 − h̃

(
s−2x + b

)
A(x)

) (29.5)

whose inversion is {
h̃(x) = s−(2g+1)h(x̂) − 2A(x̂)

f̃(x) = s−2(2g+1)f(x̂) + s−(2g+1)h(x̂)A(x̂) − A(x̂)2
(29.6)

where x̂ = s2(x − b).
Avanzi [AVA 2004b] gives a detailed study on this countermeasure for hyperelliptic curves in-

cluding elliptic curves. Hence, we only state these more general results in the sequel. For elliptic
curves we refer to the original paper [JOTY 2002].

• For hyperelliptic curves in odd characteristic we can restrict the isomorphisms to the
type

ψ : (x, y) �→
(
s−2x, s−(2g+1)y

)
, (29.7)

with h(x) = h̃(x) = 0. This gives a fast countermeasure that effectively multiplies
all quantities involved in the computations of the group operations by powers of the
randomly chosen nonzero parameter s.
Also, here we need to mention that zero coefficients remain zero when applying this
randomization. Additional care needs to be taken to avoid Goubin type attacks (cf.
Section 29.3).

• For genus 2 hyperelliptic curves in characteristic 2, one loses performance compared to
the optimal formulas stated in Chapter 14. On the other hand, the general formulas can
be applied in any case and thus one has to analyze on a case-by-case basis which costs are
acceptable. For example, in Proposition 14.37 a unique representative per isomorphism
class is given while the restricted parameter ε does not influence the performance and it
is not necessary to map f1 to 0. Hence, different choices are possible without affecting
the performance.

• For genus 3 curves in even characteristic similar observations hold. Additionally, the
type of curve given by an equation y2 + h0y = f(x) can be randomized by

ψ : (x, y) �→
(
s−2x, s−(2g+1)y

)
, (29.8)

leaving the shape of the curve unchanged and varying only h0 on the left-hand side; thus
the group operations remain particularly fast.

Remarks 29.5

(i) Clearly, using more general isomorphisms, e.g., including a constant term, Goubin type
attacks can be easily avoided on the cost of a less efficient map.

(ii) Note that it is also possible to use isogenies of low degree, which are efficiently com-
putable as the DLP is usually stated in a prime order subgroup and thus the group struc-
ture of the interesting part is not altered by isogenies. In particular, when searching for
maps that avoid Goubin type attacks one might come back to the more general isogenies.



§ 29.3 Countermeasures against Goubin type attacks 703

29.3 Countermeasures against Goubin type attacks

Goubin observed that some elements remain unchanged under some of the randomization tech-
niques presented in the previous section, e.g., as in the example we already mentioned, the random-
ization by redundant coefficients leaves zero coordinates unchanged.

This can be used in an active attack. Assume that an attacker can observe the computation of
[n]

__
Di for elements

__
Di ∈ Pic0

C chosen by himself, and assume that the
__
Di were chosen such that

for each
__
Di the result of [3]

__
Di has a zero coordinate while [4]

__
Di does not. As a zero coordinate

is invariant under the randomization by redundant coefficients, all side-channel traces should show
the particularities of a zero coordinate if [3]

__
D is used in the scalar multiplication, i.e., if the second

most significant bit is set in a left-to-right algorithm, and be normal otherwise.
In full generality, we have the following approach: let H ⊂ Pic0

C be a subset of elements having
some property that makes their processing detectable by side-channel analysis (for example, zeroes
in the internal representation) and that are invariant under a given randomization procedure R.

The set H is called the set of special group elements. It is used in an attack as follows:
Suppose that the most significant bits nl−1, nl−2, . . . , nj+1 of the secret scalar n are known and

that we want to discover the next bit nj .

1. Make a guess: nj = 0 or 1.

2. Set up a chosen message attack: choose a number of elements
__
E i ∈ H and determine

the corresponding
__
Di such that [(nrnr−1 . . . nj+1nj)2]

__
Di =

__
E i and additionally check

that [(nrnr−1 . . . nj+1n̄j)2]
__
Di �∈ H .

3. Then, statistical correlation of the side-channel traces corresponding to the computations
of [n]Ei may reveal if the guess was correct even if the randomization procedure R is
used.

As already mentioned, such sets H exist:

• The set of points with a zero coordinate of an elliptic curve.
• The set of divisors classes on a hyperelliptic curve with a zero coordinate in the unique

representation. As we use Mumford representation,
__
D = [u(x), v(x)], the set of special

elements could consist of those divisor classes for which deg(u) < g. If explicit formu-
las are used such elements require special routines and thus should be easy to detect.

In both cases, the probability that a random element is in H is O(q−1). So, one would not hit
such an element by accident and, hence, the check whether [(nrnr−1 . . . nj+1n̄j)2]

__
Di �∈ H should

almost always hold.
The sets H defined above are clearly preserved by multiplicative divisor randomization, field

isomorphisms, and curve isomorphisms (cf. Sections 29.2.3.b, 29.2.4.a, and 29.2.4.b). The side-
channel trace correlation may reveal if the guess was correct in the presence of such randomization
procedures.

For elliptic curves over prime fields Fp given by y2 = x3 + a4x + a6, one can avoid this attack by
choosing x3 + a4x + a6 irreducible over Fp and such that a6 is not a square. Then no point with
a zero coordinate exists. In general, for elliptic curves, this attack is not too serious, and can be
avoided easily, as shown by Smart [SMA 2003].

The initial attacks were described for elliptic curves only, but the generalization to divisor class
groups of hyperelliptic curves has been done by Avanzi [AVA 2004b]. In the same paper he also
provides a generalization of the countermeasures.

In fact, on a genus g curve (g > 1), let H be the set of divisor classes
__
D = [u(x), v(x)] such that

deg(u) < g. After the computation of an intermediate result
__
E = [t]

__
D ∈ H , the scalar multiplica-
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tion algorithm will double it. To do it, the formulas for the most common case (cf. Chapter 14) will
not work — and even if Cantor’s algorithm 14.7 is used to implement the group arithmetic, there
will be less reduction steps than in the general case. The consequences are easily detectable dif-
ferences in power consumption and even timing. The timing differences are the leaked information
used in the attack described in [KAKI+ 2004], which we can thus consider as a Goubin-type timing
attack.

An approach to thwart Goubin’s attack could use very general curve isomorphisms that do not
respect the short Weierstraß form using b, A(x) �= 0 to randomize also the vanishing coefficients
of the divisors: this has the disadvantage of requiring more general and slower formulas for the
operations.

However, as shown by Avanzi [AVA 2004a, AVA 2004b], the methods of randomizing the scalar
and blinding the group elements (cf. Section 29.2.2 and 29.2.3.a) can be effective against Goubin’s
attack.

Under Goubin type attacks we also subsume the exceptional procedure attack [IZTA 2003b]. It is
also an active attack in which the attacker chooses the input

__
D, on which [n]

__
D is computed, in such a

way that the computation fails for one assignment of the next unknown bit and does not for the other.
By recording the error messages or observing the algorithm to choose an exceptional procedure, the
attacker can learn subsequent bits. This attack is feasible, e.g., if the group order is not prime by
submitting a point of small order such that the computation would hit the point at infinity. However,
the standards suggest choosing curves with small cofactor only (cf. Chapter 23) such that the attack
could discover only a very small portion of n. Furthermore, checks that the submitted point is in
fact on the curve and of the given prime group order are imposed by the protocols (cf. Section 23.5).

This attack could also be mounted against the initial version of unified addition formulas (given
in [BRJO 2003]) as they proposed only one set of formulas that would fail for only a very few cases.
Clearly, these cases would never occur in a random scalar multiplication, but assuming an active
attacker such instances can be found even if the group order is prime. Note that the unified formulas
presented in Section 29.1.2.a no longer suffer from this problem. Furthermore, the countermeasures
of blinding and scalar randomization are also effective against these attacks.

29.4 Countermeasures against higher order differential SCA

In the DSCAs explained so far the attacker monitors leaked signals and calculates the individual sta-
tistical properties of the signals at each sample time. In a higher order DPA attack, the attacker cal-
culates joint statistical properties of power consumption at multiple sample times within the power
signals.

More formally, an k-th order DSCA is defined as a DSCA that makes use of k different samples
in the power consumption signal that correspond to k different intermediate values calculated during
the execution of an algorithm.

The attacks described so far are first order DSCAs. The idea behind higher order DSCA had
already been defined in [KOJA+ 1999]. A description of a second-order DPA can be found in
[MES 2000a].

A possible scenario in the setting of curve-based cryptography is that the implementer chooses a
windowing method such that the leakage of zero coefficients does not seem to be a real concern, e.g.,
a fixed or sliding window of width w = 4, or he applies a method such that no zero coefficients can
occur (cf. Section 29.1.1.a). At each addition, one adds one of few (e.g., 16) possible precomputed
multiples of the base group element

__
D to the intermediate value. The higher order DSCA method

deems to determine when a precomputed multiple is reused. This might be observable from the side-
channel information, as half of the input is fixed while the other can be assumed to vary randomly.
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This method might also be used to distinguish multiplications from squarings in odd characteristic.
Implementers should be aware of this when using the algorithms presented in Section 29.1.1.b; for
implementations of RSA these issues were studied in [SCH 2000a] and following papers.

In [SASC+ 2004] it is shown how such an attack can be used for elliptic curves over Fp where
the field operations are implemented in Montgomery representation. They use the visibility of the
final reduction in the multiplication to distinguish the computations of x2, xy, and 3xy to attack
curves in Jacobian coordinates given by the (especially efficient) equation y2 = x3 − 3x + a6.

In order to avoid the detection of reusage of a precomputed point or prevent the observation of the
final reduction via side-channel attacks, it is also advisable to use a redundant, i.e., inversion-free,
representation of the group elements and to randomize the representation of a precomputed point
after each time it is used. This is trivial to implement, and comparably inexpensive.

SSCA-countermeasures will also make it more difficult for the attacker to guess which portions
of single traces are to be correlated. This shall force him, ultimately, to adopt a brute force strategy,
i.e., to try to correlate all possible sub-traces: the amount of possible combinations will increase
exponentially with the length of the scalar multiplication and thereby make k-th order attacks com-
putationally infeasible.

The same holds true for address bit DPA in which the attacker obtains information about reusage
of locations by using the side-channel information. A further countermeasure is to randomly change
the assignment of storage locations during the execution of the algorithm.

29.5 Countermeasures against timing attacks

Timing attacks were the first side-channel attacks ever described [KOC 1996]. The attacker is only
assumed to be able to measure the time needed per complete scalar multiplication and not to obtain
a more detailed side-channel information.

If the attacker is allowed to issue group elements
__
D on which [n]

__
D is computed, he might choose

them in such a way that, depending on a certain bit, the complete scalar multiplication differs in the
computation time. In other words, the timings of the part of the whole computation that processes
the bit nj must be biased in the step obtaining the j-th bit.

Timing attacks have been shown to work on real life smart cards in [DHKO+ 2000] for an imple-
mentation of RSA, and the same methods can be used also for curve-based cryptography.

The countermeasures are in principle the same as for differential side-channel analysis. Random-
izing the representation of

__
D and of n should make it infeasible to obtain information from the total

computation time as the internal representation is not known.

29.6 Countermeasures against fault attacks

Attacks based on fault induction essentially force the device to perform erroneous instructions —
e.g., by changing some bits in the internal memory. They have been announced officially in 1996 in
a Bellcore press release, followed by a paper by Boneh, DeMillo, and Lipton [BODE+ 1997].

Originally, the attack was presented for RSA and usually the scenario assumes that the attacker
has access to the result of the computation [n]

__
D and that he might request this computation for the

same input
__
D more than once. Hence, like for DSCA this attack does not apply to the randomly

chosen nonces in the protocol but only to the long term secret key, e.g., used in signing.
First of all, inserting errors during the execution of an algorithm allows us to determine if the hit

operation was a dummy or a real one by comparing the outputs of the original computation of [n]
__
D

to the output after the insertion of a fault. The obvious countermeasure is to check the output by a
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check computation.
Unfortunately for curve-based cryptography, checking the result amounts to performing the whole

computation twice or in parallel requiring either double time or size. (This is in contrast to RSA,
where usually one of the operations is chosen to be cheap.) Hence, a more thorough look at possible
effects is necessary. We follow Avanzi [AVA 2005c] and distinguish between simple fault analysis
(SFA) and differential fault analysis (DFA) depending on whether the attack makes use of a single
execution of the algorithm or of many in combination with statistical analysis.

29.6.1 Countermeasures against simple fault analysis

At Crypto2000, Biehl, Meyer, and Müller [BIME+ 2000] presented three different types of attacks
on ECC that can be used to derive information about the secret key if bit errors can be inserted into
the elliptic curve computations in a tamper-proof device. They also estimate the effectiveness of the
attacks using a software simulation.

Their methods require very precise placement and timing of the faults. Generalizing the approach
of [LILE 1997], their first two techniques depend on the ability to change the coordinates of a point
on the curve at the beginning of the scalar multiplication. This can work because the elliptic curve
formulas do not use all the coefficients of the equation of the curve to perform their operations (cf.
Chapter 13); e.g., in affine coordinates and a finite field Fq of odd characteristic the coefficient a6 in
the curve equation E : y2 = x3+a4x+a6 is not used in either doubling or addition. Therefore, if the
input point is changed it will no longer lie on E but has good chance of lying on Ẽ = y2 +a4x+ ã6

for some ã6. The implemented addition and doubling formulas will compute the multiple of the
changed point on the changed curve. The largest prime factor of Ẽ(Fq) will most likely be smaller
than the group order E(Fq) such that solving the DLP on Ẽ is easier (cf. Section 19.3 for invalid
curve attack).

To actually have a DLP to solve we assume that the attacker obtains the output [n]P̃ from which
he can determine ã6 as a4 is known to him. Furthermore, we assume that the attacker has some
knowledge of how the fault was induced, e.g., he could place it such that only the y-coordinate is
changed while x is fixed. Given a4, x and ã6 he gets two candidates for the y-coordinates. By
solving the DLP for one of them he obtains either n or  − n from which the DL is derived by
checking.

Note that this scenario holds also for hyperelliptic curves and for all other coordinate systems, as
usually not all curve coefficients appear in the explicit group operations and a divisor class group in
a random Jacobian is likely to have no big prime factor.

The countermeasure consists of checking whether the resulting point satisfies the curve equation.
Note that the standards require this check for the input point (cf. Section 23.5) and this comparably
cheap procedure also at the end of the computation.

Furthermore, the attack is not possible if the result is not available to the attacker. On the other
hand, holding back the result just in case of a detected fault allows an attacker to find dummy
instructions.

29.6.2 Countermeasures against differential fault analysis

We now introduce a class of fault attacks that need more than one scalar multiplication.

29.6.2.a Faults changing the curve

Here we assume the faults can be placed at exact timings but their effects on
__
D cannot be controlled.

Hence, most likely one works on a different curve after the fault is induced.
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The method of detecting dummy operations mentioned in the introduction belongs to this class of
attacks. For the purpose of illustration we describe an attack on the right to left scalar multiplication
Algorithm 29.6, which we repeat here for easier reference.

Algorithm 29.6 Right to left binary exponentiation

INPUT: An element
__
D ∈ G and a nonnegative integer n = (nl−1 . . . n0)2 with nl−1 = 1.

OUTPUT: The element [n]
__
D ∈ G.

1.
__
E ← 0,

__
F ←

__
D and i ← 0

2. while i � l − 2 do

3. if ni = 1 then
__
E ←

__
E ⊕

__
F

4.
__
F ← [2]

__
F

5. i ← i + 1

6.
__
E ←

__
E ⊕

__
F

7. return
__
E

The group element
__
F contains [2i]

__
D in round i. Note that in Line 3 a dummy addition could be

performed to avoid SSCA attacks.

Assume that we know the binary length l of the unknown multiplier n (note that an attacker can
easily guess this length). First use the device to compute [n]

__
D without inducing faults to have a

value for comparison. Then change the content of
__
F in the next to last round. If the result is

changed then nl−2 �= 0. Proceeding to inserting an error in the previous round and repeating this
process, the attacker can read out all bits of n.

The paper [BIME+ 2000] also contains an approach in which faults are introduced during the
scalar multiplication in a more sophisticated way. Assume that the attacker can, at any prescribed
iteration, say flip just one bit of the variable

__
E . (The case where the variable

__
F is modified is

handled in a similar way.) Assume also that the scalar is fixed and not randomized, and that we know
how the internal variables are represented. Then, essentially, the bits of the key can be recovered in
small blocks as follows:

1. Perform a normal scalar multiplication
__
E = [n]

__
D with a given input.

2. Repeat the computation of [n]
__
D, but this time induce a bit flip in a register m steps before

the end of the scalar multiplication, giving a result
__
E ′. Of course all computations before

the fault in the two cases will be equal, and all those involving the processing of the m
most significant bits of the unknown scalar n in the faulted computation will have been
changed with respect to those of the reference computation — the very first difference
consisting of just a single bit.

3. For all possible m bit integers x, “reverse” the correct computation and the faulted one,
i.e., determine

__
E 	 [x2l−m]

__
D and

__
E ′ 	 [x2l−m]

__
D.

4. If pairs of results that differ in only one bit are found, then the correct and faulted register
values are now determined together with the m most significant bits of the scalar.

5. If one bit of
__
F (which is supposed to contain a copy of the input base point

__
D) was

flipped, and not one of
__
E , the computations need to be done not only for all possible

combinations of m bits, but also for all possible single bit faults induced in
__
E . There

exist O(lg q) different possibilities over Fq .

6. Iteration of the above process yields all the bits of the secret scalar, m bits at a time.
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The attack works essentially unchanged if the binary representation of the scalar is replaced with
any other deterministic recoding (NAF, m-ary, w-NAF, etc.).

In [BIME+ 2000] the authors deal with more sophisticated attacks, such as attacks where the
faults are induced but it is not possible to determine precisely when – such attacks are reasonable if
clock randomization or randomized processor instructions are implemented on the card.

All such attacks have been originally presented for elliptic curves but are in fact entirely generic and
apply to implementations of hyperelliptic curves, trace zero varieties and other geometric objects.
Countermeasures are obvious: checking at regular intervals to see whether the intermediate result is
on the curve, and restarting the computation (possibly from a backup value) if something has gone
wrong; never allowing wrong results to leave the device; randomizing the scalar.

29.6.2.b Faults preserving the curve

The countermeasures described so far would not apply if the resulting points happened to be valid
points of the curve. In [BLOT+ 2004] the authors analyze the scenario that the attacker is able to
insert such precise faults that it is possible to change the sign of an integer modulo p. This might
be unrealistic in practice but offers the interesting scenario that the attack would not be noticed
through the above countermeasures. They show how one could still obtain the secret scalar n from
sign change fault attacks.

Apart from the attack, they also propose a countermeasure generalizing Shamir’s idea [SHA 1999]
for RSA to ECC, which works similar to performing the computation twice — but choosing the sec-
ond group to be a small group over Fp′ for p′ < q which facilitates this task enormously.

Their paper considers only elliptic curves; generalizations to larger genera are possible. For the
explanation we restrict ourselves to elliptic curves.

Let the original curve E be defined over Fp and let p0 be a small prime. Consider an appropriate
lift of the equation of E to the integers and reduce it modulo N = p0p. The effects on the speed of
working on the reduced curve

__
E are the same as choosing a larger modulus. Let PN be an arbitrary

lift of the base point P reduced modulo N and let Pp0 be its reduction modulo p0.
Instead of computing [n]P directly, one performs QN = [n]PN and Qp0 = [n]Pp0 . At the end,

one checks whether the reduction of QN modulo p0 equals the result Qp0 . If this does not hold,
then at least one fault has been induced (unless one has the rare case that n is a multiple of |

__
E p0 |)

and the computation should be started anew. Otherwise [n]P is obtained as the reduction of QN

modulo p.
This countermeasure induces the small overhead of working with a larger modulus and perform-

ing the scalar multiplication twice. However, this is a comparably small overhead and the probability
that the attacker can introduce a fault in both computations at the same place is rather low. On the
other hand, inserting faults that change the sign, i.e., keep the point on the curve, are technically
hard to achieve.

29.6.3 Conclusion on fault induction

For this type of attack it is even more important to analyze the capability of the attacker. In particular,
the fact that a restart of the computation after an unsuccessful check does tell the attacker that the
operation at which the fault was induced was not a dummy operation, needs to be taken into account.

If faults or intrusions have been detected, then the computation has to be redone, restarted with
the state before the fault, or aborted without output. This can lead to observable differences in the
behavior of the system: in [JOQU+ 2002] the case of an RSA system has been investigated. The
observable behavior can consist of the success/failure to encipher/decipher, but, for example, also in
the total timing for the cryptographic operations, or in the power trace/EM emission of the device.
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In other words, an (apparently) improved cryptosystem may actually leak useful observable infor-
mation. If this behavior can be observed for several different faults induced in different moments
of a scalar multiplication with fixed scalar, then an attacker may be able to guess the secret key.
Accordingly we strongly advise randomizing the scalar.

