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Motivation

 TLS implementations have complex functionality

 Current analyses’ of TLS protocol do not cover all aspects

 Algorithmic agility is desired to increase interoperability

 However, interoperability can affect security

3



B. Dowling and D. Stebila 24/09/2015

Motivation
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Version Negotiation
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’
ClientHello: version

ServerHello: version’
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Version Negotiation
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’

ClientFinished

ClientHello: version

ServerHello: version’

ServerFinished
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Version Downgrade Dance

TLS 1.1

• Client attempts handshake

• Version Failure Response (unauthenticated)

TLS 1.0

• Client attempts handshake

• Version Failure Response (unauthenticated)

SSLv3

• Client attempts handshake

• Success! (but not really…)
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Version Downgrade Attacks

POODLE attack (Möller, Duong and Kotowicz, 2014)
◦ Utilizes downgrade to SSLv3

Signalling Cipher Suite Value (Möller and Langley, 2015)
◦ TLS extension to prevent downgrade attacks
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Ciphersuite Downgrade Attacks

ClientHello: 
bad_ciphersuite, 
good_ciphersuite
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Ciphersuite Downgrade Attacks

ClientHello’: 
bad_ciphersuite
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Ciphersuite Downgrade Attacks

ServerHello: 
bad_ciphersuite
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Ciphersuite Downgrade Attacks

Finished: good 
ciphersuite, 

bad_ciphersuite,
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Ciphersuite Downgrade Attacks

Finished’: 
bad_ciphersuite
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Ciphersuite Downgrade Attacks

Finished: 
bad_ciphersuite
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Ciphersuite Downgrade Attacks

Finished’: good 
ciphersuite, 

bad_ciphersuite
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Ciphersuite Downgrade Attacks

 FREAK attack – (Beurdouche, Bhargavan, Delignat-Lavaud, Fournet, Kohlweiss, Pironti, 
Strub, Zinzindohoue, Zanella-Béguelin; 2015)

◦ Implementation errors allow the negotiation of Export-RSA despite no indicated support

 Logjam Attack – (Adrian, Bhargavan, Durumeric, Gaudry, Green, Halderman, Heninger, 
Springall, Thomé, Valenta, VanderSloot, Wustrow, Zanella-Beguelin, and Zimmermann; 2015)

◦ Protocol logic misinterprets export-DHE shares as “normal” DHE shares
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Observations

 Clearly negotiation from a family of protocols can affect security of 
the protocol as a whole

What can we say about the security of the collection of protocols?
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Talking ‘bout negotiation

 Treat the handshake as two phases:
◦ A negotiation phase: common to all handshake runs

◦ A sub-protocol phase: uses negotiated values to execute key-exchange/authentication, etc.

“Optimal” negotiation: 
◦ Both parties have ordered list of elements/preferences

◦ Also have an “optimality function”
◦ Negotiation is optimal if they output same value and it’s the output of opt(list, list’)
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Ciphersuite Negotiation Phase
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Version Negotiation Phase
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Version Negotiation Phase - Fallback
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Version Negotiation Phase - SCSV
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Using previous results

 Can see from downgrade attacks that security of the negotiation     
relates to the authentication of transcript

 Negotiation-Authentication Theorem: 
◦ Condition 1: All Negotiation Phase messages are in the session identifier

◦ Condition 2: If no modification of messages, negotiation always “optimal”
◦ Then: 
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Ciphersuite Negotiation “secure”

1. All negotiation messages contained in transcript

2. Ciphersuite negotiation optimal without active adversary

 If all ciphersuites result in secure authentication properties

then negotiating to any given ciphersuite is secure
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Version Negotiation (no fallback) “secure”

1. All negotiation messages contained in transcript

2. Version negotiation optimal without active adversary

 If all versions result in secure authentication properties

then negotiating to any given version is secure
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Version Negotiation (w/ fallback) “secure”

1. All negotiation messages contained in transcript?
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Version Negotiation (w/ fallback) insecure

1. All negotiation messages contained in transcript?
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Version Negotiation (w/ fallback) insecure

1. All negotiation messages contained in transcript?

Negotiation occurs across multiple handshakes, session identifier

is only the transcript of the most recent handshake
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Version Negotiation (w/ SCSV) “secure”

1. All negotiation messages contained in transcript?
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Version Negotiation (w/ SCSV) “secure”

1. All negotiation messages contained in transcript?

Nope!

Can prove security more directly
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Version Negotiation (w/ SCSV) “secure”
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Adversary Simulator Challenger

Version-No-FallbackVersion-SCSV
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Version Negotiation (w/ SCSV) “secure”
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Send(…) Send(…)
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Version Negotiation (w/ SCSV) “secure”
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ClientHello

Send(…) Send(…)

???
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Version Negotiation (w/ SCSV) “secure”
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Send(…) Send(…)

!!!

fatal_error



B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”
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Initialize 𝜋′fatal_error

ClientHello’

Fallback List: Session 𝜋 ∶ 𝜋’

ClientHello’
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Version Negotiation (w/ SCSV) “secure”
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Fallback List: Session 𝜋 ∶ 𝜋’

Send(𝜋, …) Send(𝜋’, …)
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Version Negotiation (w/ SCSV) “secure”
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Fallback List: Session 𝜋 ∶ 𝜋’

ClientHello-S

Unnecessary
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Version Negotiation (w/ SCSV) “secure”
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 2 cases exist if successful adversary:
◦ Breaking a session on the Fallback-List

◦ Breaking a session not on the Fallback List

Each case bounds the success of the adversary with the success of 
breaking ACCE authentication
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Version Negotiation (w/ SCSV) “secure”

1. All negotiation messages contained in transcript?

Nope!

Can prove security more directly

HOWEVER: Non-contiguous support of TLS version (i.e. supporting 
1.2 and 1.0 but not 1.1) can break version negotiation with SCSV
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SCSV Non-Contiguous Example

ClientHello:

TLS 1.2

41



B. Dowling and D. Stebila 24/09/2015

SCSV Non-Contiguous Example

ClientHello:

TLS 1.2
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Fatal_Handshake_Error
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SCSV Non-Contiguous Example

ClientHello:

TLS 1.0 – FALLBACK SCSV
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SCSV Non-Contiguous Example

ClientHello:

TLS 1.0 – fallback SCSV
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Fatal_Handshake_ErrorInappropriate_fallback
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Conclusions

When considering negotiation security, think:

Additionally:
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Thanks!

Questions?
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