
W
H

ITE P
A

P
ER

:
ELLIP

TIC
 C

U
R

V
E C

R
Y

P
TO

G
R

A
P

H
Y

 (EC
C

)
C

ER
TIFIC

A
TES

 P
ER

FO
R

M
A

N
C

E A
N

A
LY

S
IS

Elliptic Curve Cryptography (ECC)
Certificates Performance Analysis

White Paper

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

2

Elliptic Curve Cryptography (ECC) Certificates
Performance Analysis

CONTENTS

Authors . 3

Introduction . 3

Purpose . . 3

Audience . . 3

Why ECC Certificates? . . 3

Algorithm Agility . 3

Security . . . 4

Scalability and Performance . 4

Compliance, Guidelines . 4

SSL/TLS Overview . . 4

SSL/TLS Basics . 4

SSL Cipher Suites . 5

How to Choose the Cipher Suites for your Web Server 6

Session Reuse and Why Does it Matter . 6

SSL Handshake Explained . 7

Security Bits/Security Strength Equivalence . 12

Test Methodology . . 12

Client Applications . 13

Web Servers . 13

Amazon EC2 Environment, AMIs and Instance Types 14

Test Strategy . 15

Tests and Analysis . 16

Server Performance Metrics (SEQUENTIAL) . 16

Client: Desktop Response Time Versus Throughput Metrics (DRVT) 17

Client: Mobile Response Time and Throughput Metrics (MRTT) 21

ECC Ubiquity . 23

References . 25

Appendix . . 25

Figures . 25

Tables . 25

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

3

Introduction

Purpose

The purpose of this exercise is to provide useful documentation on Elliptic Curve

Cryptography (ECC) based SSL/TLS certificates with an emphasis on comparison

with the ubiquitous RSA based certificates. The primary driver of this exercise and

the presentation of the accumulated data coincides with Symantec being the first

CA to support certificates based on ECC algorithms.

Audience

The audience of this document is the CIO, CISO, Administrator - either Web Server,

Network or IT, any actor responsible for enabling security and administering

security applications and those with stakes in performance, scalability and capacity

planning.

The audience is by no means, restricted. We try to provide an in depth appraisal of

ECC versus RSA and its implications on hardware resources along with conceptual

and empirical study of these two algorithms usage in SSL/TLS.

Why ECC Certificates?

Symantec is the first commercial Certificate Authority to sell certificates based on

ECC (Elliptical Curve Cryptography) algorithms. This next-generation algorithm

provides stronger security and better server utilization than current standard

encryption methods, but requires shorter key lengths. The result is increased

protection and a better customer experience.

Many other players in the IT security technology space are looking at ECC, and

starting to build it into their future development cycles. While at the time of this

publication RSA is still the standard for SSL/TLS encryption, given the changes

in root availability, guideline directives to change key sizes, and the improved

performance, it is clear that ECC is going to be a major factor in securing the

security ecosystem for years to come.

Algorithm Agility

Algorithm Agility is the practice of having multiple certificates available for

installation. Especially given the new guidelines to migrate from 1024-bit keys

to 2048-bit keys as of 1/1/20141, businesses need have the ability to choose the

right algorithm options that fit their needs. In parallel with the adjustment to the

minimum key size by NIST, the US Government has issued and adopted guidelines

for alternative algorithms for encryption and signing adding Elliptic Curve

Cryptography (ECC) and Digital Signature Algorithms (DSA)2.

1  Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths
2  FIPS: Digital Signature Standard (DSS)

Authors

Ajay Kumar, Antony Jerome, Gaurav Khanna, Hari Veladanda, Hoa Ly, Ning Chai,

Rick Andrews - May 2013

http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

4

Any organization should be able to choose between certificates that provide

protection based on the algorithm that suits their environment: RSA, ECC, or DSA.

This agility allows business owners to provide a broader array of encryption options

for different circumstances, infrastructure, and customer or partner groups.

The design of Transport Layer Security (TLS – formerly Secure Sockets Layer

or SSL) allows different algorithms to work either alone or side by side.

With algorithmic agility, organizations can choose the public key algorithm,

or combination of algorithms, that work best for their online presence and

infrastructure.

Security

While key lengths for current encryption methods using RSA increase exponentially

as security levels increase, ECC key lengths increase linearly. For example, 128-bit

security requires a 3,072-bit RSA key, but only a 256-bit ECC key. Increasing to

256-bit security requires a 15,360- bit RSA key, but only a 512-bit ECC key3. The

previously mentioned NIST guidelines stay abreast with the need for increasing

security. With such a favorable security per bit ratio, it is anticipated that ECC will

be the focus of planning for IT and their supplemental Security systems.

Scalability and Performance

Websites using ECC need fewer server processing cycles, allowing for more

simultaneous SSL/TLS connections and faster page loading.

Compliance, Guidelines

The ECC algorithm is endorsed by the NSA (National Security Agency), and is

compliant with the NIST 800-131A guidelines4. The curves used by Symantec for

ECC certificates are among those listed as acceptable for NSA Suite B5.

SSL/TLS Overview

SSL/TLS Basics

SSL and its successor, TLS, are security protocols that enable privacy, data

integrity6 between two communicating applications. For the remainder of

this document, we would use the terms SSL and TLS interchangeably unless

explicitly differentiated.