29.7 Countermeasures for special curves

The curves considered in Chapter 15 allow fast scalar multiplications by using endomorphisms
of the curve. On Koblitz curves (cf. Section 15.1) the Frobenius endomorphism φq operates by
raising each coefficient of the representation to the power of q. On GLV curves (cf. Section 15.2.1)
other efficiently computable endomorphisms are applied. For such curves it is possible to design
countermeasures against side-channel attacks that are more efficient than for general curves.

In the sequel we first report on countermeasures for Koblitz curves as there is a vast literature
proposing methods against SSCA and DSCA. As the Frobenius endomorphism is usually used
to speed up the scalar multiplication (cf. Section 15.1) we now assume that n is given by its τ -
adic expansion n =

∑l−1
i=0 niτ

i for ni ∈ R for some set of coefficients R. Finally we report on
countermeasures for GLV curves.

29.7.1 Countermeasures against SSCA on Koblitz curves

In general, the SSCA countermeasures of inserting dummy group operations apply also to τ -adic
instead of binary expansions. However, avoiding simple side-channel attacks on Koblitz curves by
resorting to the Frobenius and always add method would reduce much of the advantages of Koblitz
curves, as many expensive additions are inserted. Likewise, there is no use in obtaining unified
group operations, as the advantage of using Koblitz curves is that the Frobenius endomorphism is a
cheap operation and thus its cost cannot and should not be made equal to that of an addition.

To find the most appropriate countermeasure it is necessary to specify how the computations are
done.

29.7.1.a Normal basis situation

If the implementation is using a normal basis representation, e.g., in hardware based implementa-
tions, computing φi

q(
__
D) requires the same time for each exponent i. Therefore, a countermeasure

against SSCA is not needed as the attacker automatically sees the deterministic sequence of oper-
ations consisting of one application of the Frobenius endomorphism and one addition. For genus
g > 1 or q > 2 one table lookup is used before the addition. Note that this reveals the τ -adic
Hamming weight of the representation as the number of additions is observable.

29.7.1.b Power of φi
qφi
qφi
qφi
qφi
qφi
q can be detected

We now detail methods to counteract SSCAs if it is possible to determine the number of Frobe-
nius operations between two additions. The first generalizations of side-channel attacks to elliptic
Koblitz curves were obtained in [HAS 2000]. The methods are stated for elliptic curves but hold the
same for arbitrary genus curves.

First of all, it is possible to design an algorithm that resists SSCA and DSCA at the same time.
As the Frobenius endomorphism can be applied almost for free, it is possible to insert dummy
applications of φq . We repeat Algorithm 3 of [SMGE 2003] in the general setting of arbitrary
Koblitz curves. We need a random nonce j, by which we mean a binary sequence of length l + 1
if the expansion of n has length l. By the logical complement of the expansion of n, we mean a
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τ -adic expansion that has a 0 whenever the expansion of n has a nonzero coefficient, and which
contains a random coefficient from the set of coefficients otherwise. By abuse of notation we also
use n to denote its expansion and n′ for the logical complement. The logical complement j′ of j is
the binary sequence such that j + j′ is the all one string.

Algorithm 29.7 SSCA and DSCA by random assignment

INPUT: An integer n =
Pl−1

i=0 riτ
i, a divisor

__
D, and precomputed multiples [ri]

__
D.

OUTPUT: The divisor
__
E = [n]

__
D.

1. generate random nonce j of length l + 1

2. kval[jl] ← n and kval[j′l ] ← n′

3.
__
E [0] ← 0 and

__
E [1] ← 0

4. for i = l − 1 to 0 do

5.
__
E [ji] ← φq(

__
E [ji])

6. bit ← kvali[ji]

7. if (bit �= 0) then
__
E [ji] ←

__
E [ji] ⊕ [bit]

__
D

8.
__
E [j′i] ← φq(

__
E [j′i])

9. bit ← kvali[j′i]

10. if (bit �= 0) then
__
E [j′i] ←

__
E [j′i] ⊕ [bit]

__
D

11. return
__
E [jl]

Note that at each step φq was applied twice while only one of the additions took place and the order
of used and dummy additions is randomized due to j. As in the double-and-always-add method the
density of the expansion is constantly 1.

The same idea works also for the windowing method with fixed window width by redefining the
logical complement of n, which has the advantage of needing fewer additions on the cost of larger
storage requirements.

Furthermore, one needs to take into account that in even characteristic negating can be observed
from the side-channel information, such that it might be necessary to store both [i]

__
D and [−i]

__
D.

This observation also holds true for the cases considered next.

Binary elliptic Koblitz curves

We are working on the original Koblitz curves g = 1, q = 2 and no precomputations are used. For
an unshielded implementation it is possible to use a τ -adic NAF expansion that has density 1/3.

From the NAF property one knows that each addition is followed by at least two applications
of φ2 as there are no two consecutive nonzero coefficients. One can use a direct generalization of
the idea presented in Section 29.1.1.a by using a fixed pattern of operations. This way the scalar
multiplication would consist of applying φ2 twice followed by an addition, where some of the
additions and some of the Frobenius operations are actually dummy operations.

Note that dummy Frobenius operations appear if the number of zeroes between two nonzero
coefficients is even whereas dummy additions are inserted whenever two adjacent zero-coefficients
appear in the expansion.

As for Koblitz curves φ2 is much cheaper than a group addition, and it is advisable to prescribe
more (dummy) Frobenius operations to reduce the number of dummy additions. Depending on the
length of the scalar, we propose to let each addition be followed by 3 or 4 applications of φ2. To
thwart fault attacks, the dummy Frobenius operations could be placed randomly among the 3 resp.
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4 applications.
Also, the idea in [GIE 2001] can be used in this context
Similar considerations hold if precomputations can be used to achieve a low density expansion.

Generalized Koblitz curves

In the case of larger genus or characteristic the density of the τ -adic expansion is much closer to
1. So, inserting some dummy additions does not constitute a major drawback. To additionally take
into account DSCA one can randomize the times where the dummy operations are executed and the
places where they are stored. Some clever ways for this are detailed in [SMGE 2003].

It is also possible to directly generalize the use of windowing methods in which w operations of
the Frobenius endomorphism are followed by an addition, which might be a dummy addition. Here,
the use of fixed windows is advantageous.

An analogue of Möller’s method of deriving expansions with no zero coefficients can be obtained
as well. In a more sophisticated way the following adaptation of Hasan [HAS 2000] to arbitrary
Koblitz curves C/Fq works (for the details on Koblitz curves we refer to Section 15.1). Note that
we consider C over an extension field Fqk .

Using τk − 1 = 0 in the subgroup under consideration we reduce the length of the expansion of
n allowing larger coefficients. For large k the coefficients will all be of a size less than qg − 1. Put
rmin < 0 the minimal and rmax the maximal coefficient of this enlarged set of coefficients. Then for
all coefficients ri, 0 � i � k − 1 of the expansion ri − rmin + 1 is an integer > 0. We precompute
the multiples

__
D, [2]

__
D, . . . , [rmax − rmin + 1]

__
D in advance. Then

∑k−1
i=0 [ri − rmin + 1]φi

q(
__
D) still

computes [n]
__
D as (−rmin + 1)(φk

q − 1)/(φq − 1)(
__
D) = 0. But now we perform a table lookup and

non-dummy addition for each of the d coefficients. The density is still 1 but this trick avoids fault
attacks.

29.7.2 Countermeasures against DSCA on Koblitz curves

To counteract differential attacks all methods introduce randomness in the computation. Several
of the methods introduced in Section 29.2 have direct analogies for Koblitz curves, which can be
applied much more efficiently as the doublings are replaced by cheap applications of φq .

29.7.2.a Varying the scalar or the representation

Coron’s countermeasure [COR 1999] of adding a random multiple of the group order to the multi-
plier n before computing [n]

__
D does not help at all for Koblitz curves. Note that in the process of

computing the τ -adic expansion we first reduce modulo (τk − 1)/(τ − 1) and that the group order
is always a multiple of this in Z[τ ] (at least when it is almost prime as we suppose). This means that
n plus any multiple of the group order is always reduced to the same element in Z[τ ]. This holds for
all hyperelliptic curves independent of the genus. To find efficient countermeasures we again need
to distinguish whether the number of applications of φq can be determined from the side-channel
information or not.

Normal basis situation

As before, we assume that the side-channel traces of φi
q and φj

q are indistinguishable.
Hasan [HAS 2000] deals especially with elliptic Koblitz curves over F2 but the method works for

any genus and ground field. Use the relation τk − 1 = 0 to reduce the length of the expansion to
have fixed length k allowing larger coefficients. We can rotate the expansion using

rk−1τ
k−1 + rk−2τ

k−2 + · · · + r1τ + r0 = τ t(rt−1τ
k−1 + rt−2τ

k−2 + · · · + rtk + 1τ + rt)
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for arbitrary t.

Power of φi
qφi
qφi
qφi
qφi
qφi
q can be detected

The exponent splitting algorithm of [SMGE 2003, Algorithm 2] works efficiently if the final addi-
tion is implemented in such a manner that no information on the

__
E i is leaked. We present their idea

in the general setting of arbitrary Koblitz curves. They suggest splitting the expansion into s groups
of t coefficients, where t = �k/s�. For each subsequence

ui = (r(i+1)t−1r(i+1)t−2 . . . rit+1rit), for 0 � i � s − 1

the computation of
__
E i = [ui]

__
D is done in a random order for the i. Finally the result is obtained as

__
E =

s−1∑
i=0

φit
q (

__
E i).

Adding random multiples of (τk−1)/(τ−1) does not change the content of the integer but changes
the representation. Note, however, that this makes the coefficients larger and that each coefficient is
increased by one.

The method described in Algorithm 29.7 is actually a DSCA countermeasure that also works
against SSCA.

Joye and Tymen [JOTY 2002] consider elliptic Koblitz curves in the case that one would be able
to tell the power of the Frobenius. Instead of reducing n modulo τk − 1 before computing the
expansion, they reduce it modulo ρ(τk −1), where ρ is a random element of Z[τ ] of bounded norm.
If for the complex norm N we have lg N(ρ) ∼ 40 then the expansion will be of length 200 instead
of 160, which does not seem to be too bad as the density of the expansion is unchanged. Besides,
one does not need to introduce further routines except for choosing a random ρ as only reduction
modulo an element of Z[τ ] and the algorithm to compute the expansion are needed.

In [LAN 2001a] it is proposed to first compute n mod (τk − 1)/(τ − 1) as in the unshielded
algorithm and then to add a random multiple α(τk − 1)/(τ − 1), where α is of norm less than
some K . The result is similar to what is obtained above and n is equally hidden in the full length
of the element to expand. The important advantage is that we can make use of the precomputed
values for (τk − 1)/(τ − 1) and (τ − 1)/(τk − 1) in Z[τ ] and only need to compute the product
α(τk − 1)/(τ − 1) in Z[τ ] additionally. Using this for K of about 40 bits also results in expansions
of length 200 but the computation of the expansion is faster.

In the case of higher genus curves we can use the same approach, except that finding elements of
bounded norm is not as immediate as for the elliptic case. However, slightly reducing the space for
these random elements α we can choose those where the coefficients α = c0 + · · · + c2g−1τ

2g−1

satisfy (
2g−1∑
j=0

|cj |
√

q
j

)2

� 2L−2/(
√

q − 1)2;

this means that we can choose all ci at random under the condition that |cj | � 2(L+2)/2/(qg − 1),
where L is the chosen parameter to guarantee enough security. The expansions will be longer by
+L. If we use a new random α each time the algorithm is invoked, the information of the expansion
of the multiplier should be well hidden.

29.7.2.b Other countermeasures

As in the general case, one can also use randomization of group elements together with the Frobe-
nius operation. In inversion-free coordinate systems some more representing field elements need to
be raised to the power of q, but this remains much cheaper than an ordinary scalar multiplication.
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Clearly, blinding methods also work universally in the setting of Koblitz curves, but we are not
aware of an improvement making use of the possibilities Koblitz curves offer.

It is possible to use an isomorphic field representation, but usually this comes at the penalty of
less efficient arithmetic. Concerning curve isomorphisms: they need to be defined over the small
field Fq as otherwise the advantage of Koblitz curves cannot be used — and there are just very few
isomorphic curves, e.g., for the case g = 1, q = 2 there are 4 curves in each isomorphism class. A
random choice among such a small number does not considerably increase the security for the cost
of far less efficient group operations.

29.7.3 Countermeasures for GLV curves

We now deal with side-channel attacks on GLV curves. Recall that these are curves with an endo-
morphism ψ and that to compute [n]

__
D one splits n = n0 + n1sψ, where ψ(

__
D) = [sψ]

__
D for all

__
D

such that n0, n1 are of size O(
√

n) only.
To avoid SSCA, all methods described in Section 29.1 can be applied as they only make use of

the scalar multiplication. One needs to take into account that the computation of [n0]
__
D⊕ [n1]ψ(

__
D)

applies a joint sparse form together with the Straus–Shamir trick of simultaneous doubling (cf.
Section 9.1.5). Thus the initial density of the expansion is 1/2 asymptotically. The effects and
losses due to the SSCA countermeasures need to be slightly adjusted but basically that issue is
solved.

To counteract DSCA, Ciet, Quisquater, and Sica [CIQU+ 2002] give three approaches on how to
randomize the decomposition of the scalar in the GLV scalar multiplication Algorithm 15.41. In the
original GLV method one first computes a short basis v0, v1 of the lattice Z[sψ ]. Denote by f the
map

Z× Z → Z/Z

(i, j) �→ f(i, j) ≡ i + jsψ (mod ).

One has that f(v0) = f(v1) = 0.
Then one solves the linear system of equations over Q to get (n, 0) = k0v0 + k1v1 with ki ∈ Q.

Let k′
i be the integer closest to ki, then (n, 0) − k′

0v0 + k′
1v1 = (n0, n1) is a short vector in the

lattice and f(n0, n1) ≡ n (mod ).
In [CIQU+ 2002], Ciet et al. basically show how to obtain slightly longer vectors (n0, n1) in a

random manner.
In order to do this, the easiest way is to add scalar multiples of v1 and v2 to (n0, n1). The result

will still be a comparably short vector and it operates like n on all
__
D. This countermeasure induces

an overhead as the resulting (n′
0, n

′
1) has larger coefficients but it is rather easy to control the effects

and the increase of security.
To reach a higher order of randomization they propose not only to randomize the splitting of the

scalar in base {1, ψ} but also to randomize the basis such that the resulting splitting n′
0, n

′
1 of n

refers to [n′
0]ψ0(

__
D) ⊕ [n′

1]ψ1(
__
D) for some random basis {ψ0, ψ1}.

To get the random basis, they apply a random invertible matrix

A =

[
α β

γ δ

]

to (1, ψ) and then apply the usual GLV method including the computation of the short vectors v′0, v
′
1

in the changed basis. The only difference is that one does not search for a rational approximation
of (n, 0) but needs to express this first with respect to the changed basis. Define sψ0 by ψ0(

__
D) =

[sψ0]
__
D and let sψ

−1
0 be the inverse of sψ0 modulo . Then the modified GLV method proceeds as

follows:
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Algorithm 29.8 Randomized GLV method

INPUT: An integer n, the endomorphism ψ, the order sψ , and short basis v0, v1 for {1, ψ}.

OUTPUT: The elements ψ0, ψ1 and n′
0, n

′
1 such that [n]

__
D = [n′

0]ψ0(
__
D) ⊕ [n′

1]ψ1(
__
D).

1. choose random invertible matrix A

2. (ψ0, ψ1)
t ← A(1, ψ)t and sψ0 ← (α + βsψ) mod �

3. v′
0 ← δv0 − βv1 and v′

1 ← −γv0 + αv1 [compute short basis v′
0, v

′
1 for ψ′

0, ψ
′
1]

4. s−1
ψ0

← (s−1
ψ0

) mod �

5. find n′
0, n

′
1 for v′

0, v
′
1 like in original GLV for (ns−1

ψ0
, 0) [use Algorithm 15.41]

6. return ψ0, ψ1, n
′
0 and n′

1

Remarks 29.9

(i) The integers n′
0, n

′
1 obtained by this method are at most 2R times larger as with the

original GLV method if α, β, γ, δ are bounded by R.

(ii) If det(A) = 1, one can use v0, v1 as short vectors, also with respect to the new basis.
A special effect is that the maximal size of n′

i is at most twice as large as that of ni

independent of the bound R. Note however, that the matrices of determinant 1 are very
special.

(iii) It is possible to combine both ideas and use this changed basis and an affine translation
of the resulting n′

0, n
′
1 to achieve higher randomization.

So far the GLV method on hyperelliptic curves is applied only to endomorphisms having a minimal
polynomial of degree 2 instead of the maximal degree of 2g. Hence, the same method also applies
literally to the hyperelliptic GLV curves proposed so far, and it can be adjusted also for more general
endomorphisms.
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30.1 Definition of a random sequence

What exactly are random numbers? Is number “5” random? In this section as well as in Section 30.4
and Section 30.5 we closely follow the exposition of [LUBICZ]. Let Σ = {0, 1} and Σ∗ be the set
of sequences of countable infinite length with coefficients in the alphabet Σ. An element of u ∈ Σ∗

can be written as a sequence of 0 and 1:

u = u0u1u2u3u4u5 . . . ,

with ui ∈ {0, 1}. For n ∈ N, the set of finite binary sequences of length n is denoted by Σn. An
element u ∈ Σn can be written as:

u = u0u1u2 . . . un−1.

715



716 Ch. 30 Random Numbers – Generation and Testing

The objective of this paragraph is to define among all the elements of Σ∗ those that are random.
Let W k be the map from Σ∗ in the set of sequences with coefficients in Σk, which associates to

u ∈ Σ∗ the unique sequence such that:

u = w0 ||w1 || . . . ||wq || . . .

with || the concatenation and wi ∈ Σk.
In the following, a sequence of events is defined as a sequence (un)n∈N with values in a set Ω

which will always be finite. The probability denoted by

Pe[(un) = x]

is the empirical probability that an event is equal to x if the following limit exists

lim
k→∞

Sk(x)
k

, (30.1)

with Sk =
∣∣{n � k | un = x}

∣∣. If (wn) is a sequence of words of Σk, then E
(
(wn)

)
denotes the

Shannon entropy function of (wn), defined by

E
(
(wn)

)
=
∑

x∈Σk

Pe[(wn) = x] ln
(
1/Pe[(wn) = x]

)
.

The definition from [KNU 1997] can now be stated.

Definition 30.1 A sequence (un) ∈ Σ∗ is l-distributed for l ∈ N∗, if E
(
W l((un))

)
= l or that

for all x ∈ Σl, Pe[W l((un)) = x] =
(

1
2

)l
. A sequence (un) ∈ Σ∗ is then ∞-distributed if it is

l-distributed for all l ∈ N∗.

Temporarily, it can be stated that a sequence is random if it is ∞-distributed. In particular, if (un)
is a random sequence, then W k((un)) is an equidistributed sequence of words of Σk. If a random
subsequence of length k is picked from a random sequence, then the probability of selecting a given
subsequence is the same for all words in Σk. This illustrates well the intuitive idea of a random
phenomenon. A consequence of this is that it is impossible to precisely define what is a finite
random sequence.

The link between the statistical tests and the preceding definition of a random sequence can
be shown by rewriting the preceding definition in the terms of probability theory. For that, let
(Ω,A, P ) be a probability space, which is defined by Ω, a set that is finite, endowed by the discrete
sigma-algebra, i.e., the one generated by all the elements of Ω and a positive measure P on A
equidistributed and of total weight 1. For this paragraph, Ω will be Σn, the set of binary sequences
of length n. The probability space is then denoted by (Σn,An, Pn).

A random variable is a map X : Ω �→ R. This endows R with a structure of measured space, and
the induced measure is indicated by the abuse of notation PX . The function, which maps x ∈ R to
P [X = x] = P

(
X−1(x)

)
is called the law of X . This gives the following alternative definition of

a random sequence, which is just a reformulation of Definition 30.1.

Definition 30.2 A sequence (un) ∈ Σ∗ is random if and only if for all random variables from Σk

endowed with the equidistributed law of probability to R and for all x ∈ R there is

Pe[X
(
W k((un))

)
= x] = P [X = x].
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In other words, the empiric law determined by the sequence X(u) follows the theoretical law in-
duced by the random variable on R by the equidistributed probability law of Σk. This definition
gives a general principle that underlies statistical tests in order to assess if a sequence is random:
some random variables are defined on the sets Σk, k being an integer endowed with the equidis-
tributed probability. This gives a law on R that is able to be computed or approximately computed
thanks to the results from the probability theory. Most of the time, this law will use a Gaussian or
a χ2 distribution. This law is then compared, for example, using a test of Kolmogorov–Smirnov, to
the empiric law, obtained from the limit in (30.1), which is approximated with a computation on a
sample finite sequence.

