
Filling in the Gaps:

Modelling Negotiation in the TLS Protocol

BENJAMIN DOWLING AND DOUGLAS STEBILA

B. Dowling and D. Stebila 24/09/2015

Outline

1. Motivation

2. Negotiation in the TLS Protocol

3. Modelling negotiation in a provable security framework

4. Analysis of TLS ciphersuite and version negotiation

5. Conclusions

2

B. Dowling and D. Stebila 24/09/2015

Motivation

 TLS implementations have complex functionality

 Current analyses’ of TLS protocol do not cover all aspects

 Algorithmic agility is desired to increase interoperability

 However, interoperability can affect security

3

B. Dowling and D. Stebila 24/09/2015

Motivation

4

B. Dowling and D. Stebila 24/09/2015

Motivation

5

B. Dowling and D. Stebila 24/09/2015

Version Negotiation

6

’
ClientHello: version

ServerHello: version’

B. Dowling and D. Stebila 24/09/2015

Version Negotiation

7

’

ClientFinished

ClientHello: version

ServerHello: version’

ServerFinished

B. Dowling and D. Stebila 24/09/2015

Version Downgrade Dance

TLS 1.1

• Client attempts handshake

• Version Failure Response (unauthenticated)

TLS 1.0

• Client attempts handshake

• Version Failure Response (unauthenticated)

SSLv3

• Client attempts handshake

• Success! (but not really…)

8

B. Dowling and D. Stebila 24/09/2015

Version Downgrade Attacks

POODLE attack (Möller, Duong and Kotowicz, 2014)
◦ Utilizes downgrade to SSLv3

Signalling Cipher Suite Value (Möller and Langley, 2015)
◦ TLS extension to prevent downgrade attacks

9

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

ClientHello:
bad_ciphersuite,
good_ciphersuite

10

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

ClientHello’:
bad_ciphersuite

11

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

ServerHello:
bad_ciphersuite

12

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

Finished: good
ciphersuite,

bad_ciphersuite,

13

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

Finished’:
bad_ciphersuite

14

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

Finished:
bad_ciphersuite

15

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

Finished’: good
ciphersuite,

bad_ciphersuite

16

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Downgrade Attacks

 FREAK attack – (Beurdouche, Bhargavan, Delignat-Lavaud, Fournet, Kohlweiss, Pironti,
Strub, Zinzindohoue, Zanella-Béguelin; 2015)

◦ Implementation errors allow the negotiation of Export-RSA despite no indicated support

 Logjam Attack – (Adrian, Bhargavan, Durumeric, Gaudry, Green, Halderman, Heninger,
Springall, Thomé, Valenta, VanderSloot, Wustrow, Zanella-Beguelin, and Zimmermann; 2015)

◦ Protocol logic misinterprets export-DHE shares as “normal” DHE shares

17

B. Dowling and D. Stebila 24/09/2015

Observations

 Clearly negotiation from a family of protocols can affect security of
the protocol as a whole

What can we say about the security of the collection of protocols?

18

B. Dowling and D. Stebila 24/09/2015

Talking ‘bout negotiation

 Treat the handshake as two phases:
◦ A negotiation phase: common to all handshake runs

◦ A sub-protocol phase: uses negotiated values to execute key-exchange/authentication, etc.

“Optimal” negotiation:
◦ Both parties have ordered list of elements/preferences

◦ Also have an “optimality function”
◦ Negotiation is optimal if they output same value and it’s the output of opt(list, list’)

19

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Negotiation Phase

20

B. Dowling and D. Stebila 24/09/2015

Version Negotiation Phase

21

B. Dowling and D. Stebila 24/09/2015

Version Negotiation Phase - Fallback

22

B. Dowling and D. Stebila 24/09/2015

Version Negotiation Phase - SCSV

23

B. Dowling and D. Stebila 24/09/2015

Using previous results

 Can see from downgrade attacks that security of the negotiation
relates to the authentication of transcript

 Negotiation-Authentication Theorem:
◦ Condition 1: All Negotiation Phase messages are in the session identifier

◦ Condition 2: If no modification of messages, negotiation always “optimal”
◦ Then:

24

B. Dowling and D. Stebila 24/09/2015

Ciphersuite Negotiation “secure”

1. All negotiation messages contained in transcript

2. Ciphersuite negotiation optimal without active adversary

 If all ciphersuites result in secure authentication properties

then negotiating to any given ciphersuite is secure

25

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (no fallback) “secure”

1. All negotiation messages contained in transcript

2. Version negotiation optimal without active adversary

 If all versions result in secure authentication properties

then negotiating to any given version is secure

26

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ fallback) “secure”

1. All negotiation messages contained in transcript?

27

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ fallback) insecure

1. All negotiation messages contained in transcript?

28

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ fallback) insecure

1. All negotiation messages contained in transcript?

Negotiation occurs across multiple handshakes, session identifier

is only the transcript of the most recent handshake

29

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

1. All negotiation messages contained in transcript?

30

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

1. All negotiation messages contained in transcript?

Nope!

Can prove security more directly

31

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

32

Adversary Simulator Challenger

Version-No-FallbackVersion-SCSV

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

33

Send(…) Send(…)

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

34

ClientHello

Send(…) Send(…)

???

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

35

Send(…) Send(…)

!!!

fatal_error

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

36

Initialize 𝜋′fatal_error

ClientHello’

Fallback List: Session 𝜋 ∶ 𝜋’

ClientHello’

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

37

Fallback List: Session 𝜋 ∶ 𝜋’

Send(𝜋, …) Send(𝜋’, …)

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

38

Fallback List: Session 𝜋 ∶ 𝜋’

ClientHello-S

Unnecessary

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

39

 2 cases exist if successful adversary:
◦ Breaking a session on the Fallback-List

◦ Breaking a session not on the Fallback List

Each case bounds the success of the adversary with the success of
breaking ACCE authentication

B. Dowling and D. Stebila 24/09/2015

Version Negotiation (w/ SCSV) “secure”

1. All negotiation messages contained in transcript?

Nope!

Can prove security more directly

HOWEVER: Non-contiguous support of TLS version (i.e. supporting
1.2 and 1.0 but not 1.1) can break version negotiation with SCSV

40

B. Dowling and D. Stebila 24/09/2015

SCSV Non-Contiguous Example

ClientHello:

TLS 1.2

41

B. Dowling and D. Stebila 24/09/2015

SCSV Non-Contiguous Example

ClientHello:

TLS 1.2

42

Fatal_Handshake_Error

B. Dowling and D. Stebila 24/09/2015

SCSV Non-Contiguous Example

ClientHello:

TLS 1.0 – FALLBACK SCSV

43

B. Dowling and D. Stebila 24/09/2015

SCSV Non-Contiguous Example

ClientHello:

TLS 1.0 – fallback SCSV

44

Fatal_Handshake_ErrorInappropriate_fallback

B. Dowling and D. Stebila 24/09/2015

Conclusions

When considering negotiation security, think:

Additionally:

45

B. Dowling and D. Stebila 24/09/2015

Thanks!

Questions?

46