The SSL ecosystem was primarily developed for HTTP applications but that does

not preclude it and it is utilized for other protocols as well such as FTP, SMTP

etc. The SSL ecosystem along with the two parties comprises the Certification

Authorities such as Symantec, SSL bindings for the particular protocol such as

HTTPS or FTPS, other ancillary protocols such as OCSP (Online Certificate Status

Protocol)7 and CRLs to name a few. All the major browser clients, other mobile or

desktop clients and web servers implement the SSL protocol. We have utilized two

of the most popular web servers: Apache Web Server8 and Internet Information

Services9 ; for analyzing SSL made possible by RSA and ECC based certificates.

There is an abundance of resources that aid in understanding the protocol in

3  The ca se for Elliptic Curve Cryptography
4  Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths
5  NSA Suite B Cryptography
6  TLS 1.2, TLS 1.1, TLS 1.0
7  Online Certificate Status Protocol
8  Apache Web Server
9  IIS

http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://www.nsa.gov/ia/programs/suiteb_cryptography/
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc2246
http://www.ietf.org/rfc/rfc2560.txt
http://httpd.apache.org/
http://www.iis.net/

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

5

any amount of depth and some of the material is referenced at the end as well.

However we will delineate certain facets of the SSL protocol relevant to the

exercise such as:

1.	 We begin by describing cipher suites: what are they and the role they play.

2.	 Session Reuse and why does it matter?

3.	 The SSL Handshake with an emphasis on enabling forward secrecy10,

Utmost care has been taken to ensure the accuracy and veracity of the contents of

this document. If you have any questions on these aspects or feel the information is

incorrect, please contact us at hari_veladanda@symantec.com

SSL Cipher Suites

During a SSL handshake (covered in the next section), the client sends a set of

cipher suites it supports. The server will select a preferred cipher suite from the list

for the subsequent steps.

Cipher Suites are represented as 2 byte constants and specify the server

authentication algorithm, the key exchange algorithm, the bulk encryption

algorithm and the digest (message integrity) algorithm11.

For instance, for illustrative purposes only:

0xC0,0x0A - ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA

Enc=AES(256) Mac=SHA1

In the above example:

1.	 the 2 byte identifier is “0xC0,0x0A”,

2.	 The server authentication algorithm is “ECDSA” (Elliptic Curve DSA),

3.	 The key exchange algorithm is ephemeral “ECDH” (Ephemeral Elliptic Curve

DH)

4.	 The bulk encryption algorithm is “AES”

5.	 The MAC is “SHA1”

The cipher suite selected by the server during the SSL handshake depends on the

type of web server certificate, RSA or ECC, the client SSL protocol version, and the

cryptographic algorithms support by the both sides. A selection of a cipher suite

has a profound impact on server performance numbers and has particular security

implications as well.

10  SSL/TLS and Perfect Forward Secrecy by Vincent Bernat
11  Refer to Eric Rescorla’s “SSL and TLS”

http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
http://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

6

How to Choose the Cipher Suites for your Web Server

While specifying a list of cipher suites for your web server, it is recommended that

data is collected to answer the following questions:

1.	 What are the types of clients that connect to your server? For example: types

of browsers and their versions, desktop and mobile devices etc.

2.	 What is the SSL/TLS version that is commonly supported by all the myriad

clients and is it secure?

3.	 The security level of data – how confidential is it; will it need to be protected

years down the line? For instance, certain transactions need to be secured

and kept secured for an indefinite period of time whereas others do not.

4.	 Are the recommendations and outlines as published as in NSA Suite B and/

or are the best practices for selecting a cipher suite for the web server

being followed?

5.	 Are there any known vulnerabilities for a particular suite and are they

patched? If the vulnerability arises on a client then the mitigation

requires either disabling support for that client on the server or choosing

another suite.

6.	 Are the algorithms in the cipher suite supported by your server and

the clients?

In this section the terms “client” and “web browser” are interchangeable.

As of writing, TLS protocol version 1.0 is ubiquitous in support among the various

browsers12. Although there are reported vulnerabilities in this version but the

newer versions such as TLS v1.1 and TLS v1.2 are not widely supported. Proper

configuration is required to eliminate these vulnerabilities and needless to say that

is paramount in achieving the aims of SSL.

We recommend that the cipher suite that is chosen by your organization has

the characteristics elucidated in this section and we reiterate that utmost care

has to be taken to ensure that the server software is patched as per all known

vulnerabilities. For instance, if there is vulnerability in OpenSSL (that powers

Apache and Nginx SSL/TLS) that comes to the fore then it has to be acted upon

and patched.

Session Reuse and Why Does it Matter

The complete SSL Handshake process can be very expensive especially in cases

of mobile clients with comparatively lower hardware specifications as compared

to that of a desktop. Session resumption allows savings in CPU and network

roundtrips to secure a connection based on a “master secret” that has been agreed

upon in a prior handshake. This results in an abbreviated handshake with fewer

round trips between the client and the server and elimination of the CPU cycles

that are required for the public key cryptography steps required to generate the

“master secret” at either end.

12  TLS Survey by Tom Ritter

http://ritter.vg/p/2012-TLS-Survey.pdf

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

7

To enable session resumption, the server such as an Apache Web Server, can be

configured to host the session information per client or the client can cache the

same. The latter approach is explained in RFC 507713. Older clients require that the

server cache the session information14.

Session resumption benefits are especially conspicuous on high latency and lower

hardware specifications such as mobile devices.

SSL Handshake Explained

This section describes briefly what is involved at each steps of a successful SSL

handshake at a very high level; note that client authentication is omitted.

The SSL Handshake

In this section we will elucidate the SSL Handshake protocol in context of

Forward Secrecy.