The problem is that the preceding general principle is asymptotic by nature: as by definition all the
sequences of fixed length l have the same probability to occur in a random sequence. Without any
further hypothesis, it is not possible to distinguish a random sequence from a nonrandom sequence
only having a finite subsequence. It is important to remember two main ideas: an infinite sequence
can be associated with a probability distribution on the space of finite sequences of length l and a
property for all random sequences of length l is that they have a uniform distribution.

As noted in [KNU 1997], the definition of a random sequence that has been stated does not catch
all the properties that may be expected from a random sequence. For instance, let u ∈ Σ∗ be a
∞-distributed sequence and let u0 be the sequence deduced from u by forcing to zero the bits of
rank n2, n � 2. Then it is easy to see that the sequence u0 is also ∞-distributed and is not random,
because the value of some of its bits can be easily predicted a priori. However, even if the definition
does not catch the unpredictability notion that is expected from a random sequence, it is enough for
the purpose of statistical tests.

The next section will take a closer look at generating random sequences and the testing to see if
these generators are operating properly.

30.2 Random number generators

30.2.1 History

Progress in generating random number sequences has been significant. However, people are still
trying to figure out new methods for producing fast, cryptographically secure random bits. Before
the first table of random numbers was published in 1927, researchers had to work with very slow
and simple random number generators (RNG), like tossing a coin or rolling a dice. Needless to say,
these methods were very time consuming. It was not until 1927 when Tippetts published a table
of 40,000 numbers derived from the census reports that people had access to a large sequence of
random numbers.

This lack of a ready source of random number sequences led people to try and create more
efficient means of producing random numbers. In 1939, the first mechanical random number ma-
chine was created by Kendell and Babington–Smith. Their machine was used to generate a table of
100,000 numbers, which was later published for further use. The practice of using random number
machines to generate tables of random numbers continued with the publishing of 1,000,000 digits
by the Rand Corporation. Their generator could be best described as an electronic roulette wheel.
The first version produced sequences with a statistical biases. The Rand Corp had to optimize and
fix their machine, but even after this the new sequences showed a slight statistical bias. However,
the random sequences were deemed to be “good enough.”

Even though tables provided researchers with a larger selection of random numbers, this method
still had its drawbacks. It required large amounts of memory, since each random number had to
be preloaded into memory, and it took a long time to input the data. At this point, RNG research
branched into two paths: the algorithmic approach and the sampling of physical systems. The
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algorithmic approach looked into producing random numbers by using the computer’s arithmetic
operations, and this led to the creation of deterministic random number generators or pseudorandom
number generators. Sampling of physical systems, however, looked at how to create statistically
acceptable sequences from natural random sources. These random number generators are called
“true” random number generators, since they are based on a truly random source.

Remark 30.3 A detailed time for the random number machine can be found in [RIT].

30.2.2 Properties of random number generators

When looking at a random number generator, how is it possible to determine if it is a source of
random numbers? Four properties distinguish a random number generator from just an ordinary
number generator. The best way to illustrate these properties is to examine a simple random number
generator. One of the most recognized and used RNG is the coin toss; if the coin is assumed to be
“fair.”

By giving the coin a “0” and “1” for each side, it can be used to generate a random binary
sequence. One of the first properties noticed is that the result from each toss is not affected, in any
way, by the previous tosses. This means that if ten ones are tossed in a row, the probability of tossing
an eleventh one is still 50%. This example illustrates the property of independence: previous results
do not affect future results.

Random number generators can be designed to produce any range of values, or distribution.
When examining the output of common RNGs, the values usually fall into a uniform distribution,
which means that they have an equal probability of obtaining any of the values in the specified
range. This distribution does not need to be uniform; for some simulations a designer may wish to
produce a random sequence following a normal or other distribution. For cryptographic applications
it is important that the distribution is uniform. Using a nonuniform distribution allows a hacker to
concentrate on a smaller group of numbers to attack the system.

There are physical and computational limits to the size of numbers that an RNG can create. These
limitations impose a natural boundary on the RNG and once it has reached these limits, the RNG
repeats its output. This defines the period of the RNG. A well designed RNG will only be bound
by the hardware limits. If the RNG is designed without taking care, there can be multiple sequence
groups that the RNG could produce, with each group less than the ideal period.

The size of random sequences required is dependent upon the desired application. Cryptographic
applications require relatively small sequences, in the range of 1024 bits depending on the algo-
rithm, whereas simulations require extremely large sequences. A good example is the Monte Carlo
simulation, which may require random sequences up to a billion bit bits in length, or even more.
Therefore, RNGs need to be very efficient and must quickly generate numbers.

The next sections examine the different properties of three classes of random number generators:
pseudo, true, and cryptographic random number generators. Each has its own unique requirements
and restrictions.

30.2.3 Types of random number generators

30.2.3.a Pseudorandom number generators

As mentioned in the history of RNGs (cf. Section 30.2.1), development of random number genera-
tors branched with the advent of computers. Researchers looked for methods to create large random
sequences by using algorithms. Using such algorithms, they were able to make sequences, which
mimic the properties of “true” random generators. Since they were created with a deterministic
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equation, they could not be called “truly” random. This led to a new class of generators, called
pseudorandom number generators (PRNGs).

Compared to true random number generators, PRNGs are easier to implement in both hardware
and software, and they also produce large sequences very quickly. In [ECU 1998, ECU 2001], the
PRNG is described as a structure of the form (X, x0, f, ft, fo, Z) where X is the finite set of states
with a distribution of δ. The element x0 ∈ X is called the initial state or seed. Using the transition
function ft and the output function fo as shown in Algorithm 30.4 a pseudorandom sequence can
be generated, (z0, . . . , zn) with zi ∈ Z and Z = [0, 1) as the output set.

Algorithm 30.4 A pseudorandom number generator

INPUT: An integer n and a seed x0.

OUTPUT: A pseudorandom sequence (z0, . . . , zn) with zi ∈ Z.

1. for i = 0 to n do

2. xi+1 ← ft(xi)

3. zi ← fo(xi)

4. return (z0, . . . , zn)

The benefit of the PRNG is its ability to quickly produce large sequences of statistically random
numbers. This is very important for running simulations when input data may require millions or
even billions of random values. Caution must be taken when using pseudorandom number gener-
ators for cryptographic applications. Attacks have been published that are able to reveal the secret
generator values for some types of pseudorandom generators, which then enables a hacker to accu-
rately reproduce the sequence. Cryptographic secure RNGs will be looked at in Section 30.2.3.c.

30.2.3.b True random number generators

A computer algorithm can only create pseudorandom sequences. However, there exist a variety of
phenomenons related to a computation that are nondeterministic. Some examples are noise gen-
erated by a transistor, a dual oscillator, air turbulence in a hard drive, or capturing user input on
the computer. Whatever the source of natural entropy, the data need to be digitized and converted
into a working space, often a binary sequence. True random number generators provide a source
of random numbers that is impossible to predict (nondeterministic), but at the cost of the sequence
generation speed. Therefore, these generators are generally suitable for cryptographic applications
but unsuitable for simulations. The use of natural entropy is a good source of randomness, but care
must still be taken to examine the sequence for other weaknesses: correlation or superposition of
regular structures. To overcome these weaknesses, RNG sources are mathematically altered to mask
weaknesses in the digitized analogue signal. Table 30.1 shows the characteristics of both pseudo-
and true random number generators.

Table 30.1 Characteristics of pseudo- and true random number generators.

True RNG Pseudo-RNG

Physical random source Deterministic algorithm

Slow Fast

Hard to implement Easy to implement
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30.2.3.c Cryptographic random number generators

Cryptography has taken on a new importance as more personal and financial information is avail-
able in digital form. The strength of encrypted messages depends on many factors, one of which is
the random number sequence used in key generation. Many people believe that the random num-
ber generator, provided with their compiler or mathematical package, is good enough. However,
research has shown that they are very insecure for cryptographic applications. An example of an
insecure RNG is where an attacker, who knows the pseudorandom algorithm and has a generated
sequence, can take this information and calculate future values. With these values the attacker can
calculate a secret key.

Cryptographic random number generators have an added property compared to other generators.
They need to be unpredictable, given knowledge of the algorithm and previously generated bits.

These properties can be found in both pseudo- and true random number generators. Often the
most efficient method of creating secure cryptographic random number sequences is by using a
combination of the two types of generators.

30.2.4 Popular random number generators

This section describes three common random number generators, but there are many more avail-
able [FIPS 140-2, MEOO+ 1996, RUK 2001, KNU 1997, ENT 1998]. Care must be taken to select
the correct generator for the required application.

30.2.4.a Linear congruential generator

The linear congruential generator (LCG) is a classic pseudorandom number generator and has been
published in many journals and books [KNU 1997, CAR 1994, ENT 1998]. The LCG can be fully
described using the following formula:

Xn = (aXn−1 + c) mod m

with a the multiplier, c the increment and m the modulus. Care has to be taken when selecting
the constants since it is very easy to create a poor random generator. This generator is so popular
because it is simple to implement in both software and hardware after having selected the constants.
Another benefit of this algorithm is its low memory requirement, since only the last value and the
secret constants are required to calculate a new value. Knuth [KNU 1997] dedicates a large portion
of the chapter on LCGs to the selection of each constant.

Table 30.2 is a list of popular linear congruential generators. The constants used and the quality
of the generator are shown along with the generator’s name. Two noteworthy LCGs are the RANDU
and the ANSI-C generators, which can still be found in many mathematical packages and compilers.
Both generators have been extensively researched and it was found that their quality is very poor.
Park and Miller [PAMI 1998] describe the RANDU as:

“RANDU represents a flawed generator with no significant redeeming features. It
does not have a full period and it has some distinctly non-random characteristics.”

As for the ANSI-C generator, it was found to be very nonrandom at lower bits.

30.2.4.b Blum–Blum–Shub generator (computationally perfect PRNG)

The Blum–Blum–Shub (BBS) generator is an example of a class of provably secure random number
generators. It works under the complexity theory assumption that P �= NP. The BBS generator was
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first published in 1986 by Blum et al. [BLBL+ 1986], where they showed that a quadratic residue
of the form:

Xn+1 = X2
n mod m

is very easy to calculate in the forwards direction. However, the backwards calculation of finding
the square root of a number modulo m, when m is large, is very difficult. The modulus is m = p1p2,
where p1 and p2 are large Blum prime numbers. Blum primes are prime numbers, satisfying:

p ≡ 3 (mod 4)

as −1 is not a square modulo p.
The BBS generator is targeted towards cryptographic applications, since it is not a permutation

generator, which means the period of the generator is not necessarily m − 1. This makes the BBS
generator not suitable for stochastic simulations.

Table 30.2 Popular LCGs.

Constants

Generator a c m seed Good/Poor

RANDU 65539 0 231 Poor

ANSI-C 1103515245 12345 231 12345 Poor

Minimum Stan-
dard [PAMI 1998]

16807 0 231 − 1 Good

Note: Good and bad and generators are rated on how well they pass empirical tests.

30.2.4.c Cryptographic RNG (hardware RNG)

All previous examples of random number generators used deterministic algorithms. These genera-
tors statistically act like true RNGs but in fact are not. In order to be thought of as a true random
number generator, the source of bits needs to be nondeterministic, which is usually achieved by
sampling a natural stochastic process. There are many sources of natural randomness, including
measuring radioactive decay, thermal noise, or noise generated by a reversed biased diode.

The problem with nondeterministic random sources is the possible presence of biasing, which
means that ones or zeroes occur more often. A variety of methods have been developed to reduce
the effect of biasing. A few common methods include the XORing of successive bits using the von
Neumann algorithm [DAV 2000], or XORing the nondeterministic bit stream with the bits from a
cryptographically secure random number generator (see Figure 30.3).

Hardware random number generators tend to be slower than their pseudorandom counterparts.
However, for cryptographic applications, which may need only a few thousand bits, this is usu-
ally not a factor. For applications that need many random digits, hardware random generators are
generally too slow.

Remark 30.5 There are many implementations of hardware cryptographic random number genera-
tors [DAV 2000, INTEL 8051, CR 2003].
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Figure 30.3 Cryptographic hardware design.
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30.3 Testing of random number generators

There are two methods for testing a random number generator. One is to treat the generator as a
black-box and only examine a portion of the resulting sequence, this is called empirical testing. The
other method is to open the box and examine a priori the internal structure. This type of testing
is called theoretical testing. Both empirical and theoretical tests use statistical tests, but they differ
in the length of a sequence they examine. For theoretical tests, the full period of the generator is
used; therefore, they detect global nonrandomness. Not all statistical tests are suitable for this type
of testing.

Empirical testing is used to detect local nonrandomness. It is used to examine subsequences of
length a lot less than the full period. Often these tests are used during the operation of the RNG
to determine if the generator is still functioning properly, or as a quick test of a newly selected
randomness generator. When selecting a RNG for an application, if possible, it is best to use both
theoretical and empirical testing. This then helps to avoid both local and global abnormalities.

30.4 Testing a device

This section presents a definition of the mathematical objects that represent the device under test.
A source ST is the mapping from a parameter space T in the set Σ∗ to a binary sequence of infinite
length with either discrete or continuous parameter space. In the case of a physical generator T
there can be a set of continuous variables that describes the state of the RNG (temperature of the
circuit, position of each of the bits). For a LFSR, T is the discrete space describing the initialization
vector, the polynomial of retroaction, and the filtration function.

For an infinite binary sequence there can be associated for all n ∈ N∗ a probability distribution on
Σn given by the definition of the empiric probability of W k((un)). In particular, a source defines a
map from the set of parameters T to the set of probability distributions on Σn for all n. This justifies
the following definition:
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Definition 30.6 Let T be a set of parameters, the statistical model on Σn is the data for all n ∈ N∗

with a probability distribution denoted by Pn
t for t ∈ T on the set Σn.

In practice, the set of parameters can take into account the normal operation of the source as well as
flaws. It is possible that the source can produce sequences with good statistical properties for some
values of the parameter in T and poor statistical properties for the other values of T . For instance,
a physical random generator can be built so that the output bits have a bias p independent of the
preceding draws. It outputs “1” with a probability of p and a “0” with a probability of q = 1− p. A
hard to control production process may influence the parameter p. Therefore, a means is needed to
assess the generator and reject any source that has a parameter p too far from 1

2 ·

30.5 Statistical (empirical) tests

Often it is not possible or feasible to look at the physical structure of the random number generator;
for example, when the RNG needs to be tested before each operation. The only method to determine,
to any degree of certainty, if the device is producing statistically independent and symmetrically
distributed binary digits, is to examine a sample sequence of a given length n. In [MAU 1992] the
idea is presented where a statistical or empirical test T is an algorithm that has as input a binary
sample sequence and produces as output an “accept” or “reject” decision

T : Bn → {“accept, “reject”} (30.2)

where B is a binary set of {0, 1}. Using this function, all the possible binary sequences x of length
n, xn = x1, . . . , xn are divided into two subsets

AT = {sn | T (sn) = “accept”} ⊆ Bn (30.3)

and
RT = {sn | T (sn) = “reject”} ⊆ Bn (30.4)

with AT being the set of accepted or “random” sequences and RT being the set of rejected or
“nonrandom” sequences.

Hypothesis testing

The method used to determine whether a device is operating properly, as a binary symmetric source,
or is malfunctioning, is to test a parameter using the theory of hypothesis testing. The first step of
this testing method is to calculate a test parameter by comparing the estimated parameters from
a sample sequence for the given statistical model to the parameters for a binary stationary source.
The sample is then accepted or rejected by comparing the test parameter to a probability distribution
from a binary symmetric source.

Remark 30.7 Randomness is a property of the device being tested, not of the finite sequence.

The researcher wishes to test the hypothesis that the device’s parameter follows the parameter of
the theoretical distribution. For hypothesis testing, the null hypothesis, H0, is the claim that the
sequence is acceptable as random, while the alternative hypothesis, Ha, states that the sequence is
rejected. This hypothesis is in a general form and can take on a wide variety of parameters. One
example is the examining of the population mean of the sample sequence and comparing it to the
distribution of the mean for a binary symmetric sequence, µ0. The hypothesis can then be written
as follows:

H0 : µ = µ0 Ha : µ �= µ0.
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In order to decide between H0 and Ha, the researcher needs to first determine the error threshold or
significance level α. This level indicates the probability the researcher is willing to take in rejecting
a true H0. For a significance level of α = 0.001, the probability is that one sequence in a thousand
will be rejected when in fact it should be accepted. This level is also called a Type I error.

Figure 30.4 Parameters α and β for a statistical test.

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

���
���
���
���

�
�
�
�

�
�
�
�

0µ

α

µa

β

The next step in hypothesis testing is to calculate the statistical test. This step is dependent on the
data under study. From the previous example, using the mean, the statistical test can be calculated by
examining the sample mean, x; the sample variance, s2; the theoretical mean from a truly random
sequence, µ0; the theoretical variance, σ2; and the sample size, n. The statistical test is then as
follows:

|Z| =

∣∣∣∣∣x − µ0
σ√
n

∣∣∣∣∣ > Zα
2

The rejection region works by examining the sample mean and determining whether there are too
many standard deviations, more than Zα

2
, from µ0. The rejection region can be seen in Figure 30.4

and if the statistical test falls in this region, then the null hypothesis is rejected in favor of the
alternative hypothesis.

Often empirical tests described in the literature use a value called the P-value, to determine
whether the sample sequence should be rejected or not. The significance level, as described in
the last paragraph, is the boundary value between acceptance and rejection of the null hypothesis:

P > α, H0 is accepted

P � α, H0 is rejected.

Hypothesis testing can have two possible conclusions; the test accepts H0 or it accepts Ha. As can
be seen in Table 30.5, there are two possible errors that may arise. The Type I error has already been
discussed and it is the significance level of the test. Type II error β is the probability that the device
is random, when it is not. The goal of the statistical test is to minimize the possibility of both types
of errors. When dealing with statistical tests, the researcher is often able to set the sample size and
one of the two types of errors, usually the Type I error. Setting the two points produces a β as small
as possible. It is not possible to determine the β probability, which means that it is only possible to
draw a firm conclusion about the Type I error. However, if the statistical test does not fall inside the
rejection region, it can be stated that there is insufficient evidence to reject H0. The null hypothesis
is not affirmatively accepted, since there is a lack of information about the Type II error.
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Table 30.5 Type I and II errors.

Decision

Reject H0 Do not reject H0

H0 true Type I error Correct

H0 false Correct Type II error

30.6 Some examples of statistical models on ΣnΣnΣnΣnΣnΣnΣnΣn

This paragraph presents some statistical models currently used (sometimes in an implicit way) in
the definition of random sequence tests. Further information can be found in [MAU 1992, LUBICZ].

A random variable X is said to be binary if its values are in the set B = {0, 1}. In that case,
the distribution of probability defined on B is given by a unique parameter called the bias of X ,
which is by definition P [X = 1]. Let X1, . . . , Xn, . . . be a sequence of binary independent random
variables. They define a distribution of probability on Σn. When all these random variables have
the same bias, the previous distribution depends only on the parameter p.

This model describes a binary memoryless source (BMS) that outputs independent random vari-
ables with a bias p. As stated, a BMS defines a distribution of probability on the sets Σn depending
on the parameter p, and is therefore a statistical model on Σn. A particular case of a BMS is the
binary symmetric memoryless canal, which corresponds to the parameter p = 1

2 ·
Another model is the Source Transition (ST) that outputs a sequence of binary random variables

X1, . . . , Xn, . . . of parameter 1
2 such that P [Xi + Xi+1 = 1] = p and P [Xi + Xi+1 = 0] = 1 − p

for i ∈ N.
Generally, a source can produce a sequence of binary random variables X1, . . . , Xn, . . . such

that the conditional probability of Xn given X1, X2, . . . , Xn−1 depends only on the last m bits,
i.e., such that

PXn|Xn−1...X1(xn|xn−1 . . . x1) = PXn|Xn−1...Xn−m
(xn|xn−1 . . . xn−m). (30.5)

The least m satisfying this preceding property is called the memory of the source S and Σn =
[Xn − 1, . . .Xn−m] is the state at the time n. Therefore taking the sequence (Xn)n∈N is equivalent
to consider an initial state Σm−1, represented by the trivial random variables [Xm, . . . , X0] (their
weight being totally concentrated either on 0 or 1) as well as a distribution of probability for the
transition of states PΣn|Σn−1 for all n greater than m. If this last probability is independent of n,
then the source is classified as stationary. So, a stationary source is completely described by its
initial state and PΣm+1|Σm

.
The set of states is a particular case of a Markov chain, with the restriction that each state can

have only two successors. If this Markov chain is ergodic, the limit of the distribution of probability
on the set of states converge towards a limit. Let the integers between 0 and 2m−1 represent the set
of possible states of the sources, then the Chapman–Kolmogorov equations give:

lim
n→+∞

PΣn(j) = pj

where the pj are the solution of a system of 2m equations:

2m−1∑
j=0

pj = 0, (30.6)
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pj =
2m−1∑
k=0

PΣ2|Σ1pk, for 0 � j � 2m − 2. (30.7)

There are two interesting points to consider with the statistical model of ergodic stationary sources:

• this model seems to be the most general of the models presented. In particular, it contains
the BMS and ST models.

