
Fast Elliptic Curve Cryptography in OpenSSL

Emilia Käsper1,2

1 Google
2 Katholieke Universiteit Leuven, ESAT/COSIC

emilia.kasper@esat.kuleuven.be

Abstract. We present a 64-bit optimized implementation of the NIST
and SECG-standardized elliptic curve P-224. Our implementation is fully
integrated into OpenSSL 1.0.1: full TLS handshakes using a 1024-bit
RSA certificate and ephemeral Elliptic Curve Diffie-Hellman key ex-
change over P-224 now run at twice the speed of standard OpenSSL,
while atomic elliptic curve operations are up to 4 times faster. In ad-
dition, our implementation is immune to timing attacks—most notably,
we show how to do small table look-ups in a cache-timing resistant way,
allowing us to use precomputation. To put our results in context, we
also discuss the various security-performance trade-offs available to TLS
applications.

Keywords: elliptic curve cryptography, OpenSSL, side-channel attacks,
fast implementations

1 Introduction

1.1 Introduction to TLS

Transport Layer Security (TLS), the successor to Secure Socket Layer (SSL),
is a protocol for securing network communications. In its most common use, it
is the “S” (standing for “Secure”) in HTTPS. Two of the most popular open-
source cryptographic libraries implementing SSL and TLS are OpenSSL [19]
and Mozilla Network Security Services (NSS) [17]: OpenSSL is found in, e.g.,
the Apache-SSL secure web server, while NSS is used by Mozilla Firefox and
Chrome web browsers, amongst others.

TLS provides authentication between connecting parties, as well as encryp-
tion of all transmitted content. Thus, before any application data is transmit-
ted, peers perform authentication and key exchange in a TLS handshake. Two
common key exchange mechanisms in TLS are RSA key exchange and (authen-
ticated) Diffie-Hellman (DH) key exchange. While RSA key exchange is compu-
tationally cheaper, DH key exchange provides the additional property of perfect
forward secrecy. Our work was motivated from a practical viewpoint: after ana-
lyzing the overhead associated with forward secure cipher suites, we set out to
improve the performance of Diffie-Hellman handshakes in OpenSSL. As a result,
we describe a new optimized elliptic curve implementation that is integrated into
OpenSSL and fully compatible with the elliptic curve flavour of DH handshakes
in TLS.

2 Emilia Käsper

1.2 Forward secrecy in TLS

In a typical TLS handshake, say, when the client is a browser connecting to
an HTTPS server, authentication is unilateral, meaning that only the server is
authenticated to the client. In an RSA handshake, authenticated key exchange
is achieved via the following mechanism: the server sends its RSA public key
together with a corresponding certificate; the client, upon successfully verifying
the certificate, replies with the pre-master secret, encrypted with the server’s
public key. Now, the server can decrypt the client’s key exchange message and
both parties derive a shared session key from the pre-master secret.

RSA handshakes exhibit a single point of failure: the security of all sessions
relies on a single static key. If the server’s private RSA key is compromised, the
security of all sessions established under that key is violated. In other words,
the attacker can record TLS traffic and decrypt these sessions later, should the
key become compromised.

The complementary property, forward secrecy, which ensures that no long-
term key compromise can affect the security of past sessions, is achieved in
TLS via authenticated Diffie-Hellman (DH) handshakes. Contrary to RSA hand-
shakes, the server’s long-term RSA key now serves solely the purpose of authen-
tication: it is only used to sign the server’s DH value. If ephemeral DH is used,
i.e., both parties generate a fresh DH value for every handshake, we achieve
perfect forward secrecy, as the security of each session depends on a different
instance of the DH problem.

While forward secrecy is undoubtedly a nice property to have, it comes at
a cost. In an RSA handshake, the server needs to perform one private RSA
operation (decryption); in a DH handshake, the server still needs a private RSA
operation (signing) and, in addition, two exponentiations in the DH group. For
more efficient Diffie-Hellman operations, TLS thus specifies an extension for
elliptic curves, which achieve equivalent security with smaller group and field
sizes (and hence, faster computation time).

