

New Tricks For Defeating SSL In
Practice

Moxie Marlinspike
moxie@thoughtcrime.org

The Back Story

SSL And Certificate Chaining

You probably know what they do...

More specifically...

CA Certificate

Site
Certificate

 Embedded in browser.
 All powerful.
 Certifies that a site certificate is
 authentic.

Identifies a particular URL
Is known to be authentic based
on CA Certificate's signature.

CA Certificate

Site
Certificate

 Embedded in browser.
 All powerful.
 Certifies that an intermediate
 CA is authentic.

Identifies a particular URL
Is known to be authentic based
on CA Certificate's signature.

Intermediate
CA Not embedded in browser.
 Still sort of all-powerful.
 Certifies that a site certificate is
 authentic.

Certificate Chains Can Be > 3

Root CA

Intermediate

Intermediate

Intermediate

Leaf

How do we validate these things?

Almost everyone tells you the
same story.

What they say:

Verify that the leaf node has the name of the site
you're connecting to.

Verify that the leaf node hasn't expired.

Check the signature.

If the signing certificate is in our list of root CA's,
stop.

Otherwise, move one up the chain and repeat.

Here Be Dragons

Very tempting to use a
simple recursive
function.

Everyone focuses on the
signature validation.

The result of a naïve
attempt at validation is
a chain that is complete,
but nothing more.

What if...

Root CA

Intermediate

Intermediate

Leaf
(blueanarchy

.org)

What if...

Root CA

Intermediate

Intermediate

Leaf
(blueanarchy

.org)

Leaf
(paypal.com)

What they say:

Verify that the leaf node has the name of the site
you're connecting to.

Verify that the leaf node hasn't expired.

Check the signature.

If the signing certificate is in our list of root CA's,
stop.

Otherwise, move one up the chain and repeat.

Something must be wrong, but...

All the signatures are valid.

Nothing has expired.

The chain is in tact.

The root CA is embedded in the browser and
trusted.

But we just created a valid
certificate for PayPal, and we're not

PayPal?

The missing piece...

...is a somewhat obscure field.

Back In The Day

Most CA's didn't explicitly set basicConstraints:
CA=FALSE

A lot of web browsers and other SSL
implementations didn't bother to check it, whether
the field was there or not.

Anyone with a valid leaf node certificate could
create and sign a leaf node certificate for any
other domain.

When presented with the complete chain, IE,
Konqueror, OpenSSL, and others considered it
valid.

And then in 2002...

Microsoft did something particularly annoying, and
I blew this up by publishing it.

Microsoft claimed that it was impossible to exploit.

So I also published a tool that exploits it.

sslsniff

sslsniff

sslsniff

sslsniff

sslsniff

Intercepts HTTPS traffic.
Generates a certificate for the
site the client is connecting
to.
Signs that with whatever
certificate you specify.
Proxies data through.

Makes normal HTTPS
connection to the server.
Sends and receives data
as if it's a normal client.

Client Side: Server Side:

sslsniff

sslsniff

Back before people started checking BasicConstraints:
All you had to do was pass sslsniff a valid leaf node certificate for any domain.
It would automatically generate a certificate for the domain the client was connecting to
on the fly.
It would sign that certificate with the leaf node.
IE, Konqueror, etc... wouldn't notice the difference.

sslsniff post-disclosure

You'd be surprised who still doesn't check basic
constraints.

Even when people got warning dialogs in browsers
that had been fixed, most of the time they'd just
click through them.

Still useful as a general MITM tool for SSL.

The folks who did the MD5 hash collision stuff
used sslsniff to hijack connections once they'd
gotten a CA cert.

There are other uses yet, to be disclosed another
day.

Surely we can do better.

The things you learn in TV studios.

The things you learn in TV studios.

The things you learn in TV studios.

The things you learn in TV studios.

It's a button, so if you mouse-over it, the link isn't displayed
in the browser bar at the bottom.
The best you could do would be to view the page source,
but that's problematic in browsers like Firefox that issue a
second request to the server for the source.