Figure 1: Ephemeral Handshake

13  TLS Session Resumption without Server-Side State
14  Overclocking SSL

http://tools.ietf.org/html/rfc5077
http://www.imperialviolet.org/2010/06/25/overclocking-ssl.html

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

8

Steps:

1.	 To initiate a SSL session, the client sends a ClientHello message to the server.

The message consists of the client supported SSL protocol version, a set of

cipher suites it supports in descending preferred order, a stream of random

bytes, a set of extensions etc. One of the extensions is the elliptic_curve

extension15, which specifies a list of Elliptic curves the client can support.

Another extension, ec_point_formats, specifies if the client can support point

compression format.

2.	 Upon receiving the ClientHello request, the server selects a cipher suite

it supports from among the set sent by the client. For the purpose of this

exercise, the server when configured with a RSA certificate or an ECC

certificate and with a digitalSignature flag in its Key Usage extension, then the

selected cipher suite was ECDHE-RSA-WITH-AES256-SHA or ECDHE-ECDSA-

AES256-SHA.

The server response consists of multiple SSL messages:

The server sends a ServerHello message, which consists of the server

supported SSL version, the selected cipher suite, a random value generated by

the server, and a list of extensions. If the selected cipher suite is for ECC, then

extensions will contain a list of supported ec-point-formats. Both the client

and the server generated random numbers are saved later for master secret

generation.

This is followed by a Certificate message, which the server uses to convey

its server certificate chain to the client. The certificate chain selected by the

server reflects the server authentication portion of the chosen cipher suite.

This chain is used by the client for the server authentication purposes.

Since the server chooses ECDHE as the key exchange algorithm, it will

generate an ephemeral ECDHE key pair based on a server selected EC domain

parameter. To guard against man-in-the-middle attack, the ephemeral ECDH

public key and the domain parameters are signed by the server’s private key

(which corresponds to the public key in the server certificate). The ephemeral

ECDH public key, domain parameters, and the signature block are sent to the

client through the ServerKeyExchange message.

To conclude the cipher negotiation step, the server sends a ServerHelloDone.

3.	 The session cipher suite is established once the client receives the ServerHello

message. The client validates the server certificate, based on the certificate

chain it received from the server Certificate message, chaining up to a trusted

root certificate. To guard against man-in-the-middle attacks, a SSL client

application should consider the following as a part of the certificate chain

validation: a) Certificate status at each certificate level in the hierarchy must

be checked against CRL or OCSP to ensure that the target certificate has not

15  ECC Cipher Suites for TLS

https://tools.ietf.org/html/rfc4492

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

9

been revoked; b) the certificate’s validity period should also be checked to

make sure that none of the certificates has expired; and c) the web server

domain name in the server certificate, certificate extensions, etc should

be validated as well. Note that the domain name in the server certificate

may contain a wildcard character, which must be taken into account when

validating the certificate.

Once the server certificate is validated, the client uses the public key in

the server certificate to validate the signature in the ServerKeyExchange

message. If the signature is validated, the client generates an ECDH ephemeral

key pair from the EC domain parameter sent in the ServerKeyExchange

message. The client ECDH ephemeral public key is sent to the server in a

ClientKeyExchange.

To complete the ClientKeyExchange, the client performs an ECDH operation

to generate the premaster secret. The premaster secret, client and server

generated random bytes, and an identifier label will be used by both the client

and the server to generate the same master secret independently. The master

secret is then used to generate all cryptography keys: bulk data encryption

keys, MAC keys, IV if using CBC encryption mode.

After a successful key exchange operation, the client will send a

ChangeCipherSpec message to inform the server that key exchange has been

completed successfully. From this point on, all subsequent messages will be

encrypted and authenticated. To guard against a man-in-the-middle attack,

a final EncryptedHandshakeMessage is sent to the server. The message

contents contain the MAC of all handshake messages which have been sent

and received, using the negotiated encryption and authentication parameters.

4.	 When the server receives the ClientKeyExchange message, it performs an

ECDH operation to generate the same premaster secret. It goes through the

same process as described in step 3 above to independently generate the same

set of cryptographic keys and IV. A ChangeCipherSpec message is sent to the

client, followed by an EncryptedHandshakeMessage.

The SSL handshake process is done once both sides verify the

EncryptedHandshakeMessage successfully.

5.	 All subsequent data transmissions are encrypted and authenticated. A MAC

of the TLS header and data block are created. The TLS header, data block,

encryption padding (if exists), MAC, etc. are encrypted using the bulk data

encryption key before it’s sent through the wire.

In our tests, we have consciously made a decision to utilize ephemeral ECDH as

the key exchange algorithm and AES as the bulk encryption algorithm. The

following reasons, in addition to those of performance and security, are provided

for this decision:

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

10

1.	 Ephemeral ECDH provides for perfect forward secrecy. It also has speed

advantages as compared to EDH (Ephemeral Diffie-Hellman).

2.	 Since we are drawing a comparison between RSA and ECC based certificates,

the authentication algorithms are RSA and ECDSA respectively. ECDSA is a

component in NSA’s Suite B and is a recommended authentication method

as per NIST16.

3.	 The bulk encryption algorithm is AES256 and AES is a standard adopted by

NIST and NSA (Suite B).