• this model has been extensively studied in the field of information theory. In particular,
it is possible to compute its entropy.

30.7 Hypothesis testings and random sequences

In the previous sections it was stated that all the statistical models that can be used to carry out
statistical tests on a binary sequence describe, for a given parameter value, a distribution that is
verified if the random variables are Bernoulli with a parameter equal to 1

2 . From [LUBICZ], the link
between the theory of hypothesis testings and random sequences is given as follows: a statistical
model is adapted to the device that is under test, an H0 chosen so that the values of the parameters
of the model are verified if the random input variables are Bernoulli with a parameter of 1

2
, and as

alternative hypothesis there is a large deviation from this 1
2 value.

For example, if it is known that the statistical model of the device is a BMS, the monobit fre-
quency test can be used on its own: this is the best test associated to this model. It may happen that
the statistical model is more general and includes several different tests. For instance, the BMS is
contained in the general model of a stationary ergodic source with a certain amount of memory. In
this case, the advantage of the more specific test is that it is more powerful. However, it may not
discover deviations in the parameters that it does not control. Therefore, it is important to first use
the more specific tests and then the more general ones. It amounts to restraining the variance, in
some direction, of the parameter space.

In general, the use of the techniques of hypothesis tests in order to verify the random quality of a
source is characterized by:

• the choice of a statistical model based on the operation of the device
• the use of only a small number of tests (one or maybe two) that are associated with the

statistical model.

It should be pointed out that this general technique does not describe the set of available procedures
in order to test a random number generator. It is apparent that it is difficult to attach a statistical
model to some tests that are widely published and recommended. Moreover, in the available test
suites it is quite common to use many different tests. In practice, it is often difficult to prove that
a certain physical device corresponds to a given statistical model apart from very general models,
which then leads to tests of very poor quality.

In the case where no statistical model is available, it is possible to use the property that the estima-
tors computed by the tests are consistent. Then, under the assumption of the Bernoulli distribution
with a parameter equal to 1

2 (BSS), the property that the sequence is ∞-distributed can be checked
by the convergence in probability of certain estimators. Therefore, it is possible to use a group of
several tests, so that each of them, with a given probability, outputs a pass for a random sequence.
It should be noted that it is not easy to compute the rejection rate of a full test suite, because the
estimators of different tests are often extremely nonindependent. This rate can, nevertheless, be
estimated by stochastic simulations.

The reader should keep in mind that if the device is not provided with a statistical model and if the
statistical tests cannot be interpreted with respect to the cryptographic use of the random sequence,
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the rejection zone selected by the statistical tests is totally arbitrary. If we have a statistical model,
the rejection zone is chosen to contain most of the weight of probability when the device is faulty.
But, if we do not know this statistical model, it may happen, on the contrary, that the rejection
zone contains sequences with a low probability of appearance: this means that the probability of
passing the test is higher when the device is faulty. In this respect, a statistical test is nothing but
a convenient way to choose a certain proportion of sequences in the set of all binary sequences of
a given length. In particular, if the tests do not pass, it is difficult to pronounce with any degree of
certainty that there is no systematic interpretation of the result of the tests.

It is also important to realize that a random test may undermine cryptographic security in some
applications. The problem is that, if a statistical test is used to filter the flux of a random generator,
it introduces a bias that is very easy to detect by using the same test. A practical example of this is
given to draw the reader’s attention to this topic.

Example 30.8 The user may want to cypher the content of a hard drive by using a strong symmetric
encryption function. It may be required that an intruder, who does not posses the secret key, is not
able to distinguish the written sectors on the hard drive from the blank ones. One way to implement
this functionality is to consider the symmetric encryption function as a pseudorandom function.
Therefore, a random number generator can be used to write random noise on nonwritten sectors of
the harddrive. If the output of this random number generator is filtered by a statistical test with, for
instance, a rejection rate of 1%, this means that 1% of the sequences of a given length will never
appear in the nonwritten sectors of the harddrive, but will be present in the written sectors. This
allows an attacker to find the distinguishing point between the written and nonwritten sectors very
easily.

30.8 Empirical test examples for binary sequences

30.8.1 Random walk

The last example of counting the number of ones in the 100-bit sequence is an example of an
empirical test based on the random walk. The random walk, Yn, is the sum of independent Bernoulli
random variables, Xi. It can be written:

Yn =
n∑

i=1

Xi (30.8)

Using the Central Limit Theorem and the De Moivre–Laplace theorem, a binomial sum, normalized
by

√
n, follows a normal distribution, if the sample size n is large. This can be written as:

lim
n→∞

P

(
Yn√

n
� y

)
=

1√
2π

∫ y

−∞
e−

h2
2 dh = f (y) . (30.9)

This theory is the basis for one of the simplest but most important statistical tests, the frequency
(monobit) test. The null hypothesis for this test states that a sequence of independent, identically
distributed Bernoulli variables will have a probability:

P (Xi = 1) =
1
2
· (30.10)

As already mentioned in previous sections, this statistical test is based on the model for a binary
memoryless source.
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Another implementation of the random walk is a variation on the previous frequency test called
the frequency block test. This test performs multiple frequency tests on smaller, equally distributed
subsequence blocks of the main sample sequence. This allows the detection of localized deviations
from randomness. The sample sequence is divided into n sets of m bits. The number of ones in each
m sequence is counted, πi. A test characteristic is then calculated by using the following formula:

X = 4m

n∑
i=1

(
πi

m
− 1

2

)2

· (30.11)

30.8.2 Runs

Tests based on the runs property observe the trend of a sequence. There are many variations of the
runs test; a run can be treated as a grouping of ones and zeroes in a binary sequence, or it could also
refer to the grouping of the sequence into subsequences, which end when the trend changes from
ascending to descending or vice versa. These are only two examples of the many different forms in
which a run can be defined.

For binary sequences, the FIPS 140-2 standard provides a runs test, which is a one parameter test,
contained in a model of a stationary ergodic source with a memory of 6 bits. The runs test counts
the length of runs of one and zero in the sequence and then compares the results to a precalculated
range. The test inspects a sequence to see if the oscillations between the zeroes and ones are too
fast or too slow.

As published in [MEOO+ 1996], the statistical test is calculated by first counting the length,
i, of each run for both zeroes, G, and ones, B. A sequence of length n will have an expected
number of runs, ei, for each length i. The following formulas show how to calculate ei and the test
characteristic:

ei =
(n − i + 3)

2i+2
, (30.12)

X =
k∑

i=1

(Bi − ei)
2

ei
+

k∑
i=1

(Gi − ei)
2

ei
· (30.13)

Repeating bits are stored and counted until a change is noticed. If the run has a length of greater
than six, then it is treated as a run of length six. If using the FIPS 140-2 suggested sequence length
of 20,000 bits, then Table 30.6 can be used as acceptance ranges. Should any of the run’s count fall
outside of the acceptable range, then the sequence is rejected.

The turning point test is another type of run test and it can be found in [KAN 1993]. This test
counts the number of turning points (peaks and troughs) in a sequence. To calculate the statistical
test, the number of samples tested needs to be large. This allows for the assumption of a normal
distribution with a mean of µ = 2

3 (n − 2) and a variance of σ2 = (16n−29)
90 · The test characteristic

can then be calculated with the following:

X =
∣∣∣∣ x̄ − µ

σ

∣∣∣∣ · (30.14)

30.8.3 Autocorrelation

Visually, it is possible to detect regular waveforms as nonrandom. How can this property be auto-
mated for randomness testing in applications? One method is to compare the signal with a shift copy
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of itself, which is the autocorrelation function. A random sequence will have very little correlation
with any copy of itself.

Table 30.6 FIPS 140-2 intervals for runs test.

Length of run (i) Required interval

1 2343–2657

2 1135–1365

3 542–708

4 251–373

5 111–201

6+ 111–201

The autocorrelation test, as described in [MEOO+ 1996], checks for the correlation between the
current sequence and a shifted version. The statistical model for this test is the source transition
model. It operates by taking a sample sequence and XORing with a d delayed version of itself.
With a large sample, n, and n− d � 10 the statistical test can again be assumed to follow a normal
distribution. The test characteristic is calculated using the following formulas:

A(d) =
n−d−1∑

i=0

si XOR si+d (30.15)

X = 2

(
A (d) − n−d

2√
n − d

)
· (30.16)

Remark 30.9 The empirical tests presented here are only a small fraction of what is available in
literature. Three randomness test suites have been created to help evaluate the selected random
number generators:

• NIST statistical test suite [RUSO+],
• The diehard battery of strigent statistical randomness tests [MAR],
• ENT: A pseudorandom number sequence test program [ENT 1998].

30.9 Pseudorandom number generators

The previous part introduced physical mechanisms to build true unbiased random number gener-
ators and detailed test suites such generators have to pass. In this section pseudorandom number
generators based on curves are considered. A pseudorandom number generator (PRNG) is a deter-
ministic algorithm taking as input some (truly random) seed and producing a sequence of numbers
that satisfies certain statistical properties. Here “statistical properties” are meant in a really broad
sense. An important requirement, called unpredictability, is that one should not be able to compute
further elements given a substring of the sequence. Another requirement, called indistinguishabil-
ity, is that the sequence should resemble a truly random sequence, i.e., one should not be able to
distinguish a sequence generated by a PRNG from a random sequence.
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It is important to note that there is a whole wealth of other pseudorandom number generators based
on much cheaper devices, e.g., on shift register sequences. Some popular ones are briefly described
in Section 30.2.4. In this section only applications of elliptic and hyperelliptic curves are consid-
ered. One of the advantages of these generators is that one can base their security on well-studied
problems like the ECDLP or the ECDHP. On the other hand, their use as building blocks for pseu-
dorandom number generators is less studied and thus it might bear further disadvantages besides
being rather complicated. Some of the following algorithms are generalizations from PRNGs over
finite fields. Just as with the normal DLP, the advantage of using curves is the smaller field size for
the same level of security.

This section studies sequences of random points on elliptic curves or of random divisor classes
on hyperelliptic curves. Let E : y2 = x3 + a4x + a6 be an elliptic curve over a finite field of odd
characteristic Fq. Assume that x3 + a4x + a6 has a root α ∈ Fq. Then P = (0, α) is as random as
any other point even if it is clearly not a random point in our usual understanding as, for example,
the multiples of P alternate between P and P∞. Therefore, like in the previous section, measures
are needed to determine the (pseudo-)randomness of such sequences. For applications to generate
random numbers one will usually only use the x-coordinates of the points.

This study also serves a second purpose — if the sequence of powers of an element would turn out
to be biased (for instance some bits were fixed for certain multiples) the discrete logarithm problem
would be weaker than assumed as some bits of the exponent would leak.

Furthermore, there are many more results on pseudorandom sequences from curves published in
the area of stream ciphers [NIXI 2001, NIE 2003] that will not be studied within the scope of this
book.

30.9.1 Relevant measures

This section gives some basic definitions concerning pseudorandom sequences. In particular, it
defines expressions to measure their quality. First, note that a sequence over a finite field for which
a sequence element depends deterministically on the previous ones needs to have a finite period,
i.e., there exist some integers N and t such that s(i + t) = s(N + i + t) for all i � 0. The integer
N is called the period and t is called the preperiod; in the applications studied here one usually has
t = 0.

Definition 30.10 Let S = {s(0), s(1), . . . , s(N − 1)} be a sequence of elements of Fq and let
α ∈ F∗q . The balance of S with respect to α is defined in the following way:

BS(α) =
1
N

N−1∑
i=0

ζ
TrFq/Fp (αs(i))
p ,

where ζp = exp(2πi/p) denotes a primitive p-th root of unity.
Furthermore, the balance is defined to be

BS = max
α∈F∗

q

{|BS(α)|}.

So the balance is the largest absolute value of character sums with nontrivial additive characters of
order p. As the the p-th roots of unity sum up to zero

∑p−1
i=0 ζi

p = 0, the balance evaluates to zero if
each element of Fp appears equally often as trace TrFq/Fp

(αs(i)) for some element of the sequence.
If some elements occur more often than others, the balance gives a measure of the bias.

The autocorrelation was already introduced at the end of the previous section. The following
definition provides a more concrete formula.
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Definition 30.11 Let {s(0), s(1), . . . , s(N − 1)} be a sequence S of period N defined over the
finite field Fq. Furthermore, let α, β ∈ F∗q .

The autocorrelation with respect to α and β of a sequence is defined as follows:

CS(d, α, β) =
1
N

N−1∑
i=0

ζ
TrFq/Fp (αs(i+d)−βs(i))
p ,

with 0 � d < N .

Note that in the above definition i + d should be read modulo N. Also, note that for sequences over
F2 this definition amounts to

CS(d) =
1
N

N−1∑
i=0

(−1)s(i+d)+s(i),

which is the usual definition of the autocorrelation (see, e.g., [MEOO+ 1996, Chapter 5, Section 4]
and the previous section).

Another useful object is the crosscorrelation of two sequences. It is defined as follows:

Definition 30.12 Let S = {s(i)} and T = {t(i)} be two sequences defined over Fq of the same
period N. Let α, β ∈ F∗q . We define the crosscorrelation of S and T with respect to α and β by

CS,T (d, α, β) =
1
N

N−1∑
i=0

ζ
TrFq/Fp (αs(i+d)−βt(i))
p .

The problem is to find a family of sequences Σ = {Si|i ∈ I} such that for each choice of i, j ∈ I
the crosscorrelation CSi,Sj(d, α, β) is small.

The discrepancy is usually defined for sequences taking their values in the interval [0, 1). If the
sequence S assumes values in Fp this can be achieved by using {0, . . . , p−1} as a set of representa-
tives of the field elements and dividing each element by p. If an extension field Fq = Fpd = Fp(θ)
is used with a polynomial basis representation, one associates the number a =

∑d−1
i=0 aip

i, with
ai ∈ {0, . . . , p − 1} to α =

∑d−1
i=0 aiθ

i, ai ∈ Fp and normalizes by dividing by pd. One can also
consider the distribution of the coordinate tuples (x, y). Generalizations to hyperelliptic curves
seem possible but have not been proposed yet.

Definition 30.13 Let S be normalized to the interval [0, 1] and consider a subsequence of t ele-
ments. Denote by ∆(S)t the discrepancy of the sequence S, given by

∆(S)t = sup
[α,β]⊆[0,1]

∣∣∣∣N(α, β)
t

− (β − α)
∣∣∣∣ ,

where N(α, β) is the number of elements s(i), i = 0, . . . , t − 1, which hit the interval [α, β].
For periodic sequences it is common to choose t equal to the period N. In this case we use the

notation ∆(S) to denote the discrepancy of S.

The discrepancy provides a measure for the distribution of the elements. For a good sequence, the
number of elements hitting an interval should be proportional to the size of the interval, i.e., the
discrepancy should be small.

It is also possible to define the discrepancy of multidimensional distributions
(
s(i), s(i + 1), . . . ,

s(i+n−1)
)

and in fact one needs to consider these measures to ensure the strength of pseudorandom
number generators (see e.g., [NISH 1999]).

A further indicator of the randomness is that there is no low-order linear recursion among the
outputs.
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Definition 30.14 The linear complexity L(S) of an infinite sequence S = s(i), i = 0, 1, . . . over a
ring R is the length of the shortest linear recurrence relation, i.e., L(S) = l if and only if

s(i + l) = al−1s(i + l − 1) + · · · + a0s(i), for i = t, t + 1, . . . ,

with a0, . . . , al−1 ∈ R, which is satisfied by this sequence and l is minimal with this property. Here,
t is the preperiod and thus usually t = 0 in our examples.

30.9.2 Pseudorandom number generators from curves

Throughout this section E denotes an elliptic curve and P ∈ E is a point of order �. In the sequel,
different ways to construct sequences S of points are presented. They can be used to construct
sequences of field elements by considering only x(P ) ∈ Fq , the x-coordinate of P , maybe after
discarding some bits. The references to balance, correlation and discrepancy assume this conversion
to be done. One can also consider the distribution of the coordinate tuples (x, y).

30.9.2.a The linear congruential generator

In 1994, Hallgren [HAL 1994] proposed a linear congruential generator from an elliptic curve.
Gong, Berson, and Stinson [GOBE+ 2000] study binary sequences derived from this generator
where they use the trace to map to F2. This study has been extended in [BEDO 2002, ELSH 2002,
GOLA 2002, HESH 2005, KOSH 2000].

The linear congruential generator builds a sequence of points on E by the rule s(0) = P0 for
some point P0 ∈ E and s(i) = P ⊕ s(i − 1) = [i]P ⊕ P0.

Obviously, for this generator one can obtain the next element in the sequence given the two
previous elements, as this reveals the difference P . To avoid this problem, one additionally uses a
function f ∈ Fq(E) from the function field of E, i.e., a function that can be evaluated at points of
the curve. If the function is kept secret and subsequently evaluated at the points s(i) one obtains
a sequence of field elements that (presumably) cannot be reconstructed. To scramble the results
even further and to allow a better analysis, most authors propose to apply the trace TrFq/Fp

to the
resulting field elements, mapping them to the smaller field Fp.

Clearly the distribution of the sequence depends a lot on the function f , i.e., the most striking
example being a constant function f .

The following part briefly outlines the first construction of [GOBE+ 2000] and states some results
(the proofs can be found in the original papers). The authors suggest using a binary supersingular
curve

E : y2 + y = x3 + a4x + a6 over Fq = F2d with d odd,

and let P = P0 be a generator of E(Fq) with ord(P ) = |E(Fq)| = v + 1. The sequence is an
interleaved sequence given by

s(2i) = Tr
(
x([i]P )

)
, s(2i + 1) = Tr

(
y([i]P )

)
, for 1 � i � v

where x(P ) and y(P ) are the x- and y-coordinate of P , respectively.
For this sequence they prove that the period is maximal, namely equal to 2v.
For the more special curve E1 : y2+y = x3 they use |E1(F2d)| = 2d+1 and for odd d = 2m+1

they show that the number of of 1’s and 0’s in S is equal to 2d +− 2m, respectively. Hence, the bias
is small but not negligible.

Beelen and Doumen [BEDO 2002] consider curves of arbitrary genus over arbitrary finite fields.
The following is a simplified version for elliptic curves. The full version can be found in the paper
(cf. also [KOSH 2000]).
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They define a whole family of PRNGs by using functions f ∈ Fqk(E) inside the trace map. As
Tr(ap − a) = 0 for all a ∈ Fqk , one can change the function f to f − hp + h for arbitrary
h ∈ Fqk(E) without changing the value. If (f − hp + h)(Q) is not defined for any such h, put
(f − hp + h)(Q) = 0 in the definition below.

Definition 30.15 Let E be an elliptic curve defined over Fqk . Let P be a generator of a prime order
subgroup of E(Fqk) and denote its order by �. Let f ∈ Fqk(E). The sequence

SAS(f, P ) = {s(i)}0�i<�

is defined by
s(i) = TrF

qk /Fq

(
f([i]P )

)
.

The weighted degree wdeg(f) of a function f ∈ Fq(E) is defined by wdeg(x) = 2 and wdeg(y) =
3. One obtains the following result on the balance.

Theorem 30.16 Let E be an elliptic curve defined over the finite field Fqk given by a Weierstraß
equation. Let f be a polynomial in the coordinate functions x and y, such that the degree in y is
� 1. Furthermore, let P be a generator of a prime order subgroup of E(Fqk) and let � = ord(P ).
Suppose that p does not divide wdeg(f). Then

BSAS(f,P ) �
(
1 +

(
1 + wdeg(f)

)√
qk
)
/�.

For the autocorrelation and crosscorrelation the following results hold.

Theorem 30.17 Let E be an elliptic curve defined over the field Fqk given by a Weierstraß equation.
Let f be a polynomial in the two coordinate functions x and y, such that degy(f) � 1. Choose
α, β ∈ F∗q . Further, choose a generator P of a cyclic prime order subgroup E(Fqk) and a number
d satisfying 1 � d < � with � = |〈P 〉|. Suppose that the characteristic does not divide wdeg(f).
Then

|CSAS
(f,P )

(d, α, β)| �
(
2 + 2

(
1 + wdeg(f)

)√
qk
)
/�.

Let f1 and f2 be two polynomials in the coordinate functions x and y such that degy(fi) � 1
for i = 1, 2, and such that for all (α, β) ∈ F 2

qk � {(0, 0)} one has p � wdeg(αf1 − βf2). Write
S1 = SAS(f1, P ) and S2 = SAS(f2, P ). For all α, β ∈ F∗q and 0 � d < � one has

|CS1,S2(d, α, β)| �
(
2 +

(
2 + wdeg(f1) + wdeg(f2)

)√
qk
)
/�,

unless d = 0 and αf1 = βf2.