This button posts to an HTTPS link, but there's no way to
know that.

Still prevalent today...

Still prevalent today...

There are some generalizable attacks
here.

Browsers Then And Now...

Then: A Positive Feedback System

A number of indicators deployed to designate that
a page is secure.

A proliferation of little lock icons.

URL bars that turn gold.

Then: An example from Firefox 2

Then: An example from Firefox 2

Then: An example from Firefox 2

Then: An example from Firefox 2

Now: A Negative Feedback System

Less emphasis on sites being secure.

The proliferation of little locks has been toned
down.

Firefox's gold bar is gone.

More emphasis on alerting users to problems.

A maze of hoops that users have to jump through
in order to access sites with certificates that aren't
signed by a CA.

Now: An example from Firefox 3

Now: An example from Firefox 3

Now: An example from Firefox 3

Now: An example from Firefox 3

Now: An example from Firefox 3

Now: An example from IE

Conclusions

If we trigger the negative feedback, we're
screwed.

If we fail to trigger the positive feedback, it's not
so bad.

How is SSL used?

Nobody types https://
(or http:// for that matter)

People generally encounter SSL
in only two ways:

Clicking on links.

Through 302's.

Which means that people only
encounter SSL through HTTP...

First cut: A different kind of MITM

sslsniff

Normally we attack the SSL connection...

First cut: A different kind of MITM

sslstrip

What if we attacked the HTTP connection instead...

Remember:
SSL is normally encountered in one of two ways.

By clicking on links.

Through 302 redirects.

We can attack both of those points through a
HTTP MITM.

A First Cut Recipe: sslstrip

sslstrip

Watch HTTP traffic go by.
Switch to and keep a map of
what's changed.
Switch Location: https://... to Location: http://... and keep a map of what's
changed.

A First Cut Recipe: sslstrip

sslstrip

Watch HTTP traffic go by.
When we see an HTTP request for a URL that we've stripped, proxy that
out as HTTPS to the server.
Watch the HTTPS traffic go by, log everything if we want, and keep a map
of the relative links, CSS links, and JavaScript links that go by.

A First Cut Recipe: sslstrip

sslstrip

The server never knows the difference. Everything looks secure on their
end.
The client doesn't display any of the disastrous warnings that we want to
avoid.
We see all the traffic.

The Result:

How does it look?

Secure Site

Secure Site

Secure Site

Secure Site

What else can we do?

We've managed to avoid the negative feedback,
but some positive feedback would be good too.

People seem to like the little lock icon thing, so it'd
be nice if we could get that in there too.

A 1.5 Cut: sslstrip

sslstrip

Let's do everything the same, but now watch out for favicon requests as
well.
If we see a favicon request for a URL that we've stripped, we'll send back a
favicon of our choosing instead.

A new trick:

What should our favicon be?
You guessed it:

Once again, a secure site:

Once again, a secure site:

We're doing pretty good.

We've avoided the negative feedback of
death.

We can do a subtle MITM via HTTP.

And if we want we can throw in a little lock
icon.

Some sites provide no visible
difference.

Some sites provide no visible
difference.

The sites themselves confuse us.

The sites themselves confuse us.

A Few Gotchas

Content encodings that are difficult to parse
(compress, gzip, etc...)

Secure cookies won't get sent over HTTP that's
been stripped of SSL.

Cached pages that don't give us a chance to swap
out their links.

A Few Gotchas

Content encodings that are difficult to parse
(compress, gzip, etc...)

Secure cookies won't get sent over HTTP that's
been stripped of SSL.

Cached pages that don't give us a chance to swap
out their links.

A Simple Solution
Strip all that stuff too.

Kill the secure bit on Set-Cookie statements, strip
the content encodings we don't like from client
requests, and strip if-modified-since headers too.

Another problem: sessions

The most interesting stuff to log are POSTs that
would have been sent via SSL.

Particularly, usernames/passwords.

Sessions often cause us to miss the login step,
which is unfortunate.

Sure, we can get the session cookie, but that's
small change.

