
Filling in the Gaps:

Modelling Negotiation in the TLS Protocol

BENJAMIN DOWLING AND DOUGLAS STEBILA

B. Dowling and D. Stebila 24/09/2015

Outline

1. Motivation

2. Negotiation in the TLS Protocol

3. Modelling negotiation in a provable security framework

4. Analysis of TLS ciphersuite and version negotiation

5. Conclusions

2

B. Dowling and D. Stebila 24/09/2015

Motivation

 TLS implementations have complex functionality

 Current analyses’ of TLS protocol do not cover all aspects

 Algorithmic agility is desired to increase interoperability

 However, interoperability can affect security

3

B. Dowling and D. Stebila 24/09/2015

Motivation

4

B. Dowling and D. Stebila 24/09/2015

Motivation

5

B. Dowling and D. Stebila 24/09/2015

Version Negotiation

6

’
ClientHello: version

ServerHello: version’

B. Dowling and D. Stebila 24/09/2015

Version Negotiation

7

’

ClientFinished

ClientHello: version

ServerHello: version’

ServerFinished

B. Dowling and D. Stebila 24/09/2015

Version Downgrade Dance

TLS 1.1

• Client attempts handshake

• Version Failure Response (unauthenticated)

TLS 1.0

• Client attempts handshake

• Version Failure Response (unauthenticated)

SSLv3

• Client attempts handshake

• Success! (but not really…)

8

B. Dowling and D. Stebila 24/09/2015

Version Downgrade Attacks

POODLE attack (Möller, Duong and Kotowicz, 2014)
◦ Utilizes downgrade to SSLv3

Signalling Cipher Suite Value (Möller and Langley, 2015)
◦ TLS extension to prevent downgrade attacks

9

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

ClientHello:
bad_ciphersuite,
good_ciphersuite

10

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

ClientHello’:
bad_ciphersuite

11

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

ServerHello:
bad_ciphersuite

12

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

Finished: good
ciphersuite,

bad_ciphersuite,

13

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

Finished’:
bad_ciphersuite

14

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

Finished:
bad_ciphersuite

15

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

Finished’: good
ciphersuite,

bad_ciphersuite

16

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

 FREAK attack – (Beurdouche, Bhargavan, Delignat-Lavaud, Fournet, Kohlweiss, Pironti,
Strub, Zinzindohoue, Zanella-Béguelin; 2015)

◦ Implementation errors allow the negotiation of Export-RSA despite no indicated support

 Logjam Attack – (Adrian, Bhargavan, Durumeric, Gaudry, Green, Halderman, Heninger,
Springall, Thomé, Valenta, VanderSloot, Wustrow, Zanella-Beguelin, and Zimmermann; 2015)

◦ Protocol logic misinterprets export-DHE shares as “normal” DHE shares

17

B. Dowling and D. Stebila 24/09/2015

Observations

 Clearly negotiation from a family of protocols can affect security of
the protocol as a whole

What can we say about the security of the collection of protocols?

18

B. Dowling and D. Stebila 24/09/2015

Talking ‘bout negotiation

 Treat the handshake as two phases:
◦ A negotiation phase: common to all handshake runs

◦ A sub-protocol phase: uses negotiated values to execute key-exchange/authentication, etc.

“Optimal” negotiation:
◦ Both parties have ordered list of elements/preferences

◦ Also have an “optimality function”
◦ Negotiation is optimal if they output same value and it’s the output of opt(list, list’)

19

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Negotiation Phase

20

B. Dowling and D. Stebila 24/09/2015

Version Negotiation Phase

21

B. Dowling and D. Stebila 24/09/2015

Version Negotiation Phase - Fallback

22

B. Dowling and D. Stebila 24/09/2015

Version Negotiation Phase - SCSV

23

B. Dowling and D. Stebila 24/09/2015

Using previous results

 Can see from downgrade attacks that security of the negotiation
relates to the authentication of transcript

 Negotiation-Authentication Theorem:
◦ Condition 1: All Negotiation Phase messages are in the session identifier

◦ Condition 2: If no modification of messages, negotiation always “optimal”
◦ Then:

24

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Negotiation “secure”

1. All negotiation messages contained in transcript

2. Ciphersuite negotiation optimal without active adversary

 If all ciphersuites result in secure authentication properties

then negotiating to any given ciphersuite is secure

25

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (no fallback) “secure”

1. All negotiation messages contained in transcript

2. Version negotiation optimal without active adversary

 If all versions result in secure authentication properties

then negotiating to any given version is secure

26

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ fallback) “secure”

1. All negotiation messages contained in transcript?

27

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ fallback) insecure

1. All negotiation messages contained in transcript?

28

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ fallback) insecure

1. All negotiation messages contained in transcript?

Negotiation occurs across multiple handshakes, session identifier

is only the transcript of the most recent handshake

29

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

1. All negotiation messages contained in transcript?

30

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

1. All negotiation messages contained in transcript?

Nope!

Can prove security more directly

31

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

32

Adversary Simulator Challenger

Version-No-FallbackVersion-SCSV

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

33

Send(…) Send(…)

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

34

ClientHello

Send(…) Send(…)

???

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

35

Send(…) Send(…)

!!!

fatal_error

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

36

Initialize 𝜋′fatal_error

ClientHello’

Fallback List: Session 𝜋 ∶ 𝜋’

ClientHello’

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

37

Fallback List: Session 𝜋 ∶ 𝜋’

Send(𝜋, …) Send(𝜋’, …)

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

38

Fallback List: Session 𝜋 ∶ 𝜋’

ClientHello-S

Unnecessary

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

39

 2 cases exist if successful adversary:
◦ Breaking a session on the Fallback-List

◦ Breaking a session not on the Fallback List

Each case bounds the success of the adversary with the success of
breaking ACCE authentication

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

1. All negotiation messages contained in transcript?

Nope!

Can prove security more directly

HOWEVER: Non-contiguous support of TLS version (i.e. supporting
1.2 and 1.0 but not 1.1) can break version negotiation with SCSV

40

B. Dowling and D. Stebila 24/09/2015

SCSV Non-Contiguous Example

ClientHello:

TLS 1.2

41

B. Dowling and D. Stebila 24/09/2015

SCSV Non-Contiguous Example

ClientHello:

TLS 1.2

42

Fatal_Handshake_Error

B. Dowling and D. Stebila 24/09/2015

SCSV Non-Contiguous Example

ClientHello:

TLS 1.0 – FALLBACK SCSV

43

B. Dowling and D. Stebila 24/09/2015

SCSV Non-Contiguous Example

ClientHello:

TLS 1.0 – fallback SCSV

44

Fatal_Handshake_ErrorInappropriate_fallback

B. Dowling and D. Stebila 24/09/2015

Conclusions

When considering negotiation security, think:

Additionally:

45

B. Dowling and D. Stebila 24/09/2015

Thanks!

Questions?

46