Elliptic curve cryptography in TLS, as specified in RFC 4492 [7], includes
elliptic curve Diffie-Hellman (ECDH) key exchange in two flavours: fixed-key key
exchange with ECDH certificates; and ephemeral ECDH key exchange using an
RSA or ECDSA certificate for authentication. While we focus our discussion on
the ephemeral cipher suites providing perfect forward secrecy, our implementa-
tion results are also applicable to ECDH certificates and ECDSA signatures.

2 Motivation

2.1 Security parameter choices in TLS

An application choosing its TLS parameters should consider that the security
of the session is bounded not only by the security of the symmetric encryption
algorithm, but also by the security of the key exchange algorithm used to estab-
lish the session key—a session using AES-128 still achieves only roughly 80-bit
security if 1024-bit RSA key exchange is used. According to various key length

Fast Elliptic Curve Cryptography in OpenSSL 3

recommendations [12, 18], in order to match 128-bit security, the server should
use an RSA encryption key or a DH group of at least 3072 bits, or an elliptic
curve over a 256-bit field, while a computationally more feasible 2048-bit RSA
key/DH group or a 224-bit elliptic curve still achieves 112 bits of security.

In settings where 2048-bit RSA is considered prohibitively slow, ECDH key
exchange with a 1024-bit RSA signing key offers a neat security-performance
trade-off—it is faster than plain 2048-bit RSA key exchange (see Sect. 4 for ex-
act timings), while offering perfect forward secrecy.3 Yet ECDH key exchange is
still significantly slower than 1024-bit RSA key exchange. Currently, one 224-bit
elliptic curve point multiplication costs more in OpenSSL than a 1024-bit pri-
vate RSA operation (and recall that the server needs two EC multiplications per
handshake, while it needs only one RSA operation), so we focused our atten-
tion on optimizing the performance of the OpenSSL elliptic curve library. More
specifically, as a lot of speed can be gained from implementing custom field
arithmetic for a fixed field, we chose the NIST P-224 elliptic curve (secp224r1
in [20]) as a target for our 64-bit optimized implementation.

2.2 Why NIST P-224?

Recently, several authors have published fast code for custom elliptic curves
offering roughly 128 bits of security (see e.g. the SUPERCOP collected bench-
marking results [11]). However, as our goal was to improve the performance of
TLS handshakes in the OpenSSL library, we needed to ensure that the curve
we choose is also supported by other common client libraries, and that the TLS
protocol supports the negotiation of the curve.

Following the recommendations of the Standards for Efficient Cryptography
Group [20], RFC 4492 specifies a list of 25 named curves for use in TLS, with
field size ranging from 160 to 571 bits. Both OpenSSL and the Mozilla NSS
library support all those curves. In addition, TLS allows peers to indicate support
for unnamed prime and/or characteristic-2 curves (the OpenSSL elliptic curve
library supports unnamed curves, while NSS does not). Yet the TLS specification
has two important restrictions. First, it is assumed that the curve is of the form
y2 = x3 + ax + b (i.e., a Weierstrass curve), since the only parameters conveyed
between the peers are the values a and b—many of the fastest elliptic curves
today do not meet this format. Second, the client cannot indicate support for a
specific unnamed curve in its protocol messages (that is, a client wishing to use
unnamed curves must support all of them). Given these constraints, we chose to
optimize one of the named curves, NIST P-224.4

Note that in order to provide 128-bit security, one of the two 256-bit named
curves would have been a logical choice. Yet it happens that the 224-bit curve

3 While the 1024-bit RSA key still offers only 80 bits protection, its use as a signing-
only key is less of a paradox, as the compromise of this key does not affect the
security of past legitimate sessions.

4 As noted in RFC 4492, curve monoculture can lead to focused attacks on a single
curve; yet NIST P-224 offers a comfortable 112-bit security level.

4 Emilia Käsper

lends itself to a much faster implementation. Namely, an element of a 224-bit
field fits easily in four 64-bit registers, while a 256-bit element needs five registers
(it could fit in 4, but we also want to accommodate carry bits for efficient and
timing-attack resistant modular reduction). An extra register, in turn, implies
slower field arithmetic. For example, multiplication of two 5-register elements
requires 25 64-bit multiplications, while multiplication of two 4-register elements
requires only 16.