Remark 30.18 Beelen and Doumen [BEDO 2002] perform the same study also for the case of
multiplicative characters χ instead of using the trace. Their paper also contains a study on the
period and balance of the sequence by making use of linear recurrence relations on the points of E.

30.9.2.b The elliptic curve power generator

The analogue of the power generator was introduced by Lange and Shparlinski [LASH 2005a].

Definition 30.19 Let P ∈ E(Fq) be a point of order � on a nonsupersingular elliptic curve E. The
elliptic curve power generator uses an integer e, with gcd(e, �) = 1 and considers the sequence
SPG defined by:

s(0) = P, s(i) = [e]s(i − 1) = [ei]P.



734 Ch. 30 Random Numbers – Generation and Testing

Determining e, which is the obvious way to compute the next element of the sequence, corresponds
to solving the discrete logarithm problem. Given a part of the sequence, one needs to solve a prob-
lem related to the Diffie–Hellman problem in order to compute further elements of the sequence.
The statistical properties like discrepancy are studied in [LASH 2005a].

It is easy to see that the period of this sequence equals T = ord�(e), the multiplicative order of e
modulo �.

Theorem 30.20 Let E be a non-supersingular elliptic curve defined over Fq and let P be a point of
order �. Then, for any integer ν � 1, the bound

∆e(SPG) � T 1−(3ν+2)/2ν(ν+2)t(ν+1)/ν(ν+2)q1/4(ν+2)(ln p + 1)γ

holds for the discrepancy of the sequence SPG.

From the discrepancy one obtains the following result on the linear complexity.

Theorem 30.21 Let E be a non-supersingular elliptic curve defined over Fq . Then the bound

L(SPG)  T �−2/3

holds, where T is the multiplicative order of e modulo �.

30.9.2.c The Naor–Reingold generator

The following PRNG is similar to the power generator, but one uses a vector (e0, . . . , en−1) of
secret integers instead of only one secret scalar e. For elliptic curves it was proposed by Shpar-
linski [SHP 2000] and studied further in [SISH 2001]. For simplicity the definition and results are
restricted to elliptic curves over prime fields.

Definition 30.22 Let the bit representation of i be given by (in−1 . . . i0)2 and let e0, . . . , en−1 be
nonzero integers and P be a point of prime order � of a nonsupersingular elliptic curve E/Fp.

The i-th element of the sequence SNR produced by the Naor–Reingold generator is given by

s(i) = [ei0
0 . . . e

in−1
n−1 ]P,

for 0 � i < �.

Example 30.23 Let n = 4 and consider the vector (2, 5, 3, 4). Then

s(0) = 20503040P = P,

s(1) = 20503041P = [4]P,

s(2) = 20503140P = [3]P,

...

s(15) = 21513141P = [120]P = [6]P.

In the publications about the Naor–Reingold PRNG, usually only the x-coordinates of the resulting
sequence of points are considered. Using bounds on character sums one can show that as soon as
the order � of P is sufficiently large, namely � > p1/2+ε, the discrepancy is small. In more detail,
Shparlinski [SHP 2000] proves the following result:
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Theorem 30.24 For any δ > 0 and a random vector (e0, . . . , en−1) chosen uniformly from (F∗� )
n

the bound
∆(SNR) � δ−1B(n, �, p) lg2 p

holds, where

B(n, �, p) = 2−n/2 + 3n/22−n�−1/2p1/4 + n1/2�−1/2 + �−1p1/2

with probability at least 1 − δ.

For the linear complexity [SISH 2001] provides the following result.

Theorem 30.25 Suppose that γ > 0 and n are chosen to satisfy

n � (2 + γ) lg �.

Then for any δ > 0 and sufficiently large �, the linear complexity L(SNR) of the sequence of the
x-coordinates of the points satisfies

L(SNR)  min{l1/3−δ, lγ−3δ lg−2 l}

for all except O
(
(� − 1)n−δ

)
vectors (e0, . . . , en−1) ∈ (F∗� )

n.

30.9.3 Other applications

This section briefly highlights two other applications of elliptic and hyperelliptic curves related to
randomness.

To hide that a message is sent, Kaliski [KAL 1986] uses that a given xP ∈ Fq is the x-coordinate
of a point on E/Fq or on its twist Ẽ/Fq (cf. Remark 13.17). He proposes to modify the usual en-
cryption schemes (cf. Algorithms 1.16 and 1.17) by using both curves. The public key of A consists
of PA ∈ E(Fq) and P̃A ∈ Ẽ(Fq). The sender randomly selects one of PA, P̃A and uses it as public
key in the normal protocol. The ciphertext consists of the compressed representation, i.e., the x-
coordinate of the result and one bit of the y-coordinate, as described in Sections 13.2.5 and 13.3.7.
As the result corresponds to an arbitrary point on either E or Ẽ, it cannot be distinguished from
a random bit-string and therefore an eavesdropper does not learn that a message was sent. Upon
receiving the message, the receiver determines the curve on which a point with this x-coordinate
exists and recovers the y-coordinate by decompression. This idea was studied further and brought
to implementation in [BAI 2003].

Section 15.1 introduced Koblitz curves as curves defined over a very small finite field, which are
then considered over a large extension field. The first curves proposed by Koblitz were even defined
over F2. Up to isogenies, there are only two curves

Ea2 : y2 + xy = x3 + a2x
2 + 1, a2 ∈ {0, 1}.

For applications in DL systems, these curves offer the advantage that to compute scalar multiples of
a point one can make use of the Frobenius endomorphism. This avoids doublings and thus increases
the efficiency considerably. As described in Section 15.1.3 one can use an alternative setup to obtain
random scalar multiples of a point P by picking random τ -adic expansions.

Obviously, this can be used in the setting of pseudorandom sequences as well. The sequence of
such points is shown to be almost uniformly distributed in [LASH 2005b].
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Notation Index

Symbols

(G,⊕): group G with operation ⊕, 8
(K, Φ): CM-type, 105, 463
(X0 : X1 : · · · : Xn): projective point in Pn/K , 46
(X : Y : Z): projective point in P2/K , 270
(un−1 . . . u0)2: binary expansion of u ∈ N, 170
(un−1 . . . u0)b: expansion of u ∈ N in base b, 170
(n�−1 . . . n0)s: signed-digit expansion of n ∈ N, 151
(n�−1 . . . n0)NAF: expansion of n in non-adjacent form, 151
(n�−1 . . . n0)NAFw : expansion of n ∈ N in width-w non-adjacent form, 153
(rl−1 . . . r0)τ : τ -adic expansion of η ∈ Z[τ ], 358, 370
(rl−1 . . . r0)τNAF: expansion of η ∈ Z[τ ] in τ -adic non-adjacent form, 359
(rl−1 . . . r0)τNAFw : expansion of η ∈ Z[τ ] in width-w τ -adic non-adjacent form, 363(
n0,� . . . n0,0

n1,� . . . n1,0

)
JSF

: expansions of n0, n1 ∈ N in joint sparse form, 155

(
r0,l+2 . . . r0,0

r1,l+2 . . . r1,0

)
τ JSF

: expansions of η0, η1 ∈ Z[τ ] in τ -adic joint sparse form, 365(
a
p

)
: Legendre symbol of the integer a modulo the prime p, 36(

a
b

)
: Kronecker–Jacobi symbol of the integers a and b, 36(

f(X)
m(X)

)
: Legendre–Kronecker–Jacobi symbol of f(X) and m(X) ∈ Fp[X ], 36

(r1, r2): signature of the number field K/Q, 29
(v0, . . . , vs): addition chain computing the integer vs, 157[

1
2

]
P : halving of the point P on the elliptic curve E, 299

[2]P : doubling of the point P lying on the elliptic curve E, 270
[2]

__
D: doubling of the divisor class

__
D, 307

[G : H ]: index of the subgroup H in the group G, 20
[L : K]: degree of the extension L/K , 25
[n]: scalar multiplication by n, i.e., (n − 1)-fold application of the addition ⊕, 60
[u(x), v(x)]: divisor class in Mumford representation, 83, 307
[x]: Montgomery representation of the integer x, 180
〈x〉: subgroup generated by x, 20
〈SCi〉i∈S : average of the functions SCi for the i ∈ S, 698
∆E : discriminant of the elliptic curve E, 71
∆G: delay at each stage in a full n-stage carry-look-ahead adder, 629
ΛC : period lattice of curve C, 91, 462
ΛE : period lattice of elliptic curve E, 95
Λτ : period lattice of elliptic curve Eτ for τ ∈ H, 97
Ω0(K(C)): set of holomorphic differentials of C, 76
Ω: period matrix of the abelian variety A, 93
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778 Notation Index

ΩC : period matrix of ΛC called period matrix of C, 93, 100
χ(φq)JC (T ): characteristic polynomial of the Frobenius endomorphism φq on C and of JC , 110,

310
χ(ϕ)A(T ): characteristic polynomial of endomorphism ϕ on abelian variety A, 62
χE(T ): characteristic polynomial of the Frobenius endomorphism of an elliptic curve E, 278
χa2(T ): characteristic polynomial of the Frobenius endomorphism on Ea2 , 356
χψ(T ): characteristic polynomial of the endomorphism ψ of a GLV curve, 377
δN : density of the multiplication matrix TN , 221
ηn(h): probability that the longest carry-chain in n-bit addition is of length at least h, 632
Φk(x): k-th cyclotomic polynomial, 586
Φ�(X, Y ): �-th modular polynomial, 414
Φ�,X(X, Y ): partial derivative of Φ�(X, Y ) with respect to X , 419
Φ�,Y (X, Y ): partial derivative of Φ�(X, Y ) with respect to Y , 419
Φ�,XX(X, Y ): second partial derivative of Φ�(X, Y ) with respect to X , 420
Φ�,XY (X, Y ): second partial derivative of Φ�(X, Y ) with respect to X and Y , 420
Φ�,Y Y (X, Y ): second partial derivative of Φ�(X, Y ) with respect to Y , 420
Φc

�(X, Y ): �-th canonical modular polynomial, 419
φp: absolute Frobenius automorphism of a finite field, 33
φq: relative Frobenius automorphism of a finite field, 33
φp: Frobenius morphism from the variety V to φp(V ), 53
ψn: n-th division polynomial, 80
Σ: Frobenius substitution of Zq , 240
Σ: {0, 1}, 715
Σ∗: set of sequences of countable infinite length with coefficients in Σ, 715
ΣF/K : set of places of F/K , 65
Σn: set of finite sequences of length n with coefficients in Σ, 715
τ, τ : complex roots of χE(φq), 279
τ1, . . . , τ2g: complex roots of χ(φq)C(T ) for curve of genus g, 311
Θ(Ω): Riemann theta divisor associated to the period matrix Ω, 100
0xA: 10 in hexadecimal notation, 290
∞: point at infinity (0 : 1), 50
|u|b: length of the expansion of u in base b, 170
|x|p: p-adic norm of x ∈ Qp, 41
|x|K : norm of x belonging to the complete discrete valuation field K , 41
�λ�: rounded value of λ ∈ Q given by �λ + 1/2�, 360
	λ�: rounded value of λ ∈ Q of smallest absolute value, 360
�λ�τ : rounded value of λ ∈ Z[τ ], 360
∆(S): discrepancy of sequence S ∈ [0, 1]N, 731
K: algebraic closure of the field K , 27
u: bitwise complement of the single u, 172
x: complement of the bit x, 170
ϕ∗: induced K-algebra morphism ϕ∗ : K[W ] → K[V ] by morphism ϕ ∈ MorK(V, W ), 52
ψ̂: dual isogeny of the isogeny ψ of an elliptic curve, 277
ψ̂: dual isogeny of the isogeny ψ of the Jacobian of a hyperelliptic curve, 309
µ(j): Möbius function of the integer j, 33
ν(n): Hamming weight of the integer n, 147
ϕ(N): Euler totient function of the integer N , 23
π(x): number of primes less than x, 6
τ(χ): Gauß sum of the character χ, 599
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θ(z, Ω): Riemann theta function associated to the period matrix Ω, 100

θ
[

δ
ε

]
(z, Ω): theta characteristics associated to the period matrix Ω, 100

[x][y]: Montgomery multiplication of the integers x and y in Montgomery representation, 204
〈· , ·〉L: Lichtenbaum pairing, 120
〈· , ·〉T,n: Tate pairing, 117
P ⊕ Q: addition of the points P and Q, 79, 270__
D ⊕

__
E : addition of divisor classes

__
D and

__
E , 307

v ⊕ j: composition of the addition chain v and of the integer j, 161
v ⊗ w: composition of the addition chains v and w, 161
x ∨ y: disjunction of the bits x and y, 170
u ∨ v: bitwise disjunction of the singles u and v, 172
x ∧ y: conjunction of the bits x and y, 170
u ∧ v: bitwise conjunction of the singles u and v, 172
u << t: left shift of t bits of the single u, 172
u >> t: right shift of t bits of the single u, 172
|| : concatenation, 5
ΩC : period matrix of ΛC called period matrix of C, 462
A ∼ B: isogenous abelian varieties A and B, 58
A � B: isomorphic abelian varieties A and B, 58
x ≡ y (mod n): x and y are congruent modulo n, 21
x ∈R E: choose x at random in the set E, 10

A

A: an elementary addition, 692
A: abelian variety, 56
A: affine coordinates, 280, 291, 316, 336
a1, a2, . . . , a2g: coefficients of χ(φq)C(T ) for curve of genus g, 135
a1, a2, a3, a4, a6: coefficients of elliptic curve in Weierstraß form, 69, 268
A[n]: set of n-torsion points of an abelian variety A, 60
An: affine space of dimension n over K , 47
An(L): set of L-rational affine points, 47
A†: dagger ring, 140
AGM(a0, b0): Arithmetic-Geometric-Mean of a0 and b0, 434

B

B: a smoothness bound, 496
B: a basis of the vector space D0(Jc,Qq), 443
b2: a2

1 + 4a2, 70
b4: 2a4 + a1a3, 70
b6: a2

3 + 4a6, 70
b8: a2

1a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a2

4, 72
BS : balance of sequence S ∈ FN

q , 730
BS(α): balance of sequence S ∈ FN

q with respect to α ∈ F∗q , 730

C

C: Cartier operator, 411
C̃: desingularization of C, 64
c4: b2

2 − 24b4, 70
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c6: −b3
2 + 36b2b4 − 216b6, 70

CS : autocorrelation of sequence S ∈ FN
q , 731

CS,T : crosscorrelation of sequences S and T ∈ FN
q , 731

Cab: Cab curve, 82
Can: analytic curve, 89
char(R): characteristic of the ring R, 22
Cl(O): ideal class group of O, 81
ClK : class group of OK , 30

D
__
D: divisor class of D, 76
D0(Ac,Qq): space of holomorphic differential forms of degree 1 on Ac defined overQq , 139
deg(L/K): degree of the extension L/K , 25
deg(D): degree of a divisor D, 66
degs(L/K): degree of separability of L over K , 27
df : differential of f ∈ K(C), 75
dim(V ): dimension of the variety V , 49
D ∈ DivC : divisor on C, 66
div(f): principal divisor of f ∈ K(C)∗, 67
divan(f): analytic divisor of the meromorphic function f , 88
DivC : divisor group of the curve C, 66
Div0

C : group of degree zero divisors of the curve C, 67, 76, 306

E

E: elliptic curve, E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, 69, 268

E : canonical lift over Qq of an ordinary elliptic curve E defined over Fq , 423
E
(
(wn)

)
: Shannon entropy function of the sequence (wn) of words of Σk, 716

E(K): K-rational points of the elliptic curve E, 272
e(P1, P2): a bilinear map, 9
E[n]: set of n-torsion points of an elliptic curve E, 273
Ea2 : binary Koblitz curve y2 + xy = x3 + a2x

2 + 1, 356
EM : elliptic curve in Montgomery form, 285
Ẽv: quadratic twist of the elliptic curve E by v, 71, 274
EndK(A): set of endomorphisms of the abelian variety A, 59
EndK(A)0: EndK(A) ⊗Z Q, 60
EndK(E): set of endomorphisms of the elliptic curve E defined over K , 277
EndK(JC): set of endomorphisms of the Jacobian of the hyperelliptic curve C defined over K , 310
exp(x): p-adic exponential of x ∈ Zq , 259

F

Fp: lift of the Frobenius isogeny φp of an ordinary elliptic curve defined over Fq, 423
Fq: lift in End(E) of the Frobenius endomorphism φq , 423
Fq: the unique finite field of order q, 31

G

g: genus, 68, 304
GB: set of B-smooth elements of the group G, 499
GL: absolute Galois group of L, 45
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GL/K : Galois group of L over K , 28
Gn(Λ): Eisenstein series of weight n associated to the lattice Λ, 96
Gal(L/K): Galois group of L over K , 28
gcd(x, N): greatest common divisor of the integers x and N , 190
GF (q): the unique finite field of order q, 31

H

H: Poincaré upper half plane {τ ∈ C | �m(τ) > 0)}, 97
h(K): class number of the number field K , 30
hd: class number of number field Q(

√
−d), 99

Hd(x): Hilbert class polynomial for the discriminant d, 99, 456
HK,k(X): class polynomial for a hyperelliptic curve of genus 2 and 3, 107, 462
Hg: Siegel upper half plane, 100
Hi(X,Q�): �-adic cohomology group, 136
Hi

DR(M): de Rham cohomology group of the compact complex manifold M , 134
Hn(GK , M): quotient of the group of n-cocycles modulo the subgroup of n-coboundaries, given

the GK-module M , 116
HomK(A,B): set of homomorphisms from the abelian variety A to the abelian variety B, 57
HomK(A,B)0: HomK(A,B) ⊗Z Q, 57

I

I: an elementary inversion, 280
I2, I4, I6, I10: absolute invariants of a hyperelliptic of genus 2, 101
INV(u): Montgomery inverse of the integer u, 207

J

J : Jacobian coordinates, 282, 292
J c: Chudnovsky Jacobian coordinates, 282
Jm: modified Jacobian coordinates, 282
J s: simplified Chudnovsky Jacobian coordinates, 401
jE : absolute invariant or j-invariant of the elliptic curve E, 71
j(τ): j-function of τ ∈ H, 97
j(q): j-function of q = e2πiτ , 98
j1, j2, j3: Igusa invariants of a hyperelliptic curve of genus 2, 101, 462
j′1, j′2, j′3: Mestre’s invariants of a hyperelliptic curve of genus 2, 102
j1, j3, j5, j7, j9: Shioda invariants of a hyperelliptic curve of genus 3, 104
J(χ1, χ2): Jacobi sum of the characters χ1 and χ2, 600
JC : Jacobian variety of the curve C, 78
JC(Fq)[n]: Fq-rational n-torsion points on Jacobian of curve C, 111
JC [n]: set of n-torsion points of Jacobian of C, 309
JK : group of fractional ideals of the field K , 30

K

K(n): complexity to multiply two n-word integers with Karatsuba method, 176
K(P ): field of definition of P , 46
K(V ): function field of the variety V , 51
kerψ: kernel of a group homomorphism, 21
ker(ϕ)0: connected component of the unity of ker(ϕ) for ϕ ∈ HomK(A,B), 58
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L

L(D): {f ∈ K(C) | div(f) � −D}, 67
�(D): dimK

(
L(D)

)
, 67

�(n): length of the shortest addition chain computing the integer n, 157
L(S): linear complexity of sequence S with coefficients in a ring, 732
L(T ): L-polynomial of a curve, 135
L/K: L is an extension field of K , 25
LH : invariant elements of the field L under the action of the group H , 28
LN(α, c): complexity of algorithm depending on N , 4
LN(α): LN (α, 1/2), 4
LD: López–Dahab coordinates, 293
lg x: binary logarithm of x, 3
lim←− Ai: inverse limit of (Ai, {pij}j∈I), 40
ln x: natural logarithm of x, 3
log(x): p-adic logarithm of x ∈ Zq , 258
loga b: logarithm of b to base a, 3
logP (Q): discrete logarithm of Q to the base of P , 8

M

M: additive arithmetical semigroup, 496
M: an elementary multiplication, 149
M(n): complexity to multiply two n-word integers, 174
MB: set of elements of M of size not larger than B, 496
mP : local ring of the point P , 64
mv: maximal ideal of valuation v, 65
x mod n: canonical representative of x modulo n, 21
xmods n: centered representative of x modulo n, 21
MorK(V, W ): set of morphisms from the variety V to the variety W , 52

N

N : new coordinates, 323, 342
nψ: norm of the endomorphism ψ of a GLV curve, 377
nB: cardinality of PB , 497
n′

B: cardinality of MB , 497
Nk: number of Fqk -rational points on an algebraic variety defined over Fq , 112, 134
NL/K(x): norm of x ∈ L over K , 26
nP (f): order of vanishing of the meromorphic function f at the point P , 88
Neg: an elementary negation, 692
NP: set of decision problems whose “yes” answer can be verified in polynomial time, 4