Please note that TLS protocol version 117 is the basis of all testing. This is the

ubiquitous version as of writing this article.18

Based on the considerations so outlined, we arrive at the cipher suites that were

utilized for our tests:

1.	 ECDHE-ECDSA-AES256-SHA (0xC0,0x0A)

2.	 ECDHE-RSA-AES256-SHA (0xC0,0x14)

Our tests do not include OCSP or CRL checks and client authentication is not

factored in.

The following table specifies the public-key cryptographic operations in the

handshake based on these cipher suites.

Table 1: Public Key Cryptographic Operations

Client Server

RSA RSA
verify

 + RSA
verify

 + ECDHE
op

ECDHE
op

 + RSA
sign

ECDSA ECDSA
verify

 + ECDSA
verify

 +

ECDHE
op

ECDHE
op

 + ECDSA
sign

Here, an ECDHEop implies the generation of the shared premaster secret and

RSA
verify

 and ECDSA
verify

 are different operations to verify the Server’s certificate as

well as verify the signed ECDHE key from the server (this signing by the server is

denoted by RSA
sign

 and ECDSA
sign

 respectively). There is a cost of generation of the

key-pair for ECDHE at both sides as well (not shown in the table).

16  FIPS: Digital Signature Standard (DSS)
17  TLS Protocol Version 1.0
18  TLS Survey by Tom Ritter

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://www.ietf.org/rfc/rfc2246.txt
http://ritter.vg/p/2012-TLS-Survey.pdf

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

11

The certificates utilized in our tests have the following hierarchies:

Table 2: Certificate Hierarchies

RSA:

1.	 RSA 2048 root CA, RSA 2048 intermediate CA and RSA 2048 end-entity

certificate. We will use the term “RSA-2048” to refer to this configuration

of the certificate hierarchy.

2.	 RSA 3072 root CA, RSA 3072 intermediate CA and RSA 3072 end-entity

certificate. We will use the term “RSA-3072” to refer to this configuration

of the certificate hierarchy.

ECC:

1.	 ECC P-384 root CA, ECC P-256 intermediate CA and ECC P-256 end-entity

certificate. We will use the term “ECC-256” to refer to this configuration of

the certificate hierarchy.

Consequently - as per the certification hierarchy above - during the certificate

verification process at the client there would be one more verify operation (not

shown in the table above) and that would be the root CA verifying the signature of

the intermediate CA.

The following table demarcates the OpenSSL 1.0.1c “speed”19 numbers for

RSA 2048 bits, ECC P-246 and P-384 bits. And OpenSSL is the enabler for SSL

communications for Apache Web Server – one of the two web servers (the other

being IIS) used to gather numbers for this exercise on the Linux OS. One can draw

an inference based on the time requirements in the “sign” column and data in the

Public Key Cryptographic Operations in an SSL Handshake table that ECC has an

inherent advantage on the server where the signing takes place. For instance, for a

XLarge server instance, ECC P-256 bit sign operation is approximately 7% of RSA

2048 sign operation. However for a verify operation that occurs on the client, ECC

P-256 is 566% of RSA 2048.

Table 3: OpenSSL 1.0.1c Speed Numbers with 64 bit ECC Optimizations

Certificate

type

XLarge (c1.xlarge) Medium (c1.medium)

Sign Verify Sign/s Verify/s Sign Verify Sign/s Verify/s

RSA 2048

bits

0.002860s 0.000090s 349.7 11092.7 0.002925s 0.000092s 341.9 10863.7

256 bit

ECDSA

(nistp256)

0.0002s 0.0005s 4656.1 1848.7 0.0002s 0.0006s 4492.4 1773.6

384 bit

ECDSA

(nistp384)

0.0004s 0.0020s 2341.2 487.9 0.0004s 0.0021s 2269.4 470.2

19  OpenSSL speed manual page

https://www.openssl.org/docs/apps/speed.html

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

12

Security Bits/Security Strength Equivalence

The following table specifies the comparable key sizes for symmetric and

asymmetric cryptosystems based on equivalent security strengths. For instance: a

256 bit ECC key provides equivalent security as compared to a 3072 bit RSA key.

And also note that the root CA for the ECC-256 end-entity certificate has a key size

of 384 bits.

Table 4: Comparable Key Sizes20

Symmetric Key Size (bits) RSA, DSA and Diffie-

Hellman Key Size (bits)

Elliptic Curve Key

Size (bits)

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 521

Test Methodology

The methodology that was followed is explained in the following sections. We

planned to determine the relative differences in a SSL handshake between a client

and a server configured with either a RSA or an ECC based server certificate.

The primary difference that is articulated herein is that due to the public-key

cryptographic algorithms (as in RSA or ECC). Consequently, we kept the symmetric

bulk encryption algorithm and the digest algorithm to be similar in each of the

two cipher suites associated with these two algorithms. Please note the choice

of ephemeral ECDH in the key exchange was due to the forward secrecy that it

provides and we do see a popular move towards this as well.

Another aim of the exercise was to present a realistic assessment of the SSL

handshake and therefore we consciously made certain decisions including

running the tests with TLS v1.0 (due to that being supported across the wide

variety of browsers and servers), running the servers under varying degrees of

load, allowing fetches (HTTP GETS) of resources of varying sizes and 68% session

reuse21 (2 out of 3 handshakes reuse the previous SSL state). We also ran the tests

in an environment and model that is gaining in popularity and is easily available to

enable the reader to repeat the tests: Amazon EC2.

A “complete handshake” includes certificate chain verification and this in turn

encompasses the process in which the trusted root verifies the intermediate that in

turn verifies the end-entity certificate. This verification is built-in the applications

that are used in the test. The complete handshake also includes the operations that

were specified in the table on Public Key Cryptographic Operations as well.