Aside from suitable field length, the NIST P-224 prime has a very simple for-
mat (p = 2224−296+1) that further facilitates efficient field arithmetic.5 Indeed,
Bernstein has already made use of this by implementing NIST P-224 for 32-bit
platforms, using clever floating point arithmetic [2]. However, we chose to reim-
plement the curve from scratch, using more efficient 64-bit integer arithmetic,
as well as adding side-channel protection.

2.3 Side-channel concerns

In addition to providing a fast implementation, we wanted to offer one that was
constant-time and thus verifiably resistant to timing attacks. The lack of side-
channel protection in the current OpenSSL elliptic curve library has already been
successfully exploited by Brumley and Hakala [6] who mounted a cache-timing
key recovery attack on the ECDSA portion of the library. While the same attack
may not be feasible for ephemeral ECDH key exchange (assuming single-use
keys), we feel it is prudent to ensure side-channel resistance for other possible
applications, including ECDSA and ECDH-certificate-based key exchange.

3 NIST P-224 Implementation

Our 64-bit implementation of the NIST P-224 elliptic curve is written in C—the
128-bit data type available in GCC allows us to make use of the 64-bit registers,
as well as the 64-bit unsigned integer multiplication instruction MUL, which
stores the 128-bit result in two 64-bit registers.

Our implementation does not rely on platform-specific instruction set exten-
sions such as SSE. Of the SSE instructions, the one potentially useful to us is
the packed multiplication PMULUDQ, which can do two unsigned 32-bit-to-64-
bit integer multiplications in one cycle. While PMULUDQ is beneficial for Intel
processors, MUL is best on AMDs [4]—we target both platforms, so opted to use
the latter, as using 64-bit limbs also makes modular reduction simpler.

3.1 Field arithmetic

We represent elements of the 224-bit field as polynomials a0 + 256a1 + 2112a2 +
2168a3, where each coefficient ai is an unsigned 64-bit integer. (Notice that a

5 In comparison, the P-256 prime (p = 2256 − 2224 + 2192 + 296 − 1), which was also
chosen with efficient 32-bit arithmetic in mind, results in a much more cumbersome
64-bit modular reduction due to the “high” reduction term 2224.

Fast Elliptic Curve Cryptography in OpenSSL 5

field element can have multiple such representations—we only reduce to the
unique minimal representation at the end of the computation.) Outputs from
multiplications are represented as unreduced polynomials b0 + 256b1 + 2112b2 +
2168b3 + 2224b4 + 2280b5 + 2336b6, where each bi is an unsigned 128-bit integer.
Using this representation, field multiplication costs 16 64-bit-to-128-bit multipli-
cations and 9 128-bit additions, while squaring costs 10 multiplications, 3 scalar
multiplications by 2, and 3 additions.

Aside from multiplications, we also need linear operations. Scalar multipli-
cation and addition are straightforward. To perform subtraction a − b, we first
add a suitable multiple of the field prime (i.e., a “multiple” of zero) to the left
operand a, ensuring that the respective coefficients of a and b satisfy ai > bi—we
can then perform unsigned subtraction.

Between two subsequent multiplications, we reduce the coefficients partially,
ensuring that the four output coefficients satisfy ai < 257. For each field opera-
tion, we also assert input bounds to guarantee that the output does not over- or
underflow. For example, we need to ensure that all input coefficients to an ad-
dition satisfy ai < 263, in order to guarantee that the output coefficients satisfy
bi < 263 + 263 = 264 and thus, fit in a 64-bit unsigned integer without overflow.

3.2 Elliptic curve point operations

For elliptic curve group operations, we use the well-known formulae in Jaco-
bian projective coordinates: point doubling in projective coordinates costs 5
field squarings, 3 field multiplication, and 12 linear operations (additions, sub-
tractions, scalar multiplications), while point addition costs 4 squarings, 12 mul-
tiplications and 7 linear operations. Using alternative point addition formulae,
it would in fact have been possible to trade one of the 12 multiplications with a
squaring and several linear operations; however, in our experiments, this trade-
off did not yield a performance improvement.