O

O
(
f(N1, . . . , Ns)

)
: big-O of f , 3

o
(
f(N1, . . . , Ns)

)
: small-o of f , 3

Õ
(
g(n)

)
: O
(
g(n) lgk g(n)

)
, 3

OK : integer ring of the field K , 29
OP : set of rational functions that are regular at the point P , 64
OP /mP : residue field of the point P , 64
OS : ring of regular functions on S, 64
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Ov: local ring of valuation v, 65

P

P: set of decision problems solvable in polynomial time, 4
P : a countable set whose elements are called primes, 496
P : projective coordinates, 281, 292, 321, 341, 346
p: place of K(C), 65
P∞: point at infinity, 269, 306
PB: set of B-smooth prime divisors, 513
PK : subgroup of fractional principal ideals of the field K , 30
Pn(L): set of L-rational points, 46
Pn/K: n-dimensional projective space over K , 46
℘(z, Λ): Weierstraß ℘-function associated to the lattice Λ, 96
Pic0

C : divisor class group of degree zero or Picard group of the curve C, 76, 306

Pic0
C·L: Picard group of base change Pic0

C·L = (Pic0
C·K)

GL , 77
PrincC : group of principal divisors of the curve C, 67

Q

Qq: unramified extension of Qp, 43

R

R: recent coordinates, 346
R∗: multiplicative group of the invertible elements of the ring R, 23
R(N): reciprocal integer of the integer N , 178
REDC(u): Montgomery reduction of the integer u, 180

S

S: an elementary squaring, 149
SAS: pseudorandom generator from elliptic curves, 733
SNR: Naor–Reingold pseudorandom generator, 734
SPG(f, P ): elliptic curve power pseudorandom generator, 733
SCi: side-channel information obtained from the computation of [n]

__
Di, 698

Sp(2g,Z): symplectic group over Z, 100

T

tψ: trace of the endomorphism ψ of a GLV curve, 377
TN : multiplication matrix of a normal basis, 220
Td,N : time to multiply two polynomials of degree less than d in (Z/pNZ)[X ] , 243
Tf(N): time to evaluate f ∈ Zq[X ] at precision N , 247
T�(A): �-adic Tate module of A, 61
Tn: Tate–Lichtenbaum pairing, 122
tP : translation by point P , 57
Tr(φq): trace of the Frobenius endomorphism on C, 110
TrL/K(x): trace of x ∈ L over K , 26

U

U+: totally positive units of real subfield K0 of CM-field K , 106
Uk: Lucas sequence, 357, 595
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Ui: affine open parts, standard covering, 47

V

VI : {P ∈ Pn(K) | f(P ) = 0, ∀f ∈ I} for a homogeneous ideal I , 47
VI : {P ∈ An(K) | f(P ) = 0, ∀f ∈ I}, for ideal I , 47
Vk: Lucas sequence, 357, 595
vK : discrete valuation of the complete discrete valuation field K , 41
VL: variety V/K considered as VL/L, 51
vP : valuation at the point P on OP , 65
vp(x): p-adic valuation, 41
V p: Verschiebung of φp, 61
V q: Verschiebung of φq , 427
Vq: lift of Verschiebung on B, 443

W

Wn: Weil pairing, 117
w(K): order of the group of roots of unity in OK , 31
WL/K(V ): Weil descent of the variety V defined over L, 126

X

xn: x to the power n, 145
x XOR y: exclusive disjunction of the bits x and y, 170
u XOR v: bitwise exclusive disjunction of the singles u and v, 172

Z

Z(n): Zech’s logarithm of γn where 〈γ〉 = F∗q , 33
Z(X/Fq; T ): zeta function of the algebraic variety X defined over Fq , 134
Z/nZ: quotient group of Z modulo n, 20
Zp: ring of p-adic integers, 40
Zq: ring of integers of Qq , 43
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Symbols

2k-ary method, 148, 165, 356

A

ABC, see anomalous binary curve
Abel–Jacobi map, 91
Abel–Jacobi theorem, 91
abelian group, 20
abelian variety, 56

canonical lift, 138
complex multiplication, 63, 456
endomorphism, 59
homomorphism, 57
isogeny, 58
isogeny over C, 94
isomorphism, 58
�-adic Tate module, 61
ordinary, 60
p-rank, 61
period matrix, 93
principally polarized, 93
simple, 60
supersingular, 61
Verschiebung, 61
see also Jacobian variety

absolute invariant of an elliptic curve, 71, 72,
97

absolute ramification index, 43
absolutely irreducible variety, 48
addition

binary field, 218
hardware

carry-chain, 632
carry-look-ahead adder, 628, 629
carry-save adder, 634
carry-select adder, 630
conditional-sum adder, 630
Dadda tree, 635, 638
full adder, 627
generated carry, 629
half adder, 628

propagated carry, 629
Wallace tree, 635, 638

integers, 173
optimal extension field, 231
prime field, 202

addition chain, 157, 157–164, 224, 233, 237,
559, 646, 699

dichotomic strategy, 161
dyadic strategy, 162
factor method, 162
Fermat’s strategy, 162
power tree method, 160
Thurber’s algorithm, 158
total strategy, 162
Tunstall method, 160
see also addition-subtraction chain, ad-

dition sequence, and vectorial ad-
dition chain

addition law
elliptic curve, 79, 270
hyperelliptic curve, 306

addition sequence, 158, 162
addition-subtraction chain, 158
additive arithmetical semigroup, 496
Adleman–DeMarrais–Huang algorithm, 512–

516
admissible change of variables, 274
admissible encoding function, 590
affine coordinates

elliptic curve, 280–281, 283, 284, 291–
292, 294–295, 297

hyperelliptic curve, 316, 336
affine space, 47, 49

closed set, 47
open set, 47

affine variety, 48
AGM algorithm, 434–449

elliptic curve, 441
generalized sequence, 445
hyperelliptic curve, 446
iteration, 434

785



786 General Index

univariate sequence, 440
AKS test, 600
algebraic closure, 27
algebraic coding theory, 15
algebraic element, 25
algebraic extension of a field, 25
algebraic group, 55
algebraic integer, 29
algebraic number, 29

conjugate, 27
integral over Z, 29
minimal polynomial, 25

all one polynomial, 215
almost irreducible trinomial, 217
almost Montgomery inverse, 208
analytic variety, 88
anomalous basis, 217
anomalous binary curve (ABC), see Koblitz

curve
anomalous curve, 76
ANSI-C generator, 720
apecs, 267
APRCL Jacobi sum test, 599
arithmetic

binary field, 213–229
elliptic curve, 280–302

Hessian form, 696
Jacobi model, 696
supersingular, 290
triple and add, 581
unified formulas, 694

hardware, 617–646
hyperelliptic curve, 303–352

genus 2, 313–347
genus 3, 348–352

optimal extension field, 229–237
p-adic numbers, 239–263
prime field, 201–213
special curve, 355–387

elliptic Koblitz curve, 356–367
generalized Koblitz curve, 367–376
GLV curve, 377–380
trace zero variety, 383–387

Arithmetic-Geometric-Mean, 434–435
see also AGM algorithm

arithmetical formation, 496, 496–497
example

Jacobian of hyperelliptic curves, 497
nonprime finite field, 497
prime field, 497

prime, 496
size map, 496
smoothness bound, 496

Artin–Schreier
cover, 453
curve, 536
equation, 252, 252–256, 434

Harley’s algorithm, 255
Lercier–Lubicz’ algorithm, 253, 434

extension, 453
operator, 533, 536
root, 254, 255
theory, 532, 534

associative law, 20
asymmetric Diffie–Hellman encryption, 10
asynchronous card, 665
Atkin prime, 414, 415

see also SEA algorithm
atomic force microscope, 671
attack

Chinese remaindering, 479
Frey–Rück, 530
invalid curve, 569, 706
man-in-the-middle, 10
MOV, 530
Rück, 529
Silver–Pohlig–Hellman, see Chinese re-

maindering
small subgroup, 569
see also baby-step giant-step algorithm,

index calculus, pairing, Pollard’s
kangaroo, Pollard’s rho, side-chan-
nel attacks, transfer, and Weil de-
scent

autocorrelation of a sequence, 731
autocorrelation test, 729

B

B-smooth
divisor, 512–514
number, 604, 608–611

baby-step giant-step algorithm, 155, 226, 480,
480–483

class number computation, 480
DL computation, 376, 482
point counting, 411, 416

balance of a sequence, 730
Barrett method, 179, 182, 202, 203, 210, 606

reciprocal integer, 178
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base b representation, 170
base change, 57, 66, 77
basis

complementary, 35
dual, 35
normal, 34, 224, 228

self-complementary, 35
optimal normal basis, 217–218, 221, 220–

221
polynomial, 34, 218–220, 225–226

anomalous, 217
ghost bit basis, 217
pentanomial, 214
redundant trinomial, 217, 228
sedimentary polynomial, 215
sparse, 34, 214, 216
trinomial, 214

self-dual, 35
vector space, 24

Bellcore attack, 683
see also side-channel attacks

Berlekamp–Massey algorithm, 501
BGMW algorithm, see Yao’s exponentiation

method
BH curve, 381
big endian, 171
BigNum, 169
binary extended gcd, 195
binary field

arithmetic, 213–229
exponentiation, see exponentiation in

a binary field
inversion, see inversion in a binary field
multiplication, see multiplication in a

binary field
square root, 228–229
squaring, 221

hardware, 641–645
Massey–Omura multiplier, 643
Mastrovito multiplier, 642
normal basis, 643–645
polynomial basis, 642–643
unified multipliers, 644–645

quadratic equation, 228
representation, see normal basis, optimal

normal basis, and polynomial basis
trace computation, 35, 229

binary quadratic form, 457
birational map, 53
birationally equivalent varieties, 53

birthday paradox, 478, 483, 520, 612
bit, 170
bitwise complement, 172
bitwise conjunction, 172
bitwise disjunction, 172
bitwise exclusive disjunction, 172
black-box group, 478, 554
Blum–Blum–Shub generator, 720
Booth recoding technique, 151, 625
borrow bit, 172
BPSW test, 596
Braid groups, 15
Brent–Kung modular composition, 225
byte, 170

C

Cab-curve, 82, 352
canonical lift

abelian variety, 138
elliptic curve, 423
hyperelliptic curve, 442

Cantor’s algorithm, 308, 552
cardinality

elliptic curve, 278–279
admissible, 278
cofactor, 272
Hasse–Weil theorem, 278
subfield curve, 279
trace of the Frobenius, 278
twist, 279

heuristics, 564
hyperelliptic curve, 310–311

divisor class group, 111
Hasse–Weil theorem, 310

see also point counting and complex
multiplication

Carmichael number, 593
carry bit, 172
carry-chain, 632
carry-look-ahead adder, 628, 629
carry-save adder, 634
carry-select adder, 630
Cartier operator, 411
CBDHP, see computational bilinear Diffie–

Hellman problem
CDHP, see computational Diffie–Hellman

problem
Čebotarev’s density theorem, 236
centered representative, 21
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certification authority, 576
CFRAC, see continued fraction method
character of a finite field, 35
characteristic of a field, 23
characteristic of a ring, 22
characteristic polynomial of an endomorphism,

62
Chinese remainder theorem (CRT), 22, 196–

197, 199, 316, 413, 685
Chinese remaindering attack, 479
Chudnovsky Jacobian coordinates, 282–284
class group, 30, 81, 84, 306
class modulo n, 20
class number, 30, 457, 480, 598
class polynomial, 107, 462, 463, 465, 466,

472
CM-field, 105, 107, 462
CM-type, 63, 105, 463
cohomology

crystalline, 136, 451
de Rham, 134, 140, 567
Dwork–Reich, 138, 453
Monsky–Washnitzer, 136, 139, 451, 567
rigid, 136

combi-card, 650
commutative group, 20
commutative law, 19
compact curve, 382
complement, 170, 172

one’s ˜, 621
two’s ˜, 171, 620

complementary basis, 35
complete discrete valuation field, 41
complex homomorphism, 29
complex multiplication, 63

abelian variety, 63, 456
elliptic curve, 98, 277, 456–460

computation of norms, 458
construction, 459

Hilbert class field, 99
Hilbert class polynomial, 99, 456
hyperelliptic curve, 104, 310

computation of theta constant, 465
construction, 469
genus 2, 460–470
genus 3, 470
genus � 3, 470–473
Mestre’s algorithm, 468
with endomorphisms, 471

complexity, 2, 3

exponential, 4, 548
polynomial, 4, 548
space, 3
subexponential, 4, 548
time, 3

compositeness test, 591, 592–596
BPSW, 596
Fermat, 593
Lucas pseudoprime, 595
OPQBT, 596
pseudoprime, 593
Rabin–Miller, 594, 596
Solovay–Strassen, 595
trial division, 592
see also primality test

composition law, 19
associative, 20
commutative, 19
distributive, 21

compression
elliptic curve, 288–289, 302
hyperelliptic curve, 311–313

computation of norms, 458
computation problem, 3
computational bilinear Diffie–Hellman prob-

lem (CBDHP), 575
computational Diffie–Hellman problem (CD-

HP), 10, 574
computer algebra system

Magma, 201, 267
Maple, 267
PARI/GP, 267, 467
SIMATH, 267

concentric circles method, 525–527
conditional-sum adder, 630
congruence, 21
conjugate of an algebraic number, 27
conjunction, 170, 172
construction of DL systems, 565
construction of ordinary elliptic curves with

small embedding degree, 586
contact card, 649
contactless card, 649
content of a polynomial, 613
continued fraction method, 608
coordinate ring of a variety, 51
coordinates

elliptic curve
affine, 280–281, 283, 284, 291–292,

294–295, 297
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Chudnovsky Jacobian, 282–284
comparison, 283, 296
generalized projective, 271
Jacobian, 282, 292–295, 297
López–Dahab, 293–295, 297
mixed, 283–285, 296–298
modified Jacobian, 282–284
Montgomery, 285–288, 696
projective, 281, 283, 284, 292, 294–

295, 297
simplified Chudnovsky Jacobian co-

ordinates, 401
homogeneous, 46, 69
hyperelliptic curve

affine, 316, 336
comparison, 325, 344
mixed, 325–328, 344–345
new, 323, 342
projective, 321, 341, 346
recent, 346

coprime ideals, 22
Cornacchia’s algorithm, 458, 598
Coron’s first countermeasure, 682, 699
correlation power analysis, 680
countermeasures

against differential fault analysis, 706–
708

against differential side-channel attacks,
697–702

Koblitz curves, 711–713
against fault attacks, 705–709
against Goubin type attacks, 703–704
against higher order differential side-channel

attacks, 704–705
against side-channel attacks

GLV curves, 713–714
special curves, 709–714

against simple fault analysis, 706
against simple side-channel attacks, 688–

697
Koblitz curves, 709–711

against timing attacks, 705
dummy operations, 689

atomic blocks, 691
field operations, 690
group operations, 689

Montgomery arithmetic, 696
randomization

curve equation, 700
group elements, 700

scalar, 699
cover map, 538
cover method

trace zero variety, 539
twisted cover, 539

crosscorrelation of two sequences, 731
CRT, see Chinese remainder theorem
cryptographic primitive, 1, 8, 547, 569
crystalline cohomology, 136, 451
curve, 49

anomalous, 76
BH, 381
Cab, 82, 352
desingularization, 64
divisor, 66
divisor class group Pic0

C of C of degree
zero, 76, 81

divisor group, 66, 306
genus, 68, 304
Hasse–Weil theorem, 110, 112, 278, 310
ideal class group, 81–83
imaginary quadratic, 83, 304
Jacobian variety, 78, 77–80
nonsingular, 64, 65
period lattice, 91, 95, 462
period matrix, 93
Picard, 83, 352, 473
Picard group, 76
Serre bound, 112
smooth, 64, 65
uniformizer at point P , 65
see also elliptic curve and hyperelliptic

curve
cyclic group, 20

D

Dadda tree, 635, 638
dagger ring, 140, 451
DBDHP, see decision bilinear Diffie–Hellman

problem
DDHP, see decision Diffie–Hellman problem
de Rham cohomology, 134, 140, 567
decision bilinear Diffie–Hellman problem

(DBDHP), 575
decision Diffie–Hellman problem (DDHP),

10, 574
decision problem, 3
Dedekind ring, 30
defining element, 28
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degree
divisor, 66
extension field, 25
isogeny, 59, 277, 309
separability, 27
transcendence, 26

dehomogenization, 49
density of a normal basis, 221
desingularization of a curve, 64
differential, 75

electromagnetic analysis, 682
fault analysis, 683–685
power analysis, 677–678
side-channel attacks, 697, 698

differential holomorphic, 76
differential over C, 89
Diffie–Hellman (DH) protocol, 10
digit, 170
dimension

analytic variety, 88
variety, 49
vector space, 24

directed family of groups, 39
directed set, 39
discrepancy of a sequence, 731
discrete logarithm

computation, 477–543
baby-step giant-step, 376, 482
generic algorithm, 478, 554
GHS algorithm, 131, 531, 538
square root algorithms, 477–494
see also index calculus, Pollard’s rho,

and Pollard’s lambda
transfer, 9, 529

by cover method for trace zero vari-
eties, 539

by pairings, 530, 555
by Weil descent, 530–543, 556
odd characteristic, 536
to Fq-vector spaces, 529
via covers, 538

discrete logarithm problem (DLP), 8
discrete logarithm system (DLS), 8, 547, 571

choice of genus and curve equation, 560
choice of secure candidates, 547
choice of the finite field, 558
construction of systems, 565
function field, 549
generic, 8
index calculus, 554

number field, 549
summary of elliptic curves, 551
summary of hyperelliptic curves, 552
transfers, see transfer of DLP
with bilinear structure, 9, 573, 574

discrete Newton iteration, 179
discrete valuation, 41
discriminant of an elliptic curve, 71, 268
disjunction, 170, 172
distortion map, 582
distributive law, 21
division

binary field, see inversion in a binary
field

integers, 184–190
exact, 189, 204
Karatsuba method, 188
normalization, 186
Quisquater’s normalization, 187, 202
recursive method, 188
schoolbook method, 185

p-adic numbers, 245
prime field, see inversion in a prime field

division ideal, 60
division polynomial of an elliptic curve, 60,

80, 413
divisor, 66

B-smooth, 512
class group

Mumford representation, 84, 306
of order equal to char(K), 76
Pic0

C of C of degree zero, 76, 81, 306
relation between ideal class group and

divisor, 81, 306
degree, 66
effective, 66
group of a curve, 66, 306
prime, 66
principal, 67, 306, 550
random class, 307
rational function, 67, 306, 550
reduced, 84, 307, 552

DL, see discrete logarithm
DLP, see discrete logarithm problem
DLS, see discrete logarithm system
dominant rational map, 53
double precision integer, 171
DSCA, see differential side-channel attacks
dual basis, 35
dual isogeny



General Index 791

elliptic curve, 277
hyperelliptic curve, 309

dummy operations, 689
atomic blocks, 691
field operations, 690
group operations, 689

Dwork–Reich cohomology, 138, 453

E

early abort strategy, 468
see also SEA algorithm

ECDSA, see elliptic curve digital signature
algorithm

ECM, see elliptic curve method
ECPP test, 597, 601
EEPROM, 653
effective divisor, 66
eigenvalues of the Frobenius endomorphism,

110, 111, 279, 311, 356
Eisenstein polynomial, 43
Eisenstein series, 96
electromagnetic analysis, 682–683
ElGamal

encryption, 10, 11
signature, 12

Elkies prime, 414, 416, 419
see also SEA algorithm

elliptic curve, 68–72, 95–100, 268, 551–552
absolute invariant, 71, 72, 97, 268
addition in atomic blocks, 690, 693
addition law, 79, 270
admissible change of variables, 274
arithmetic, 267–302, 355–387

binary field, 289–302
prime field, 280–289
see also special curve

canonical lift, 423
cardinality, 278–279

admissible, 278
Hasse–Weil interval, 112
Hasse–Weil theorem, 110, 112, 278
subfield curve, 279
trace of the Frobenius, 278
twist, 279

characteristic polynomial of the Frobe-
nius, 278

compact curve, 382
comparison of coordinate systems, 283,

296

complex multiplication, 98, 277, 456–
460

construction, 459
compression, 288–289, 302
coordinates, see coordinates for elliptic

curves
discriminant, 71, 268
distortion map, 582
division polynomial, 60, 80, 413
doubling

followed by addition, 281, 292
in atomic blocks, 690, 692
repeated, 295

dual isogeny, 277
eigenvalues of the Frobenius endomor-

phism, 279
endomorphism, 277–278
endomorphism ring, 98
Frobenius endomorphism, 277
GLV curve, 377–380
group law, 79, 270
group structure of the Fq-rational points,