20  The case for Elliptic Curve Cryptography
21  Revisiting SSL: A Large Scale Study of the Internet’s Most Trusted Protocol

http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.icsi.berkeley.edu/pubs/techreports/ICSI_TR-12-015.pdf

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

13

Client Applications

We have utilized two different client applications for the test:

1.	 JMeter 2.822 : The JMeter application was utilized to put the web server

under varying degrees of load and was configured with a ThreadGroup

containing a HTTPRequest sampler that utilizes HttpClient4 and HTTPS to

retrieve different sized files through a HTTP GET operation. The program

utilizes the JSSE framework and the chain verification process within the

ambit of it. We updated the source to include support for specifying a cipher

suite, configuring it to disable session reuse so each request is a complete

SSL handshake and enabling parameterized session reuse value as well.

For instance: the program can be configured to enable 68% session reuse

(2 out of 3 handshakes are abbreviated). The JMeter application was also

updated to enable chain verification by including a call to the underlying

TrustManager implementation to verify the server’s certificate. We also

disabled Nagle’s Algorithm to simulate browsers and to eliminate the wait

on the client to transmit a 1 byte ChangeCipherSpec message. For the

remainder of this document we would refer to an instance running JMeter as

a desktop client.

2.	 Android program: This program was created utilizing the Android SDK and

was deployed to a Samsung Galaxy SIII mobile device with LTE. The program

had similar specifications as JMeter as in the Nagle’s algorithm was also

disabled, it is programmed to choose a cipher suite, disable or enable

session reuse and enable chain verification.

Both these programs disabled OCSP and CRL checks as well as any hostname

validation.

Web Servers

The web server be it Apache or IIS was configured with the corresponding

certificate for which the test was to be run. Since the Apache web server running

on a Linux instance is dependent on OpenSSL for providing HTTPS support, we

enabled the ECC optimizations23 in this version of OpenSSL.

The Apache web server version 2.4.3 was deployed on a RedHat Enterprise Linux

6.3 AMI (Amazon Machine Image)24. The reason we chose this version for Apache

was that ECC as an authentication mechanism is available in the 2.4.x codebase

without it needing to be patched in. This image had been updated to use OpenSSL

v1.0.1c with the ECC optimization patches as previously mentioned. Although this

version of Apache allows configuration of multiple certificates simultaneously, the

certificates were configured one at a time.

The IIS web server v8 was utilized for the Windows platform tests and it was

deployed on a Win 2012 RTM Standard Edition image25. The certificates were

configured through bindings to port 443 one at a time as well.

22  Apache JMeter
23  64-bit ECC Optimizations
24  Red Hat AMI ID ami-cc5af9a5 (x86_64)
25  Windows AMI ID ami-7663f01f (x86_64)

http://jmeter.apache.org/
http://www.openssl.org/news/changelog.html

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

14

The desktop client was also built on the same image as the Apache web server and

its runtime environment was JDK 7u10. The JMeter application was setup to trust

the roots of the certificate hierarchies. For instance: the ECC P-384 root, the RSA

2048 root and the RSA 3072 root.

Files of different sizes were retrieved while running the tests. The desktop client

was setup to retrieve files of varying sizes:

1.	 0K => empty file, this essentially implies a zero size payload not including

the HTTP response packet with the headers. A payload of essentially size 0

bytes

2.	 200K

3.	 1200K

The android program retrieved a 90K file.

From information sourced from HttpArchive26 and others27, it was determined that

the size of the page (on the wire) is around 1.2M and an average browser creates

6 connections to a host28 and consequently that has determined the size of the

files utilized in the tests. It is of course, a pertinent question as to why regular web

pages of these transfer sizes not created. We utilized a monolithic text page instead

of html and its constituents for keeping the experiment simple and the variables

limited.

Amazon EC2 Environment, AMIs and Instance Types

The Amazon EC2 environment was setup that included a VPC to host the test setup

with all of the instances including the desktop clients and the servers. The tenancy

of the instances was specified to be “dedicated” and CloudWatch monitoring was

configured to be “detailed”. CloudWatch was thereafter the source for the “Average

CPU Utilization”, “Max Network In” and “Max Network Out” statistics. The instance

types29 were selected based on certain criteria and that is collected below.

1.	 High-CPU Medium Instance: Almost all servers were of this type unless

otherwise stated. The primary reason is to saturate the server in terms of

CPU Utilization before saturating the network pipe or any other resource.

Also an ancillary benefit is that the numbers of clients that are required to

do that are reduced as well.

2.	 High-CPU Extra Large Instance: All the desktop clients were of this type. We

made sure that the client was not a throttling factor by involving a multiple

number of clients in tests that were to saturate the server.

26  HttpArchive
27  Web Performance Today
28  BrowserScope
29  Amazon EC2 Instance Types

http://httparchive.org/
http://www.webperformancetoday.com/2012/11/15/average-web-page-grows-20-percent/
http://www.browserscope.org/%3Fcategory%3Dnetwork
http://aws.amazon.com/ec2/instance-types/

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

15

We have seen a number of companies moving on or having some presence on cloud

computing platforms - Amazon EC2 and other cloud computing platforms have

become popular. We selected EC2 to be the platform to run our experiments on

also due to easy availability of an environment for our readers to repeat the tests if

wished. An underlying goal of the entire exercise was to capture realistic conditions

such as the servers running under different loads with numerous clients; for tests

that included the mobile device, the tests were run on the ATT LTE network.