In order to minimize computation cost, we have manually analyzed the com-
putation chain of point addition and doubling. By bounding inputs to each step,
we perform modular reductions if and only if the next operation could overflow.
For example, starting with partially reduced inputs x and y, we can compute
3(x+ y)(x− y) without intermediate reductions. When computing 3(x+ y), the
coefficients of the output satisfy ai < 3·(257+257) < 260. The largest scalar added
to a coefficient of the left operand of a subtraction is 258+2, so the coefficients of
x− y satisfy ai < 257 + 258 + 2 < 259. Finally, as we use 4 limbs, each coefficient
of the product is the sum of at most 4 atomic products: bi < 4 · 260 · 259 = 2121.
The result fits comfortably in 128 bits without an overflow. We computed these
bounds for each execution step: overall, the whole computation only needs 15
reductions for point addition and 7 for point doubling.

Finally, as elliptic curve points in TLS are transmitted using affine coordi-
nates, we need a conversion routine from Jacobian to affine coordinates. As a
Jacobian point (X,Y, Z) corresponds to the affine point (X/Z2, Y/Z3), this con-
version requires a field inversion—computing Z−1 = Zp−2 mod p can be done in
223 field squarings, 11 field multiplications and 234 modular reductions [2].

6 Emilia Käsper

3.3 Point multiplication with precomputation

Binary (schoolbook) elliptic curve point multiplication of nP requires 224 point
doublings and on average 112 point additions for a 224-bit scalar n. In order to
reduce the cost, we use standard precomputation techniques. By computing 16
multiples of the point P—0 ·P, 1 ·P, . . . , 15 ·P—in 7 doublings and 7 additions,
we bring the point multiplication cost down to 224 doublings and 56 additions
(a total of 231 doublings and 63 additions, including precomputation). The pre-
computation table size of 16 points was deemed optimal for our implementation:
aside from more expensive precomputation, larger tables would be affected by
slower constant-time lookups (see Sect. 3.4).

For a fixed point G, we can perform interleaved multiplication by precom-
puting 16 linear combinations of the form b0G+ b1G

56 + b2G
112 + b3G

168, where
bi ∈ {0, 1}.6 As well as including precomputed multiples for the NIST standard
generator G, our implementation allows the application to perform this precom-
putation for a custom group generator. After precomputation, each subsequent
multiplication with the generator costs 56 doublings and 56 additions.

Finally, our implementation also supports batch multiplication. Namely, we
amortize the cost of doublings by computing a linear combination of k points
n1P1 + · · ·+ nkPk in an interleaved manner [16]: the full computation still costs
56k additions, but only 224 (rather than 224k) doublings. This technique is
immediately useful in ECDSA signature verification.

3.4 Side-channel protection

Kocher [14] was the first to show that the execution time of a cryptographic
algorithm may leak significant information about its secrets. In software imple-
mentations, two important leakage points have been identified: (i) conditional
branching dependent on the secret input; and (ii) table lookups using secret-
dependent lookup indices. Branching leaks information if the branches require
different execution time, but even worse, the branch prediction used in modern
CPUs causes a timing variance even for equivalent branches [1]. Table lookups
are vulnerable as lookup results are stored in processor cache: simply put, mul-
tiple lookups into the same table entry are faster than multiple lookups into
different locations, as the results are fetched from cache rather than main mem-
ory. Thus, the best way to ensure side-channel resistance is to avoid branching
and table lookups altogether.

Our implementation is constant-time for single point multiplication. To en-
sure that it does not leak any timing information about the secret scalar, we
have used the following techniques:

– Field arithmetic is implemented using 64-bit arithmetic and Boolean opera-
tions only—there are no conditional carries and no other branches;

6 As this precomputation is almost as expensive as a full point multiplication, it is
only useful when the point G is used more than once.