272
halving, 299, 299–302, 365
Hessian form, 696
Hilbert class field, 99
Hilbert class polynomial, 99, 456

computation, 457
isogeny, 277, 282

point counting, 415, 419, 420, 424,
435, 439

isomorphism, 71, 273–276
Hessian form, 275–276
Jacobi model, 275, 696
Legendre form, 275
twist, 71, 99, 274, 279, 378, 459, 568,

735
j-function, 97, 417
j-invariant, 71, 72, 97, 268
Koblitz curve, 356–367
library and software

apecs, 267
Magma, 267
PARI/GP, 267
SIMATH, 267

minimal 2-torsion, 299
Montgomery form, 285, 286, 288
nonsingular, 268
nonsupersingular, 273, 289, 290, 584

comparison with supersingular, 589
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use in pairings, 586–588
with small embedding degree, 586

ordinary, see nonsupersingular
pairing, 122, 123, 390–392, 396, 397

embedding degree, 123, 390, 573
Tate–Lichtenbaum, 396
Tate–Lichtenbaum in characteristic 3,

580
period lattice, 95, 456
point at infinity, 269
rational point, 272
Serre bound, 112
short Weierstraß equation, 70, 73, 268
singular point, 268
smooth, 268
supersingular, 123, 273, 279, 556, 574,

580, 583
arithmetic, 289
comparison with nonsupersingular, 589

torsion point, 273, 413, 414
trace of the Frobenius endomorphism, 110,

413, 426
trace zero variety, 383–387
triple and add, 581
tripling, 580
unified formulas, 694

Hessian form, 696
Jacobi model, 696

Vélu’s formulas, 415
Verschiebung, 427, 443
Weierstraß equation, 69, 73, 268
Weierstraß point, 83

elliptic curve digital signature algorithm (ECDSA),
13, 570

elliptic curve method (ECM), 7, 604, 604–
607, 612

partial addition on an elliptic curve, 604
partial inverse on an elliptic curve, 604

elliptic curve power generator, 733
elliptic function, 95
embedding degree, 123, 390, 573, 585

construction of ordinary elliptic curves,
586

end-around carry, 621
endomorphism

abelian variety, 59
curve with identity-based parameters, 382
elliptic curve, 277–278
hyperelliptic curve, 310
ring of an elliptic curve, 98

see also Frobenius endomorphism and
scalar multiplication

Enge–Gaudry’s theorem, 516
EPROM, 652
Euclid extended gcd, 191
Euclidean exponentiation method, 166
Euler totient function, 23
exact differential, 141, 450
exceptional procedure attack, see Goubin type

attack
exclusive disjunction, 170, 172
exponent, 145
exponent recoding, 151

ν-adic expansion, 381
τ -adic expansion, 358, 368

length reduction, 359–362, 371–373
τJSF, 365
τNAF, 358
τNAFw, 363
Booth technique, 151
JSF, 155
Koyama-Tsuruoka, 152
NAF, 151
NAFw, 153
signed fractional window method, 154

exponential complexity, 4, 548
exponentiation, 145–168

2k-ary method, 148, 165, 356
addition chain, 164, 157–164, 224, 233,

237, 559, 646, 699
base point, 145
BGMW algorithm, see Yao’s method
binary field, 225–227

Brent–Kung composition, 225
Shoup algorithm, 227

Euclidean method, 166
exponent, 145
fixed-base comb method, 167
left-to-right binary method, 146, 210,

253, 261
Montgomery, 210
Montgomery’s ladder, 148, 697
multi-exponentiation, 154–157, 164,

377
optimal extension field, 231–233
Pippenger’s algorithm, 166
prime field, 209–210
right-to-left binary method, 146
sliding window, 150, 163
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square and multiply, see left-to-right bi-
nary method

Yacobi’s method, 160
Yao’s method, 165, 227
see also scalar multiplication

extension field, 25

F

factor base
factoring, 608
index calculus, 496

factoring, 601–614
continued fraction method, 608
elliptic curve method, 7, 604, 604–607
factor base, 608
Fermat–Morrison–Brillhart approach, 607–

614
general number field sieve, 612
multiple polynomial quadratic sieve, 611
number field sieve, 7, 613, 612–614
Pollard’s p − 1 method, 603
Pollard’s rho method, 601–603
quadratic sieve, 508, 609–610
special number field sieve, 612

false witness, 594
fastECPP, 601
fault injection attack, 683–685
Fermat prime, 533, 557
Fermat test, 593
Fermat witness, 593
Fermat’s little theorem, 23, 599, 603, 607,

645
Fermat–Morrison–Brillhart factoring method,

607–614
FFT multiplication, 177
field, 23

algebraic closure, 27
automorphism, 27
CM-field, 105, 107, 462
CM-type, 63, 105, 463
complete discrete valuation, 41
extension, 25

algebraic, 25
defining element, 28
degree, 25
degree of separability, 27
finite, 25
Galois, 28
monogenic, 26

normal, 27
purely transcendental, 26
separable, 27
transcendental, 26

fraction ˜ of a ring, 23
function ˜ of a variety, 51
homomorphism, 23
isomorphism, 25
norm, 26
of constants of a function field, 51
of definition of P , 46
perfect, 28
trace, 26
see also finite field, number field, and p-

adic field
finite extension field, 25
finite field, 31, 31–37

library and software
Lidia, 201
Magma, 201
NTL, 201
ZEN, 201

multiplicative group, 32
norm, 33
Rabin irreducibility test, 214
representation, 33–35
trace, 33
see also binary field, prime field, and op-

timal extension field
finitely generated ideal, 22
fixed-base comb exponentiation method, 167
flash EEPROM, 654
focused ion beam, 672
formation, see arithmetical formation
fractional ideal, 30, 549

inverse, 30
fractional O-ideal, 81
FRAM, 654
FreeLip, 169
frequency block test, 728
Frey–Rück attack, 530
Frobenius automorphism

absolute, 33
relative, 33

Frobenius endomorphism, 59, 109, 355
elliptic curve

characteristic polynomial, 278
eigenvalues, 279, 356
Koblitz, 356
trace, 278, 413, 426, 564
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hyperelliptic curve, 109, 310
characteristic polynomial, 310
eigenvalues, 311
Koblitz, 367
trace, 564

variety
characteristic polynomial, 109–110
eigenvalues, 110, 111
trace, 110, 111

Frobenius morphism, 53, 59, 109, 133
see also Frobenius endomorphism

Frobenius substitution, 43, 240, 250–252, 423
full adder, 627
full-graph method, 522–523
function field, 51

ideal class group, 81, 84, 306
variety, 51

fundamental domain, 416
fundamental unit, 31, 463

G

Galois extension, 28
Galois field, see finite field
Galois group, 28
Gap-Diffie–Hellman group, 10, 574
Gauß period, 34

general ˜, 35
Gaudry’s algorithm, 517

see also index calculus
Gauß sum, 599
Gaussian normal basis, 35, 240

p-adic field, 240, 252, 261, 433
see also optimal normal basis

gcd
integer, 190–197

binary extended, 195
Euclid extended, 191
generalized binary, 195
Lehmer extended, 192

polynomial, 222
general number field sieve (GNFS), 612
generalized binary gcd, 195
generalized projective coordinates, 271
generated carry, 629
generating set, 24
generic algorithm, 478, 554
genus, 68, 304

Hurwitz formula, 68
hyperelliptic curve, 73, 304

ghost bit basis, 217
GHS algorithm, 131, 531, 538

Artin–Schreier curve, 536
magic number, 532
see also Weil descent

glitch attack, 683
GLV curve, 377–380

basis of the endomorphism ring, 378
combination with Koblitz curves, 381
computation of expansion, 379
countermeasures against side-channel

attacks, 713–714
elliptic curve, 377
generalizations, 380–381
hyperelliptic curve, 380

GMP, 169, 176
GNFS, see general number field sieve
Goldwasser–Killian test, 598
Goubin’s refined power analysis, 680–682
greatest common divisor, see gcd
group, 19, 19–21

abelian, 20
action, 21
cyclic, 20
Galois, 28
homomorphism, 21

kernel, 21
index, 20
inverse, 20
normal, 20
order, 20
quotient, 20
subgroup, 20
unit element, 20

H

half adder, 628
halve and add scalar multiplication algorithm,

301
halving map, 299
Hamming weight, 147, 158, 234, 393, 491,

558, 677
hardware

addition, see addition in hardware
binary field, see binary field in hardware
inversion, 645–646
modular reduction, see modular reduc-

tion in hardware
multiplication, see multiplication in

hardware
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hardware random number generator, 721
hash function, 12
hash function on the Jacobian, 590
Hasse–Weil interval, 112, 410
Hasse–Weil theorem, 110, 112, 278, 310
HECDSA, see hyperelliptic curve digital sig-

nature algorithm
Hensel odd division, 180

see also Montgomery reduction
Hessian form of an elliptic curve, 275–276
heuristics of class number, 564
hidden field equations (HFE), 15
higher order differential power analysis, 680
Hilbert class field, 99
Hilbert class polynomial, 99, 456

computation, 457
holomorphic differential, 76
homogeneous

coordinates, 46, 69
see also projective coordinates

ideal, 47
polynomial, 46

homomorphism
abelian variety, 57
complex, 29
connected component of the unity of ker(ϕ),

58
field, 23
group, 21

kernel, 21
real, 29

homothetic lattices, 97
Horner-like scheme, 227
Hurwitz genus formula, 68
hyperelliptic curve, 73, 303, 552–553

addition in atomic blocks, 694
addition law, 304, 308
arithmetic

genus 2, 313–347
genus 2 in even characteristic, 334–

347
genus 2 in odd characteristic, 320–334
genus 3, 348–352

BH curve, 381
canonical lift, 442
Cantor’s algorithm, 308, 552
cardinality, 310–311

Hasse–Weil interval, 410
Hasse–Weil theorem, 110, 112, 310

characteristic polynomial of the Frobe-
nius, 310

class polynomial, 107, 462, 463, 465,
466, 472

computation, 462, 472
comparison of coordinate systems, 325,

344
complex multiplication, 104, 310, 460–

473
computation of theta constant, 465
construction, 469
curve with automorphisms, 471
Mestre’s algorithm, 468

compression, 311–313
computation of Igusa invariants, 465
coordinates, see coordinates for hyperel-

liptic curves
divisor class group Pic0

C of C of degree
zero, 306

doubling in atomic blocks, 694
dual isogeny, 309
eigenvalues of the Frobenius endomor-

phism, 311
endomorphism, 310
Frobenius endomorphism, 109, 310
genus, 73, 304
group law, 304
group structure of the Fq-rational points

JC(Fq)[n], 111
ideal class group, 83–85, 306
Igusa invariants, 101, 107, 462
index calculus method, 511
isogeny, 309
isomorphism, 74, 308
Koblitz curve, 367–376
Mestre’s invariants, 102, 468
Montgomery like form, 329
nonsingular, 304
p-rank of a hyperelliptic curve, 310
pairing, 122, 390–392, 394, 398

embedding degree, 123, 390, 573
Tate–Lichtenbaum, 398

period lattice, 462
period matrix, 100, 462, 463
Picard group, 306
random divisor class, 307
Riemann theta divisor, 100
Rosenhain model, 104, 472
Serre bound, 112
Shioda invariants, 104, 472
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smooth, 304
supersingular, 310, 584, 585

arithmetic, 340
theta characteristic, 100, 444
theta constants, 100, 444, 463
torsion point, 309
trace zero variety, 383–387
Weierstraß equation, 74, 83, 304
Weierstraß point, 73, 304

hyperelliptic curve digital signature algorithm
(HECDSA)

generation, 570
verification, 570

hyperelliptic involution, 73, 512
hypersurface, 47

I

ID-based
cryptography, 576–578
decryption, 577
encryption, 576
parameters, 382

ideal, 21
above pZ, 31
coprime, 22
finitely generated, 22
fractional, 30, 549
homogeneous, 47
inert, 31
maximal, 22
prime, 22
principal, 22
product, 30
ramified, 31
split, 31

ideal class group, 81–83
hyperelliptic curve, 83–85, 306
Mumford representation, 84, 306
relation with divisor class group, 81, 306

identity-based, see ID-based
Igusa invariants, 101, 107, 462

computation, 465
imaginary quadratic curve, 83, 304
incompletely reduced number, 202
index calculus, 495–527, 554–555

arithmetical formation, 496–497
automorphism of the group, 505–506
factor base, 496
filtering, 503–505

merging, 504–505
pruning, 504

finite field, 506–507
hyperelliptic curve, 511–527

Adleman–DeMarrais–Huang
algorithm, 512–516

B-smooth divisor, 512
concentric circles method, 525–527
double large primes, 521–522
Enge–Gaudry’s theorem, 516
factor base, 512, 515, 517
full-graph method, 522–523
Gaudry’s algorithm, 517
general algorithm, 511–512
harvesting, 518–519
hyperelliptic involution, 512
refined factor base, 517–518
relation search, 513–514
simplified graph method, 523–525
single large prime, 520–521

large primes, 507–509
1 large prime, 507–508
2 ˜, 508–509
more ˜, 509

linear algebra, 500–503
see also Lanczos’ method and Wiede-

mann’s method
prime, 496
relation search, 499–500

parallelization, 500
smoothness bound, 496
via hyperplane sections, 541
Waterloo variant, 508

index of a group, 20
indistinguishability, 729
induced morphism, 52
industrial-grade prime, 591
inert ideal, 31
inertia degree, 43
integer arithmetic, 169–199

addition, 173
concatenation, 187
division, see division of integers
exact division, 189, 204
gcd, see gcd of integers
integer square root, 198
multiplication, see multiplication of in-

tegers
reduction, see modular reduction
square root, 198
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squaring, see squaring of integers
subtraction, 173

integer factorization problem, 1, 7, 479
integer ring of a number field, 29
integral basis, 29
integral domain, 21
integrally closed ring, 30
interleaved multiplication-reduction, 203
invalid curve attack, 569, 706
invasive attacks, 670–673
inverse limit, 40
inverse of a fractional ideal, 30
inverse of a group element, 20
inverse of a ring element, 23
inverse square root of p-adic numbers, 248
inversion

binary field, 222–225
binary method, 223
extended gcd, 222
Itoh and Tsujii algorithm, 225
Lagrange’s theorem, 224

hardware, 645–646
integers, see division of integers
optimal extension field, 233–234, 237
p-adic numbers, 247
prime field, 205–209

almost Montgomery inverse, 208
Montgomery inverse, 208
plus-minus method, 206
simultaneous, 209, 283, 296, 327
Thomas et al. method, 207

involution of a hyperelliptic curve, 73, 512
irreducible subset of a topological space, 48
isogeny

abelian variety, 58
over C, 94

degree, 59, 277
dual, 277
elliptic curve, 277, 282

point counting, 415, 419, 420, 424,
435, 439

Vélu’s formulas, 415
hyperelliptic curve, 309
purely inseparable, 59
separable, 59

isomorphism
abelian variety, 58
elliptic curve, 71, 273–276

admissible change of variables, 274
Hessian form, 275–276

Jacobi model, 275, 696
Legendre form, 275

field, 25
hyperelliptic curve, 74, 308
variety, 52

Itoh and Tsujii inversion, 225

J

j-function, 97, 417
j-invariant, 71, 72, 97, 268
Jacobi criterion, 64
Jacobi model, 275, 696
Jacobi sum, 600
Jacobian coordinates, 282, 292–295, 297

see also Chudnovsky Jacobian coordi-
nates, modified Jacobian coordi-
nates, and simplified Chudnovsky
Jacobian coordinates

Jacobian variety, 78, 77–80
Java Card, 659
Jebelean exact division, 189, 204
joint Hamming weight, 156
joint sparse form, see JSF
JSF, 155

simple, 156
τJSF, 365

K

Karatsuba
integer division, 188
integer multiplication, 176, 202
integer squaring, 178
polynomial multiplication, 220, 227,

236, 244, 317
Kedlaya’s algorithm, 449
kernel of a group homomorphism, 21
key exchange

contributory, 575
multiparty, 574
noncontributory, 575

key generation, 11
Knapsack problem, 14
Koblitz curve

τ -adic expansion, 358, 368
alternative generation of τ -adic expan-

sion, 375
combination with GLV method, 381
countermeasures against
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differential side-channel attacks, 711–
713

simple side-channel attacks, 709–711
elliptic curve, 356–367

τJSF, 365
length reduction of the τ -adic expan-

sion, 359–362
main subgroup membership, 359
τNAF, 358
τNAFw, 363

hyperelliptic curve, 367–376
length reduction of the τ -adic expan-

sion, 371–373
Koyama–Tsuruoka recoding, 152
Kronecker relation, 425
Kronecker–Jacobi symbol, 36
Kummer surface, 329

L

�-adic Tate module, 61
L-polynomial of a curve, 135, 407
L-rational points, 46
Lanczos’ method, 500–503, 517
LCG, see linear congruential generator
least significant digit, 170
left-to-right binary method, 146, 210, 253,

261
Legendre form, 275
Legendre symbol, 36, 210
Legendre–Kronecker–Jacobi symbol, 36, 235
Lehmer extended gcd, 192
Lempel–Ziv compression algorithm, 160
Lercier–Lubicz’ algorithm, 253, 434
library and software

apecs, 267
BigNum, 169
FreeLip, 169
GMP, 169, 176
Lidia, 201
Magma, 201, 267
Maple, 267
NTL, 201
PARI/GP, 267, 467
SIMATH, 267
ZEN, 201

Lidia, 201
lift of an element in a valuation ring, 41
lift of p-adic numbers

Hensel, 250, 249–250, 428

Newton, 246–249
generalized, 257, 447

Teichmüller, 241, 257, 258
light attack, 684
linear complexity of a sequence, 732
linear congruential generator (LCG), 720
linearly independent vectors, 24
little endian, 171
local ring of a point, 64
local Tate pairing, 118
López–Dahab coordinates, 293–295, 297
Lubin–Serre–Tate theorem, 423
Lucas pseudoprime, 595
Lucas pseudoprime test, 595
Lucas sequence, 357

M

Möbius function, 33
magic number, 532
Magma, 201, 267
man-in-the-middle attack, 10
Maple, 267

apecs, 267
Massey–Omura multiplier, 643
Mastrovito multiplier, 642
match and sort, 421

see also SEA algorithm
maximal ideal, 22
maximal order, 30
memory management unit, 655
memory only card, see synchronous card
Mersenne prime, 182, 207, 533, 556, 640

pseudo-˜, 230
Mestre’s algorithm for complex multiplica-

tion, 468
Mestre’s invariants, 102, 468
micromodule, 648
microprocessor card, see asynchronous card
Miller’s pairing computation algorithm, 122,

392
minimal 2-torsion for an elliptic curve, 299
minimal polynomial of an algebraic element,

25
mixed coordinates

elliptic curve, 283–285, 296–298
hyperelliptic curve, 325–328, 344–345

modified Jacobian coordinates, 282–284
modular function, 97
modular polynomial, 416–419



General Index 799

canonical, 418
classical, 418
Kronecker relation, 425

modular reduction, 178–184
Barrett method, 179, 182, 202, 203, 210,

606
hardware, 638–641

incomplete reduction, 640
special moduli, 640

modulo several primes, 184
remainder tree, 184
scaled remainder tree, 184

modulo special integers, 183, 182–184
Mersenne prime, 182
NIST prime, 183

Montgomery reduction, 181, 180–182
Montgomery representation, 180
residue number system arithmetic, 197
see also interleaved multiplication-re-

duction
module, 24
monobit test, 726
Monsky–Washnitzer cohomology, 136, 139,

451, 567
Montgomery

almost inverse, 208
exponentiation, 210
inversion, 208
multiplication, 204
reduction, 181, 180–182

coarsely integrated operand scanning
method, 640

hardware, 639–640
representation, 180

Montgomery coordinates on an elliptic curve,
285–288, 696

Montgomery form of an elliptic curve, 285,
286, 288

Montgomery like form of hyperelliptic curve,
329

Montgomery’s ladder, 148, 287, 298, 328, 331,
401, 676, 697

morphism
affine variety, 52
Frobenius, 53, 59, 109, 133

see also Frobenius endomorphism
from An to A1, 52
from An to Am, 52
from V ⊂ An to a variety W ⊂ Am, 52
induced, 52

projective variety, 55
most significant digit, 170
MOV attack, 530
MPQS, see multiple polynomial quadratic

sieve
multi-exponentiation, 154–157, 164, 377
multi-stack algorithm, 487
multiple polynomial quadratic sieve (MPQS),