The specification for the instance types and their usage is in the following table.

For the remainder of this document, we would refer to “c1.xlarge” as XLarge and

“c1.medium” as Medium.

Table 5: Amazon AMIs and Instance Types

Linux /

Win

OS version Instance Type Apache

/ IIS

version

JMeter /

Client

Server Linux Red Hat

Enterprise

Linux Server

release 6.3

64 bit

High-CPU Extra

Large Instance

(c1.xlarge)

And High-CPU

Medium Instance

(c1.medium)

Apache

2.4.3

-

Server Win Windows

Server 2012

64 bit

High-CPU Extra

Large Instance

(c1.xlarge)

And High-CPU

Medium Instance

(c1.medium)

IIS 8 -

Client –

Desktop

Linux Red Hat

Enterprise

Linux Server

release 6.3

64 bit

High-CPU Extra

Large Instance

(c1.xlarge)

- JMeter 2.8

with updates

Client -

Mobile

Android JellyBean aka

Android 4.1.1

Samsung Galaxy

S III

- Android

program

created for

the tests

Test Strategy

The strategy encompasses configuration of the server (be it IIS or Apache)

with a certificate and the appropriate intermediates. There are three certificates

utilized in the tests: one for ECC and two for RSA and the server was configured

consecutively with each. We ran three kinds of experiments through the

desktop clients:

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

16

1.	 Server Performance Metrics (Sequential): This test specified sequential

invocations through a single client and subsequent retrieval of the statistics

at the SSL layer using the SSLDump30 utility. All the tests involved packet

capture (tcpdump on Linux, WireShark on Win) and that was utilized to

extract SSL messages through the SSLDump utility and extracted the time

associated with the server transactions across a large number of iterations.

We gathered the “total server time” that included the time printed for the

server messages and we excluded any SSL client messages. However we

limited our parsing to the output generated by SSLDump. The resulting SSL

traffic captured by SSLDump utility was parsed utilized a python script.

The server transactions include steps that originate at the server in the SSL

handshake (Server Hello, Certificates… Finished) and the actual payload

(application_data). There was zero session reuse in this experiment. The

server was very lightly loaded due to a singular client being the source of

sequential invocations to the server.

2.	 Client: Desktop Response Time versus Throughput Metrics (DRVT): A test

of this type loaded the server by running the same transaction concurrently

through multiple clients and gathering latency (response time) and

throughput at the client. Data points in the test were gathered by generation

of incrementally increasing levels of load on the server till the server was

saturated in terms of the CPU resource. The statistics gathered were at 0 %

and 68% session reuse. An instance of a transaction encompasses loading

the server to a particular CPU and resource utilization, waiting for the

throughput and response time to stabilize and then collecting the statistics.

The steps were repeated at incremental levels of server resource utilization.

3.	 Client: Mobile Response Time and Throughput Metrics (MRTT): A test of

this type coincided with the DRVT tests. When the DRVT tests had loaded

the server to a particular utilization level, this test was initiated and results

accumulated over many different runs over different server loads. The

android program performed sequential invocations on the ATT LTE network

and displays the average response time based on the cipher suite selected.

The corresponding throughput was the actual throughput achieved when

simultaneously loading the server with DRVT tests (200K GET for Apache

and IIS with 0% session reuse). An example of a transaction includes

utilizing the DRVT to load the server and then running the mobile application

by specifying the IP address of the web server, the cipher suite, the number

of iterations, the file to GET and the session reuse percentage and collecting

the response time. We utilized a session reuse value of 68%.

Tests and Analysis

Server Performance Metrics (SEQUENTIAL)

The tests were performed on two large instances. Two different cipher suites as

we detailed earlier with 2 different authentication algorithms are utilized in this

test case:

1.	 For ECC: the cipher suite is ECDHE-ECDSA-AES256-SHA (0xC0,0x0A)

2.	 For RSA: the cipher suite is ECDHE-RSA-AES256-SHA (0xC0,0x14)

30  SSLDump

http://www.rtfm.com/ssldump/

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

17

We see that ECC-256 hierarchy outperforms RSA-2048 and RSA-3072 irrespective

of the file sizes (the 90K and 200K sized files).

Figure 2: Server Time

Client: Desktop Response Time Versus Throughput Metrics (DRVT)

Here we capture the test strategy (on this page) that encompasses load tests. The

entries in table below and the sections below explicate the tests that were run. For

instance: test “0K GET with 0% reuse” was run on the a XLarge desktop Client with

an XLarge server and was run for both Apache and IIS web servers with 0% session

reuse that implies that each SSL handshake was a complete handshake and not an

abbreviated one.

Also note that a 0K file does not specify an empty payload – there were still HTTP

headers transmitted in the process.

Table 6: Test Cases and Scenarios

Test Specifications Web

Server

Session

Reuse %

File

SizeDesktop

Client

Server

0K GET with 0%

reuse

XLarge XLarge IIS 0% 0K

Apache

200K GET with

0% reuse

XLarge Medium IIS 0% 200K

Apache

200K GET with

68% reuse

XLarge Medium IIS 68% 200K

Apache

1200K GET with

0% reuse

XLarge Medium IIS 0% 1200K

Apache

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

18

0K GET with 0% Reuse

With 0% session reuse and the implication of each handshake being a full

handshake with the required CPU processing involved, we have seen the limits of

CPU saturation on the instance running Apache and for RSA-3072 was reached at

around 500 requests per second, for RSA-2048 it was around 1300 and ECC-256

proved to be resilient till 2800. The salient point is that ECC-256 was able to cope

with a much higher number of transactions. Although the underlying data points,

as in throughput and latency, were different for both Apache and IIS the inference

drawn was the same and in favor of ECC-256. Note that ECC-256 is considered to

be as secure as RSA-3072 as per the table in the “Security Bits / Security Strength

equivalence” section.