Fast Elliptic Curve Cryptography in OpenSSL 7

Listing 1 A routine for choosing between two inputs a and b in constant time,
depending on the selection bit bit.

int select (int a, int b, int bit) {

/* -0 = 0, -1 = 0xff....ff */

int mask = - bit;

int ret = mask & (a^b);

ret = ret ^ a;

return ret;

}

Listing 2 A cache-timing resistant table lookup.
int do_lookup(int a[16], int bit[4]) {

int t0[8], t1[4], t2[2];
/* select values where the least significant bit of the index is bit[0] */
t0[0] = select(a[0], a[1], bit[0]); t0[1] = select(a[2], a[3], bit[0]);
t0[2] = select(a[4], a[5], bit[0]); t0[3] = select(a[6], a[7], bit[0]);
t0[4] = select(a[8], a[9], bit[0]); t0[5] = select(a[10], a[11], bit[0]);
t0[6] = select(a[12], a[13], bit[0]); t0[7] = select(a[14], a[15], bit[0]);
/* select values where the second bit of the index is bit[1] */
t1[0] = select(t[0], t[1], bit[1]); t1[1] = select(t[2], t[3], bit[1]);
t1[2] = select(t[4], t[5], bit[1]); t1[3] = select(t[6], t[7], bit[1]);
/* select values where the third bit of the index is bit[2] */
t2[0] = select(t2[0], t[1], bit[2]); t2[1] = select(t2[2], t2[3], bit[2]);
/* select the value where the most significant bit of the index is bit[3] */
ret = select(t3[0], t3[1], bit[3]);
return ret;

}

– Rather than skipping unnecessary operations, point multiplication performs
a dummy operation with the point-at-infinity whenever necessary (for ex-
ample, leading zeroes of the scalar are absorbed without leaking timing in-
formation);

– Secret-dependent lookups into the precomputation table are performed in
constant time, ensuring that no cache-timing information leaks about the
secret scalar.

While branch-free field arithmetic and constant-time multiplication algo-
rithms are also seen in some other implementations (e.g., in the constant-time
implementations of Curve25519 [3,15]), combining secret-dependent lookups into
the precomputation table with side-channel resistance is more tricky. Joye and
Tunstall suggest to secure modular exponentiations by adding a random multiple
of the group order to the secret exponent [13]. Using a different mask at every
execution limits the leak, as multiple measurements on the same secret cannot
be easily linked. The same technique could be employed for safeguarding the
secret scalar in point multiplication, however, the masked scalar has a longer
bit representation, thus requiring more operations—the overhead is worse for
elliptic curves, which have shorter exponents compared to, say, RSA. Instead,
we used standard techniques from hardware lookup tables to devise a software
solution for performing lookups in a way that leaks no information even from a
single execution.

8 Emilia Käsper

Listing 1 shows sample code for implementing an if-statement in constant
time: the routine select() returns input a if the input bit bit equals 0, and re-
turns b if bit equals 1. By repeating select() 15 times on point inputs, we can
thus select the correct precomputed point in a secure manner (see Listing 2)—
independent of the lookup index (bit[3], bit[2], bit[1], bit[0]), we loop through the
whole precomputation table in a fixed order. While the execution time is still
dependent on cache behaviour, the timing variance is independent of the secret
lookup index, thus leaking no valuable timing information. This strategy obvi-
ously does not scale for large tables, yet for us it is cheap compared to the cost
of elliptic curve operations—we save more by precomputation than we lose by
adding side-channel protection to the lookups.

4 Performance Results

4.1 The benchmark set-up

As our goal was to provide a fully integrated implementation for applications
using OpenSSL, we also chose to measure performance directly within OpenSSL.
Rather than counting cycles for stand-alone point multiplication, the OpenSSL
toolkit allows us to report timings for complete OpenSSL operations, from a sin-
gle ECDH comutation to a complete TLS handshake. As these results take into
account any overhead introduced by the library, they depict the actual perfor-
mance gain when switching from the standard implementation to our optimized
version. At the same time, they can be viewed as an upper bound to atomic
elliptic curve operations.

Our benchmark machine was ambrel, with the following parameters:

ambrel

CPU Intel Core 2 Duo E8400 Lithography 45nm

CPU frequency 3.0 GHz RAM 4GB

OS Linux 2.6.18-194.11.4.el5 x86 64 Compiler gcc 4.4.4

Table 1. Our benchmark machine.