So let's strip sessions too.

sslstrip

302 for the same URL,
but with Set-Cookie:
headers that expire all
the cookies we got
from the request.

Request

Request Again
(Sans-Cookies)

And a little less sketchy...

When we start a MITM against a network, strip all
the traffic immediately, but don't touch the
cookies for 5 min (or some specified length of
time).

As the cookies go by, make note of the active
sessions.

After the time is up, start killing sessions, but only
new sessions that we haven't seen before. These
should be the “long running” sessions that won't
be seen as suspicious should they disappear.

Sessions expire, and it's not always clear when or why,
but they don't usually expire right in the middle of an
active session. So what we do now:

Some Results Of This Trick?

login.yahoo.com 114

Gmail 50

ticketmaster.com 42

rapidshare.com 14

Hotmail 13

paypal.com 9

linkedin.com 9

facebook.com 3

In 24 Hours

117 email accounts.

16 credit card numbers.

7 paypal logins.

Over 300 other miscellaneous secure logins.

Number of people that balked.

0

Where can we go from here?

Combining this technique with homograph
attacks.

Sometimes the glphys of different characters look
alike. PayPaI.com looks like paypal.com but is
really paypai.com

Made more interesting by IDN. It became possible
to register a domain with characters that appear
identical to the glyphs of characters in the Latin
character set.

In 2005, Eric Johanson registered
pаypal.com, which uses the Cryllic 'a' look-
alike character and displays as paypal.com

Standard homograph attack:

Combining this technique with homograph
attacks.

The attack vector has to be targeted. By
registering pаypal.com, all we can attack
is paypal.com

Phishing is really just too much work. It'd be nicer
if we could just MITM a network and get whatever
people are doing.

The IDN stuff has been fixed. For TLDs like .com,
Firefox renders the IDN characters as punycode
both in the URL bar and the status bar.

What I don't like about the standard attack:

pаypal.com today

So how can we reinvent this to attack
SSL?

We can't use .com or any TLD that Firefox will
render into punycode.

We want something that we can generalize, not
just a simple substitution for some particular
character in a domain.

So, what's in most URLs? . / & ?

one trick

Register a domain like ijjk.cn

Get a domain-validated SSL wildcard cert for
*.ijjk.cn

Use IDN-valid characters that look very similar to
'/' and '?' to create false URLs.

MITM HTTP and swap out the HTTPS links as usual.

But this time, instead of just stripping the HTTPS
links, we swap them out for our own look-alikes.

one trick

https://www.gmail.com/accounts/ServiceLogin
becomes
https://www.gmail.com/accounts/ServiceLogin?!f.ijjk.cn

The latter does not display as punycode in the
status bar or the URL bar.

When resolved, it becomes www.google.xn--
comaccountsservicelogin-5j9pia.f.ijjk.cn

When we MITM these connections, we do SSL on
both ends, but are able to present our own valid
*.ijjk.cn cert to the client.

https://www.gmail.com/accounts/ServiceLogin
https://www.gmail.com/accounts/ServiceLogin?!f.ijjk.cn

Here We Go

sslstrip

302 for the same URL,
but with Set-Cookie:
headers that expire all
the cookies we got
from the request.

Request

Request Again
(Sans-Cookies)

Proxy HTTP back, and
swap out all the HTTPS
links for our own look-
alike HTTPS links.

SSL request for a look-
alike domain that we
control.

Proxy data back from
the actual domain.

An Example

An Example

Nice thing about this...

Happens in real-time.

Generalized:

Targets whatever secure sites people are
browsing to at any moment.

Doesn't require multiple certificates or
restricting ourselves to popular sites.

Once we get a secure POST, we can switch them
back to a normal traffic stream.

Lessons...

Lots of times the security of HTTPS comes down
to the security of HTTP, and HTTP is not secure.

If we want to avoid the dialogs of death, start
with HTTP not HTTPS.

Once we've got control of that, we can do all
kinds of stuff to re-introduce the positive
indicators people might miss.

Other tricks...

sslstrip

http://www.thoughtcrime.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