Figure 3: 0K GET with 0% reuse - Apache

Figure 4: 0K GET with 0% reuse - IIS

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

19

200K GET with 0% reuse

The reason for hosting the web server on a Medium instance was to provide for

a reduced the number of clients to be able to saturate the server in terms of CPU

utilization. The results are in line with the “0K GET with 0% reuse”.

Figure 5: 200K GET with 0% reuse - Apache

Figure 6: 200K GET with 0% reuse - IIS

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

20

200K Get with 68% Reuse

A session reuse of 68% results in 2 out of 3 handshakes being abbreviated. The

average response time drops vis-à-vis the test in the preceding section. Also the

throughput increases and the saturation gap between the three narrows as well. If

session reuse percentages are increased and the graphs plotted, we will witness a

narrowing gap.

Figure 7: 200K GET with 68% reuse - Apache

Figure 8: 200K GET with 68% reuse - IIS

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

21

1200K Get with 0% Reuse

An interesting phenomenon is observed in case of Apache where the network

pipe gets saturated for ECC-256 and RSA-2048 but the CPU utilization limits are

reached for RSA-3072. For IIS, the CPU utilization limits are reached for all three.

Figure 9: 1200K GET with 0% reuse - Apache

Figure 10: 1200K GET with 0% reuse – IIS

Client: Mobile Response Time and Throughput Metrics (MRTT)

Here, the aim was to collect the response times of a transaction that was initiated

through a mobile device. More details on this page.

Test Specifications Web

Server

Session Reuse % File

SizeDesktop

Client

Server

90K GET with 68%

reuse on Mobile

XLarge Medium Apache 68% 90K

IIS

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

22

90K Get with 68% Reuse on Mobile

The mobile tests have a dependency on the mobile/wireless provider (AT&T LTE)

network and that is a variant and therefore numbers captured here are likely to

change on subsequent tests. We had run these tests a multitude of times and a

general trend was observed in that RSA beats ECC and this was confirmed by the

response time numbers clocked on the mobile device. That is emphasized through

the inclusion of the following graphs.

From these, we do see the effect of the vagaries of LTE traffic but a pattern is

observed in which RSA (both RSA-2048 and RSA-3072) outperforms ECC-256. This

can be attributed to the effect of the public-key cryptographic operations that are

more intensive on the client for ECC-256.

Figure 11: 90K GET with 68% - Apache

Figure 12: 90K GET with 68% - IIS

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

23

ECC Ubiquity

ECC has found ubiquitous support across a wide variety of cryptographic engines

and utilities. A subset of those is provided below. If you have an addition to this list,

please contact us at hari_veladanda@symantec.com

Table 7: Cryptographic Libraries which Support ECC

Library Version References

NSS 3.11 onwards ECC TLS Ciphers supported since version 3.11

http://www.mozilla.org/projects/security/pki/

nss/nss-3.11/nss-3.11-algorithms.html

(TLS ECC cipher suites are listed in the 3.11,

ECC support contributed by Sun was added

in 3.8)

NSS 3.8 Plan (with details on ECC

implementation)

http://www.mozilla.org/projects/security/pki/

nss/nss-3.8/nss-3.8-plan.html

NSS 3.8 Release Notes

http://www.mozilla.org/projects/security/pki/

nss/nss-3.8/nss-3.8-release-notes.html

Mozilla Bug 195135 - Add support for Elliptic

Curve Cryptography to NSS & SSL

https://bugzilla.mozilla.org/show_bug.

cgi?id=195135

OpenSSL 1.0 onwards OpenSSL change log

http://www.openssl.org/news/changelog.html

(64-bit optimized ECC implementations were

added in version 1.0.1)

MS Crypto

API NG

Windows

Server 2008,

Windows

Vista and

above

Runtime requirements

http://msdn.microsoft.com/en-us/library/

windows/desktop/aa376210(v=vs.85).aspx

Details on ECC support

http://msdn.microsoft.com/en-us/library/

windows/desktop/bb204775(v=vs.85).aspx

BouncyCastle 1.32 onwards Support added for SEC/NIST elliptic curves in

version 1.32.

http://www.bouncycastle.org/releasenotes.html

(Elliptic curve support starting with version

1.04)

mailto:hari_veladanda@symantec.com
http://www.mozilla.org/projects/security/pki/nss/nss-3.11/nss-3.11-algorithms.html
http://www.mozilla.org/projects/security/pki/nss/nss-3.11/nss-3.11-algorithms.html
http://www.mozilla.org/projects/security/pki/nss/nss-3.11/nss-3.11-algorithms.html
http://www.mozilla.org/projects/security/pki/nss/nss-3.8/nss-3.8-plan.html
http://www.mozilla.org/projects/security/pki/nss/nss-3.8/nss-3.8-plan.html
http://www.mozilla.org/projects/security/pki/nss/nss-3.8/nss-3.8-plan.html
http://www.mozilla.org/projects/security/pki/nss/nss-3.8/nss-3.8-release-notes.html
http://www.mozilla.org/projects/security/pki/nss/nss-3.8/nss-3.8-release-notes.html
http://www.mozilla.org/projects/security/pki/nss/nss-3.8/nss-3.8-release-notes.html
https://bugzilla.mozilla.org/show_bug.cgi?id=195135
https://bugzilla.mozilla.org/show_bug.cgi?id=195135
https://bugzilla.mozilla.org/show_bug.cgi?id=195135
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