All benchmarks were performed, utilizing a single core.

4.2 Results

For atomic operations, we benchmarked ECDH key generation as well as shared
secret computation. The former case corresponds to multiplication with a fixed
basepoint; the latter amounts to one multiplication with a random basepoint,
plus input point validation and output point conversion to its affine represen-
tation. Our benchmarks for the shared secret computation include all these op-
erations. In order to complete an ephemeral ECDH handshake with single-use
keys, both parties need to compute one operation of each type.

Fast Elliptic Curve Cryptography in OpenSSL 9

Fig. 1. Improved throughput (in operations/second) for elliptic curve operations (left)
and TLS handshakes (right), measured on ambrel.

In addition, we measured throughput for ECDSA signature generation and
verification: ECDSA signing requires one fixed-point multiplication, while ECDSA
verification makes use of batch multiplication to compute a linear combination
of one fixed and one random point.

For benchmarking TLS handshakes, we chose the most common configura-
tion: one-sided (server only) authentication using RSA certificates. The Qualys
Internet SSL Survey from July 2010 [21] reveals that virtually all trusted SSL
certificates contain either a 1024-bit or 2048-bit RSA key, so we restricted our
attention to those key sizes. Since computing performance is crucial on the server
side (and a typical browser client does not use the OpenSSL library anyway),
we measured the time it takes a server to complete the handshake. Note that
these timings include only computation time and do not reflect the commu-
nication latency. However, ephemeral ECDH key exchange or, more precisely,
the requirement to maintain perfect forward secrecy can have an effect on hand-
shake latency for typical TLS configurations—we discuss some latency reduction
mechanisms in TLS, and their compatibility with forward secrecy in Section 5.

Figure 1 illustrates the increased throughput (in operations/second) when
switching from standard OpenSSL to our optimized implementation; the corre-
sponding precise measurements are given in Table 2. Since the OpenSSL library
already contains optimized code for fixed-point multiplication, the gain is high-
est for random point multiplication, where throughput increases from 1600 to
over 6500 operations/second. Also, Diffie-Hellman handshakes with a 1024-bit
RSA signing key are nearly twice as fast when using the optimized code (435 vs
826 handshakes/second), allowing to switch from plain RSA to forward-secure
cipher suites with only a 26% drop in server throughput.

4.3 Comparison with other results

We benchmarked Bernstein’s implementation of NIST P-224 on ambrel, using
the timing software provided with the code—raw point multiplication is about
1.5 times slower than our fully integrated OpenSSL implementation. Brown

10 Emilia Käsper

OpenSSL 1.0.1 ECDH ECDH ECDSA ECDSA
shared secret keygen sign verify

standard 1602.9 8757.1 6221.0 1309.9

64-bit opt 6552.9 12789.2 8757.6 4442.9

OpenSSL 1.0.1 RSA-1024 RSA-1024 RSA-2048 RSA-2048
ECDH-224 ECDH-224

standard 1118.6 435.5 277.6 199.4

64-bit opt — 826.4 — 253.4

Table 2. Throughput of NIST P-224 elliptic curve computations and TLS handshakes
in operations/second, measured on ambrel.

curve impl. platform benchmarking keygen shared security const.
suite secret time

NIST P-224 this paper ambrel OpenSSL 234573 457813 112 bits yes

NIST P-224 Bernstein ambrel Bernstein 662220 662220 112 bits no

curve25519 donna ambrel donna ≈540000 ≈ 540000 ≈128 bits yes

curve25519 mpfq boing SUPERCOP 394254 381375 ≈128 bits no(?)

gls1271 eBATS boing SUPERCOP 140355 314730 ≈128 bits no(?)
Table 3. Selected benchmarking results for various curves, reported in cy-
cles/operation.

et. al. also report timings of several NIST curves [5]. This software appears
to be much slower than Bernstein’s but the measurements are obtained on a
Pentium II, so we omit exact cycle counts to avoid comparing apples to oranges.