611
multiplication

binary field, 218–221
optimal normal basis, 220–221
polynomial basis, 218–220

hardware
using left shift, 623
using right shift, 624

integers, 174–177
FFT, 177
Karatsuba method, 176, 202
schoolbook method, 174
Toom–Cook, 177

optimal extension field, 231, 236–237
p-adic numbers, 244
prime field, 202–205

interleaved with reduction, 203
Montgomery method, 204

see also squaring
multiplication matrix of a normal basis, 220

density, 221
multiplicative group, 32
multiplier recoding

Booth method, 625
radix-4 signed digit, 626

multiprecision, 171
multiprecision library

BigNum, 169
FreeLip, 169
GMP, 169, 176

Mumford representation, 84, 306

N

n-word integer, 171
NAF, 151
NAFw, 153
Naor–Reingold generator, 734
new coordinates for hyperelliptic curves of

genus 2, 323, 342
Newton–Girard formula, 229, 408
NFS, see number field sieve
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Noetherian ring, 30
non-adjacent form, see NAF
non-invasive attacks, 673–685

see also side-channel attacks
nonempty affine part of a variety, 50
nonsingular curve, 64, 65

elliptic curve, 268
hyperelliptic curve, 304

nonsingular point, 64, 65, 268, 304
nonsupersingular elliptic curve, 273, 584
norm

algebraic number, 29
endomorphism, 377
field, 26
finite field, 33
p-adic number, 41, 261–263

normal basis, 34, 224, 228
density, 221
hardware, 643–645
multiplication matrix, 220
self-complementary, 35
see also optimal normal basis

normal element, 34, 218
normal extension, 27
normal group, 20
normalized valuation of a place, 65
NTL, 201
NTRU encryption system, 14
null hypothesis, 723
number field, 29, 29–31

class number, 30, 457, 480, 598
fundamental unit, 31, 463
ideal class group, 30
ideal decomposition, 31
integer ring, 29
maximal order, 30
norm, 29
order, 30
signature, 29
totally complex, 29
totally real, 29
trace, 29

number field sieve (NFS), 7, 613, 612–614

O

O-notation, 3
o-notation, 3
OEF, see optimal extension field
ONB, see optimal normal basis

one’s complement, 621
one-parameter quadratic-base test (OPQBT),

596
one-way function, 5
OPQBT, see one-parameter quadratic-base

test
optimal extension field (OEF)

arithmetic, 229–237
exponentiation, 231–233
inversion, 233–234, 237
multiplication, 231, 236–237
specific improvements, 235–237
square root, 234–235

trace, 235
type I, 230
type II, 230

optimal normal basis (ONB), 217–218, 221,
220–221

density, 221
multiplication matrix, 220
palindromic representation, 221
type I, 217
type II, 218
see also Gaussian normal basis

oracle, 10, 478
random model, 577

order of a group, 20
order of a number field, 30
order of an element

finite, 20
infinite, 20

ordinary
abelian variety, 60
curve for pairings, 586–588
elliptic curve, 273, 289, 290, 584

P

p-adic exponential, 259
p-adic field

absolute ramification index, 43
inertia degree, 43
unramified extension, 43, 136, 138, 239,

428, 436
p-adic integer ring, 40
p-adic logarithm, 258
p-adic norm, 41
p-adic numbers

arithmetic, 239–263
fast division with remainder, 245
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inverse, 247
inverse square root, 248
multiplication, 244
square root, 249

exponential, 259
Frobenius substitution, 43, 240, 250–252,

423
generalized Newton lifting, 257, 447
Hensel lifting, 250, 249–250, 428
logarithm, 258
Newton lifting, 246–249
norm, 261–263
representation

Gaussian normal basis, 240, 252, 261,
433

sparse modulus, 240
Teichmüller modulus, 240

Teichmüller lift, 241, 256, 257, 258
Teichmüller modulus increment, 242
trace, 260

p-adic valuation, 41
p-rank

abelian variety, 61
hyperelliptic curve, 310

padding, 170
pairing

comparison of ordinary and supersingu-
lar curves, 589

computation in characteristic 3, 580
distortion map, 582
elliptic curve, 123, 396, 397
embedding degree, 123, 390, 573, 585
hyperelliptic curve, 398
improvements for elliptic curves, 400
local Tate, 118
Miller’s algorithm, 122, 392
ordinary curve, 586–588
over local fields, 118
security parameter, 585
short signature protocol, 578, 589
supersingular curve, 580, 584
Tate, 116
Tate–Lichtenbaum, 122, 390–392, 394

comparison with Weil pairing, 395
efficient computation, 400
elimination of divisions, 400
elliptic curve, 396
hyperelliptic curve, 398
subfield computations, 401

transfer of DLP, 530, 555

Weil, 115
comparison with Tate–Lichtenbaum

pairing, 395
palindromic representation, 221
PARI/GP, 267, 467
pentanomial, 214
perfect field, 28
period lattice of a curve, 91, 95, 462
period matrix

abelian variety, 93
curve, 93
hyperelliptic curve, 100, 462, 463

period of a pseudorandom sequence, 730
Picard curve, 83, 352, 473
Picard group

curve, 76
hyperelliptic curve, 306

PID, see principal ideal domain
Pila’s algorithm, 422
Pippenger’s exponentiation algorithm, 166
place of a function field, 65
plus-minus inversion method, 206
Pocklington–Lehmer test, 597
Poincaré upper half plane, 97, 416
point at infinity, 50, 74, 269–271, 306
point counting

AGM, see AGM algorithm
Cartier–Manin method, 411
enumeration, 407
Kedlaya’s algorithm, 449
�-adic methods, 413–422
p-adic methods, 422–453
Pila’s algorithm, 422
Satoh’s algorithm, 430, 423–434, 437
Schoof’s algorithm, 413
SEA, see SEA algorithm
square root algorithms, 410–411
subfield curve, 409

point halving, 299, 299–302, 365
points at infinity, 50, 550
Pollard’s kangaroo, 491–494

automorphism, 494
lambda method, 492–493
parallelization, 493–494
tame kangaroo, 492
trap, 492
wild kangaroo, 492

Pollard’s p − 1 factoring method, 603
Pollard’s rho, 483–491

automorphisms, 490–491
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collision, 483
distinguished point technique, 488, 489
factoring method, 601–603
for discrete logarithms, 488–489
match, 483
multi-stack algorithm, 487
parallelization, 489–490
random mapping, 483, 486, 489

polynomial basis, 34, 218–220, 225–226
all one polynomial, 215
anomalous, 217
ghost bit basis, 217
hardware, 642–643
pentanomial, 214
redundant, 34
redundant trinomial, 217, 228
sedimentary, 215
sparse, 34, 214, 216
trinomial, 214

polynomial complexity, 4, 548
Poulet number, 593
power consumption analysis, 675
power tree method, 160
powering, see exponentiation
precision of an integer, 170
preperiod of a pseudorandom sequence, 730
primality certificate, 597
primality test, 596–601

AKS, 600
APRCL Jacobi sum, 599
Atkin–Morain ECPP, 597, 601
fastECPP, 601
Goldwasser–Killian, 598
Pocklington–Lehmer, 597
primality certificate, 597
see also compositeness test

prime divisor, 66
prime field, 32

arithmetic, 201–213
exponentiation, see exponentiation in a

prime field
inversion, see inversion in a prime field
multiplication, see multiplication in a

prime field
quadratic nonresidue, 36
quadratic residue, 36
reduction, see modular reduction
representative of a class, 202
square root, see square root in a prime

field

squaring, 205
prime ideal, 22
prime number theorem, 6
prime of an arithmetical formation, 496
primitive element, 32, 215, 217, 230
primitive polynomial, 34
principal divisor, 67, 306, 550
principal ideal, 22
principal ideal domain (PID), 22
principally polarized abelian variety, 93
probing, 671
projective closure of an affine set, 50
projective coordinates

elliptic curve, 281, 283, 284, 292,
294–295, 297

hyperelliptic curve, 321, 341, 346
see also homogeneous coordinates

projective point, 46, 270, 271
projective space, 46, 49

closed set, 46
open set, 46
standard covering, 50

projective variety, 48
PROM, 652
propagated carry, 629
protocols, 9, 569–571

ECDSA, 570
HECDSA, 570
ID-based

cryptography, 576–578
decryption, 577
encryption, 576

multiparty key exchange, 574
short signature, 578, 589

pseudoprime, 593
Lucas, 595
strong, 594
strong Lucas, 595

pseudorandom number generator, 718–719,
729–735

public-key cryptography, 5
public-key infrastructure, 11, 575
pure transcendental extension, 26
purely inseparable isogeny, 59

Q

quadratic nonresidue, 36
quadratic reciprocity law

Legendre symbol, 36
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Legendre–Kronecker–Jacobi symbol, 37
quadratic residue, 36
quadratic sieve, 508, 609–610
quadratic twist, 71, 99, 274, 279, 378, 459,

568, 735
quotient group, 20

R

Rabin polynomial irreducibility test, 214
Rabin–Miller compositeness test, 594, 596
radix, 170
radix complement, 620
RAM, 651
ramified ideal, 31
random mapping, 483, 486, 489
random oracle model, 577
random walk, 484, 489

r-adding walk, 489, 492
randomization

curve equation, 700
group elements, 700
scalar, 699

randomized GLV method, 713
randomness

∞-distributed sequence, 716
autocorrelation of a sequence, 731
autocorrelation test, 729
balance of a sequence, 730
crosscorrelation of two sequences, 731
discrepancy of a sequence, 731
frequency block test, 728
hardware random number generator, 721
indistinguishability, 729
l-distributed sequence, 716
linear complexity of a sequence, 732
monobit test, 726
null hypothesis, 723
period of a pseudorandom sequence, 730
preperiod of a pseudorandom sequence,

730
pseudorandom number generator, 718–

719, 729–735
Blum–Blum–Shub generator, 720
elliptic curve power generator, 733
linear congruential generator, 720
Naor–Reingold generator, 734
RANDU, 720

random number generator, 717–721
ANSI-C, 720

random sequence, 716
random walk, 727
runs test, 728
seed, 490, 719
Shannon entropy function, 716
statistical model, 723
statistical tests, 723–724
true random number generator, 718
turning point test, 728
unpredictability, 729

RANDU generator, 720
rational function, 53

divisor, 67, 306, 550
pole, 67
regular at point P , 54
zero, 67

rational map, 53
birational, 53
dominant, 53
regular at point P , 54

rational point
elliptic curve, 272
hyperelliptic curve, 306
variety, 46

real homomorphism, 29
recent coordinates for hyperelliptic curves of

genus 2, 346
reciprocal integer, 178
recursive integer division, 188
recursive middle product, 188
reduced divisor, 84, 307, 552
redundant trinomial basis, 217, 228
refined factor base, 517–518
register, 170, 172
remainder tree, 184
representation

finite field, 33–35
integer in base b, 170
see also basis

representative of a congruence class, 202
canonical, 21
centered, 21
incompletely reduced number, 202

residual logarithm, 610
residue field, 41

of a point, 64
residue number system arithmetic, 197
reverse engineering, 670
Riemann form, 93
Riemann theta divisor, 100
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Riemann–Roch theorem, 68
right-to-left binary method, 146
rigid cohomology, 136
ring, 21, 21–23

characteristic, 22
commutative, 21
Dedekind, 30
ideal, 21
integrally closed, 30
inverse, 23
invertible element, 23
Noetherian, 30
p-adic integers, 40
regular functions, 64
unit, 23

ROM, 651
Rosenhain model, 104, 472
RSA, 7
RSA assumption, 7
RSA problem, 7
Rück attack, 529
runs test, 728

S

Sarrus number, 593
Satoh’s algorithm, 430, 423–434, 437
SCA, see side-channel attacks
scalar, 24
scalar multiplication

curve with endomorphism, 376–383
elliptic curve

halve and add, 301
GLV curve

elliptic curve, 377–380
hyperelliptic curve, 380–381

Koblitz curve
elliptic curve, 356–367
hyperelliptic curve, 367–376

Montgomery’s ladder, 287, 298, 328, 331,
401, 676

sliding window, 271, 284, 356, 678, 704
trace zero variety, 383–387
triple and add, 581
tripling, 580
see also arithmetic, elliptic curve, hyper-

elliptic curve, exponentiation, and
special curve

scalar randomization, 699
scalar restriction, 125

scaled remainder tree, 184
scanning electron microscope, 672
Schoof’s algorithm, 413
Schoof–Elkies–Atkin’s algorithm, see SEA

algorithm
SEA algorithm, 421, 414–422, 566

Atkin prime, 414, 415
canonical modular polynomial, 418
classical modular polynomial, 418
early abort, 468
Elkies prime, 414, 416, 419
match and sort, 421

security parameter, 585
sedimentary polynomial, 215
seed, 490, 719
self-complementary normal basis, 35
self-dual basis, 35
separable extension of a field, 27
separable isogeny, 59
Serre bound, 112
Shannon entropy function, 716
shift

integer multiplication using left ˜, 623
integer multiplication using right ˜, 624
left, 172
right, 172

Shioda invariants, 104, 472
short signature, 578, 589
Shoup exponentiation algorithm, 227
side-channel atomicity, 691

elliptic curve
addition, 690, 693
doubling, 690, 692

hyperelliptic curve
addition, 694
doubling, 694

side-channel attacks (SCA), 285, 288, 328,
673–685

Bellcore attack, 683
correlation power analysis, 680
differential electromagnetic analysis,

682
differential fault analysis, 683–685
differential power analysis, 677–678
electromagnetic analysis, 682–683
fault injection, 683–685
glitch attack, 683
Goubin’s refined power analysis, 680–

682
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higher order differential power analysis,
680

light attack, 684
power consumption analysis, 675
simple power analysis, 675–677
timing attack, 673–675
see also countermeasures against ˜signature of a number field, 29

signature scheme, 12
signature verification, 13
signed fractional window method, 154
signed-binary representation, 151
signed-digit representation, 151
signed-magnitude representation, 171
Silver–Pohlig–Hellman attack, see Chinese

remaindering attack
SIMATH, 267
simple abelian variety, 60
simple joint sparse form, 156
simple power analysis, 675–677
simple side-channel attacks (SSCA), 688

see also side-channel attacks and coun-
termeasures against ˜simplified Chudnovsky Jacobian coordinates,
401

simplified graph method, 523–525
simultaneous inversion modulo p, 209, 283,

296, 327
single precision integer, 171
singular point, 64, 65, 268, 304
size map, 496
sliding window

exponentiation algorithm, 150, 163
scalar multiplication algorithm, 271, 284,

356, 678, 704
small subgroup attack, 569
smart card

asynchronous card, 665
card system, 656
combi-card, 650
contact card, 649
contactless card, 649
coprocessor, 666
electrical properties, 650
floating gate, 652
host system, 656
invasive attacks, 670–673
memory, 651–656

EEPROM, 653
EPROM, 652

flash EEPROM, 654
FRAM, 654
PROM, 652
RAM, 651
ROM, 651

memory management unit, 655
memory only card, see synchronous card
metal layers, 670
micromodule, 648
microprocessor card, see asynchronous

card
non-invasive attacks, 673–685

see also side-channel attacks
operating system, 657

Java Card, 659
Multos, 657
Windows, 657

physical properties, 648
preprogrammed state, 652
probing, 671
reverse engineering, 670
synchronous card, 664
transmission protocol, 659–663
UART, 663
USB, 664

smooth
curve, 64, 65
elliptic curve, 268
hyperelliptic curve, 304

smoothness bound, 496
SNFS, see special number field sieve
Solovay–Strassen compositeness test, 595
space complexity, 3
sparse modulus representation, 240
sparse polynomial basis, 34, 214, 216
special curve, 355–387

countermeasures against side-channel
attacks, 709–714

see also GLV curve, Koblitz curve, and
trace zero variety

special number field sieve (SNFS), 612
splitting field, 27
splitting ideal, 31
square and multiply, see left-to-right binary

method
square root

binary field, 228–229
integers, 198
optimal extension field, 231, 234–235
p-adic numbers, 249
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prime field, 212, 213
Tonnelli and Shanks square root algo-

rithm, 212
squaring

binary field, 221
integers

Karatsuba method, 178
schoolbook method, 177

prime field, 205
SSCA, see simple side-channel attacks
standard covering of a projective space, 50
star addition chain, 157, 225
statistical model, 723
Straus–Shamir’s trick, 155, 387, 713

see also multi-exponentiation
strong Lucas pseudoprime, 595
strong pseudoprime, 594
subexponential complexity, 4, 548
subgroup, 20
subgroup generated by an element, 20
subtraction

binary field, 218
integers, 173
optimal extension field, 231
prime field, 202

summation polynomial, 541
supersingular

abelian variety, 61
security parameter, 585

elliptic curve, 123, 273, 279, 289, 556,
574, 580, 583

attack via pairing, 530
distortion map, 582
security parameter, 585
use in pairings, 580

hyperelliptic curve, 310, 584, 585
arithmetic, 340
security parameter, 585
use in pairings, 584

Jacobian, 310
symmetric key cryptography, 2
synchronous card, 664
system parameter, 569

T

τ -adic expansion
alternative generation, 375
comparison, 374
elliptic curve

computation, 358
length reduction, 359–362
windowing methods, 363

hyperelliptic curve
computation, 368
length reduction, 371–373

see also τNAF, τNAFw, and τJSF
τ -adic joint sparse form, see τJSF
τ -adic non-adjacent form, see τNAF
τJSF, 365
τNAF, 358
τNAFw, 363
Tate pairing, 116, 117, 119

see also Tate–Lichtenbaum paring
Tate–Lichtenbaum pairing, 122, 390, 392

characteristic 3, 580
comparison with Weil pairing, 395
computation, 391, 394
efficient computation, 400
elimination of divisions, 400
elliptic curve, 123, 396, 397
hyperelliptic curve, 398
ordinary curve, 586–588
subfield computations, 401
supersingular curve, 580, 584

Teichmüller lift, 256
Teichmüller modulus increment, 242
Teichmüller modulus representation, 240
theta characteristic, 100, 444
theta constant, 100, 444, 463

computation, 465
even, 100
odd, 100

Thomae formula, 446
Thurber’s algorithm for addition chain, 158
time complexity, 3
timing attack, 673–675
Tonnelli and Shanks square root algorithm,

212
Toom–Cook multiplication, 177
torsion point

abelian variety, 60
elliptic curve, 273, 413, 414

minimal 2-torsion, 299
hyperelliptic curve, 309

torus, 92
totally complex number field, 29
totally real number field, 29
trace

algebraic number, 29
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binary field, 35
efficient computation, 229

endomorphism, 377
field, 26
finite field, 33
Frobenius endomorphism, 110, 111, 413,

426, 564
p-adic number, 260

trace zero variety, 130, 383–387, 539, 557
arithmetic, 385–387
background, 384

transcendence degree, 26
transcendental element, 26
transcendental extension, 26
transfer of DLP, 9, 529, 555–557

by pairings, 530, 555
by Weil descent, 530–543, 556

in odd characteristic, 536
to Fq-vector spaces, 529
via covers, 538

translation by point P , 57
trial division, 592
trinomial, 214
tripartite key exchange, 14
triple and add scalar multiplication algorithm,

581
tripling on an elliptic curve, 580
true random number generator, 718
trusted authority, 576
turning point test, 728
twist of an elliptic curve, 71, 99, 274, 279,

378, 459, 568, 735
see also isomorphism of elliptic curves

twisted cover, 539
two’s complement, 171, 620

U

unified arithmetic for elliptic curves, 694
Hessian form, 696
Jacobi model, 696

unified multipliers, 644–645
uniformizer for the curve C at the point P , 65
uniformizing element, 41, 44
unit element of a group, 20
unit of a ring, 23
universal asynchronous receiver transmitter (UART),

663
universal serial bus (USB), 664
unpredictability, 729

unramified extension of a p-adic field, 43,
136, 138, 239, 428, 436

USB, see universal serial bus

V

valuation at a point, 65
valuation ring, 41
variety

absolutely irreducible, 48
birational equivalence, 53
coordinate ring, 51
dimension, 49
function field, 51

vector space, 24
basis, 24
dimension, 24
generating set, 24
linearly independent vectors, 24
scalar, 24
vector, 24

vectorial addition chain, 158, 164
Vélu’s formulas, 415
Verschiebung

abelian variety, 61
elliptic curve, 427, 443

W

Wallace tree, 635, 638
Waterloo variant, 508
weak completion, see dagger ring
Weierstraß equation

elliptic curve, 69, 73, 268
short, 70, 73, 268

hyperelliptic curve, 74, 83, 304
Weierstraß ℘-function, 96
Weierstraß point, 73, 83, 304
Weil descent, 90, 125, 127, 530–543, 556

in odd characteristic, 536
index calculus

via hyperplane sections, 541
over C, 89
trace zero variety, 539
transfer of DLP, 530–543, 556
via GHS, 131, 531, 538

Weil pairing, 115
comparison with Tate–Lichtenbaum

pairing, 395
see also Tate paring and Tate–Lichten-

baum paring
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width-w τ -adic non-adjacent form, see τNAFw

width-w non-adjacent form, see NAFw

Wiedemann’s method, 500–503, 517
Witt vector, 44

X

XOR, see exclusive disjunction

Y

Yacobi’s exponentiation method, 160
Yao’s exponentiation method, 165, 227

Z

Zariski topology, 46, 47
Zech’s logarithm, 33
ZEN, 201
zeta function, 134, 408, 422, 451
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