24

Library Version References

JSSE 6 onwards Supports ECC cipher suites as per RFC 4492:

http://docs.oracle.com/javase/6/docs/

technotes/guides/security/SunProviders.

html#SupportedCipherSuites

BSAFE 4.0 The following press releases indicate that ECC

support was added from BSAFE 4.0

http://www.rsa.com/press_release.aspx?id=590

http://www.rsa.com/press_release.aspx?id=544

We have also tested with various browser versions and all of them except Safari do

support ECC based cipher suites. The following table captures the browser support

matrix. The aim was to demonstrate ECC cipher suite support by major browsers

and the results from sampling of a few versions is provided.

Table 8: Browser Support Matrix

IE Firefox Chrome

Win-7 Works (IE 8

and IE 9)

Works (FF 19) Works (Chrome 25)

Win

Vista

Works (IE9,

IE8, IE7)

Works (FF 19) Works (Chrome 25)

Win

XP

Unsupported Works (FF 19) Unsupported

Linux Not Available * Works (FF 11 on RHEL 5.1)

* According to https://wiki.mozilla.

org/NSS:Versions NSS 3.11 has

been used by FF since FF 2.0.0.14

Mac Not Available

(last version

is IE5)

Works (FF 19) Works (Chrome 25)

Mobile Devices:

•	 Chrome on Android

•	 iPhone 4 Safari doesn’t include it

•	 Blackberry doesn’t include it

http://docs.oracle.com/javase/6/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/6/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/6/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/6/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
https://wiki.mozilla.org/NSS:Versions
https://wiki.mozilla.org/NSS:Versions

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

25

References

SSLDump

http://www.rtfm.com/ssldump/

The SSLDump 0.9b3 version is utilized to delineate SSL traffic on HTTP (HTTPS).

It operates on the packet capture either through tcpdump on Linux or WireShark on

windows.

SSL and TLS

http://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983

Eric Rescorla (For an in-depth study of SSL)

Implementing SSL/TLS using Cryptography and PKI

http://www.amazon.com/Implementing-SSL-TLS-Using-Cryptography/

dp/0470920416

Joshua Davies

Appendix

Figures

Figure 1: Ephemeral Handshake . 7

Figure 2: Server Time . 17

Figure 3: 0K GET with 0% reuse - Apache . 18

Figure 4: 0K GET with 0% reuse - IIS . . 18

Figure 5: 200K GET with 0% reuse - Apache . 19

Figure 6: 200K GET with 0% reuse - IIS . 19

Figure 7: 200K GET with 68% reuse - Apache . 20

Figure 8: 200K GET with 68% reuse - IIS . 20

Figure 9: 1200K GET with 0% reuse - Apache . 21

Figure 10: 1200K GET with 0% reuse – IIS . . 21

Figure 11: 90K GET with 68% - Apache . 22

Figure 12: 90K GET with 68% - IIS . . 22

Tables

Table 1: Public Key Cryptographic Operations . . 10

Table 2: Certificate Hierarchies . 11

Table 3: OpenSSL 1.0.1c Speed Numbers with 64 bit ECC Optimizations 11

Table 4: Comparable Key Sizes20 . 12

Table 5: Amazon AMIs and Instance Types . . 15

Table 6: Test Cases and Scenarios . . 17

Table 7: Cryptographic Libraries which Support ECC . . 23

Table 8: Browser Support Matrix . 24

http://www.rtfm.com/ssldump/
http://www.rtfm.com/ssldump/
http://www.amazon.com/Implementing-SSL-TLS-Using-Cryptography/dp/0470920416
http://www.amazon.com/Implementing-SSL-TLS-Using-Cryptography/dp/0470920416
http://www.amazon.com/Implementing-SSL-TLS-Using-Cryptography/dp/0470920416

More information:

Visit our website

http://go.symantec.com/ssl-certificates/

To speak with a Product Specialist in the U.S.

Call 1 (866) 893-6565 or 1 (650) 426-5112

To speak with a Product Specialist outside the U.S.

For specific country offices and contact numbers, please visit our website.

About Symantec

Symantec protects the world’s information, and is a global leader in security,

backup and availability solutions. Our innovative products and services protect

people and information in any environment – from the smallest mobile device, to

the enterprise data center, to cloud-based systems. Our world-renowned expertise

in protecting data, identities and interactions gives our customers confidence

in a connected world. More information is available at www.symantec.com or by

connecting with Symantec at: go.symantec.com/socialmedia.

Symantec Corporation World Headquarters

350 Ellis Street

Mountain View, CA 94043 USA

1 (800) 721 3934

www.symantec.com

Copyright © 2013 Symantec Corporation. All rights reserved. Symantec, the Symantec Logo, and the Checkmark Logo are trademarks or registered trademarks of Symantec Corporation or its affiliates in
the U.S. and other countries. Other names may be trademarks of their respective owners.

White Paper: Elliptic Curve Cryptography (ECC) Certificates Performance Analysis

UID:202/06/13

http://go.symantec.com/ssl-certificates/
http://www.symantec.com
http://www.go.symantec.com/socialmedia
http://www.symantec.com