For the curious reader, we have also gathered some benchmarking data for
other elliptic curves in Table 3. We benchmarked curve25519-donna, a 64-
bit constant-time implementation of Curve25519 [15] on ambrel, noting that
our NIST P-224 implementation outperforms it despite any OpenSSL over-
head (admittedly, NIST P-224 also offers a slightly lower security level com-
pared to Curve25519). For comparison, we also give some figures for the fastest
Curve25519 implementation, as well as for the Galbraith-Lin-Scott implemen-
tation of a twisted Edwards curve over a field with (2127 − 1)2 elements [9], as
reported by the ECRYPT benchmarking suite SUPERCOP [11]. These imple-
mentations are, as far as we know, not constant-time.

From SUPERCOP, which reports performance on a variety of platforms,
we chose the figures obtained from boing, a machine with a CPU identical to
ambrel. Nevertheless, we stress that these are timings obtained via different
benchmarking tools, on different machines, and as such, are only meant to give
a very rough context to our results.

Finally, Bernstein et. al. also report extremely fast software for 192-bit mod-
ular arithmetic on 64-bit platforms [4]. Utilizing parallelism from hyperthreading
on all 4 cores on an Intel Core 2 Quad, they are able to carry out over 100 mil-
lion modular multiplications per second. Within our elliptic curve computation,
we do about 10 million 224-bit modular multiplications, and another 10 mil-
lion modular squarings per second on a single core—but due to the completely
different setting, these results are not directly comparable.

Fast Elliptic Curve Cryptography in OpenSSL 11

5 Security considerations

5.1 Ephemeral versus fixed keys

For (Elliptic Curve) Diffie-Hellman key exchange, TLS does not strictly mandate
the use of ephemeral keys—in order to save computation, the server may reuse
its Diffie-Hellman value for multiple connections. On one hand, we note that
our implementation is resistant to timing-attacks and thus, we deem it safe to
reuse the secret Diffie-Hellman value. On the other hand, as our implementation
includes an optimization for fixed basepoints, computing a new Diffie-Hellman
value is by far the cheapest of the three public key operations required in an
ECDH-RSA handshake and thus, by reusing DH secrets, the application poten-
tially stands to lose more security than it stands to gain in performance.

5.2 Latency reduction mechanisms and forward secrecy

A full SSL/TLS handshake takes two round trips between the server and the
client. SSL/TLS includes several mechanisms for reducing this latency:

– Session caching keeps session information (including the session key) in
server-side cache; clients can resume previous sessions by presenting the cor-
responding session ID.

– TLS session tickets [8] allow stateless session resumption: the session in-
formation is now sent to the client in a session ticket encrypted with the
server’s long-term key.

– False Start allows “optimistic” clients to start sending (encrypted) appli-
cation data before the handshake is finished.

All these mechanisms cut the handshake latency down to one round trip. Yet
care should be taken when using them in conjunction with DH ciphers. Both
session caching and tickets conflict with perfect forward secrecy. In particular,
session tickets invalidate any forward secrecy completely, as an adversary having
control over the server’s long-term private key can decrypt the ticket to obtain
the session key. To facilitate forward secrecy, latest versions of OpenSSL allow
to selectively disable session caching and tickets for forward-secure cipher suites.

In contrast, False Start is perfectly compatible with forward-secure ciphers. In
fact, the False Start Internet-Draft [10] recommends that clients should only false
start with forward-secure cipher suites, in order to avoid cipher suite downgrade
attacks by rogue servers. Thus, we conclude that it is possible to maintain perfect
forward secrecy without sacrificing communication latency.

The Source Code

This software will be released in OpenSSL 1.0.1, and is available in the latest
snapshots at ftp://ftp.openssl.org/snapshot/. Please refer to the release notes to
compile and test the implementation.

12 Emilia Käsper

Acknowledgements

The author is grateful to Daniel J. Bernstein, Ian Goldberg, Adam Langley and
Bodo Möller for their comments on the implementation.

References

1. Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret keys
via branch prediction. In Masayuki Abe, editor, Topics in Cryptology - CT-RSA
2007, The Cryptographers’ Track at the RSA Conference 2007, San Francisco, CA,
USA, February 5-9, 2007, Proceedings, volume 4377 of Lecture Notes in Computer
Science, pages 225–242. Springer, 2007.

2. Daniel J. Bernstein. A software implementation of NIST P-224, 2001. http:

//cr.yp.to/nistp224.html.
3. Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung,

Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography
- PKC 2006, 9th International Conference on Theory and Practice of Public-Key
Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings, volume 3958
of Lecture Notes in Computer Science, pages 207–228. Springer, 2006.

4. Daniel J. Bernstein, Hsueh-Chung Chen, Ming-Shing Chen, Chen-Mou Cheng,
Chun-Hung Hsiao, Tanja Lange, Zong-Cing Lin, and Bo-Yin Yang. The billion-
mulmod-per-second pc. In Workshop record of SHARCS’09: Special-purpose Hard-
ware for Attacking Cryptographic Systems, 2009.

5. Michael Brown, Darrel Hankerson, Julio López, and Alfred Menezes. Software
implementation of the NIST elliptic curves over prime fields. In David Naccache,
editor, Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA
Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings, volume
2020 of Lecture Notes in Computer Science, pages 250–265. Springer, 2001.

6. Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks. In
Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, 15th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of Lecture
Notes in Computer Science, pages 667–684. Springer, 2009.

7. Internet Engineering Task Force. Elliptic curve cryptography (ECC) cipher suites
for transport layer security (TLS), 2006. http://www.ietf.org/rfc/rfc4492.

8. Internet Engineering Task Force. Transport layer security (TLS) session resump-
tion without server-side state, 2008. http://www.ietf.org/rfc/rfc5077.

9. Steven D. Galbraith, Xibin Lin, and Michael Scott. Endomorphisms for faster
elliptic curve cryptography on a large class of curves. In Antoine Joux, editor, Ad-
vances in Cryptology - EUROCRYPT 2009, 28th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cologne, Germany,
April 26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science,
pages 518–535. Springer, 2009.

10. TLS Working Group. Transport layer security (TLS) false start. https://tools.
ietf.org/html/draft-bmoeller-tls-falsestart-00.

11. ECRYPT II. eBACS: ECRYPT benchmarking of cryptographic systems. http:

//bench.cr.yp.to/supercop.html.
12. ECRYPT II. Yearly report on algorithms and keysizes (2010), D.SPA.13 Rev. 1.0,

ICT-2007-216676, 2010. http://www.ecrypt.eu.org/documents/D.SPA.13.pdf.

Fast Elliptic Curve Cryptography in OpenSSL 13

13. Marc Joye and Michael Tunstall. Exponent recoding and regular exponentiation al-
gorithms. In Bart Preneel, editor, Progress in Cryptology - AFRICACRYPT 2009,
Second International Conference on Cryptology in Africa, Gammarth, Tunisia,
June 21-25, 2009. Proceedings, volume 5580 of Lecture Notes in Computer Sci-
ence, pages 334–349. Springer, 2009.

14. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer
Science, pages 104–113. Springer, 1996.

15. Adam Langley. curve25519-donna: A 64-bit implementation of Curve25519. http:
//code.google.com/p/curve25519-donna/.

16. Bodo Möller. Algorithms for multi-exponentiation. In Serge Vaudenay and Amr M.
Youssef, editors, Selected Areas in Cryptography, 8th Annual International Work-
shop, SAC 2001 Toronto, Ontario, Canada, August 16-17, 2001, Revised Papers,
volume 2259 of Lecture Notes in Computer Science, pages 165–180. Springer, 2001.

17. mozilla.org. Network Security Services. http://www.mozilla.org/projects/

security/pki/nss/.
18. NIST. Recommendation for key management, special publication 800-57 part 1.
19. The OpenSSL project. OpenSSL—cryptography and SSL/TLS toolkit. http:

//www.openssl.org.
20. Certicom Research. SEC 2: Recommended elliptic curve domain parameters, 2010.
21. Ivan Ristic. Internet SSL survey 2010. Technical report, Qualys, 2010. Black Hat

USA 2010.

