
Trapping ECC with Invalid Curve Bug Attacks

Renaud Dubois

Thales Communications and Security
4, Avenue des Louvresses

92230 Gennevilliers – France
firstname.lastname@thalesgroup.com

Abstract. In this paper we describe how to use a secret bug as a trapdoor to design
trapped ellliptic curve E(Fp). This trapdoor can be used to mount an invalid curve
attack on E(Fp). E(Fp) is designed to respect all ECC security criteria (prime order,
high twist order, etc.) but for a secret exponent the point is projected on another
unsecure curve. We show how to use this trap with a particular type of time/memory
tradeoff to break the ECKCDSA verification process for any public key of the trapped
curve. The process is highly undetectable : the chosen defender effort is quadratic in
the saboter computational effort. This work provides a concrete hardly detectable and
easily deniable example of cryptographic sabotage. While this proof of concept is very
narrow, it highlights the necessity of the Full Verifiable Randomness of ECC.
keywords:Bug Attacks, Fault Attacks, ECC, Invalid Curve Attack, ECKCDSA, Klep-
tography, NSA, Paranoia, Verifiable Randomness, Sabotage-resilient Cryptography.

1 Introduction

1.1 Context

According to the leak of NSA memos of E. Snowden (as reported in the New York
Times in 2013 [9]) the NSA managed to become the sole editor of the Dual EC-DRBG
Standard [2]. Using this status, the agency inserted a backdoor as part of the large
scale bullrun decryption program [10]. This increased the concern about the capacity
for an organization to specify trapped cryptosystems. Workshops [8] and Projects like
[3] ask the question : ”is there some trap we ignore in the widely used standardized
elliptic curve ?”. Those standard curves still resist to classical cryptanalysis (transfers,
Pollard-rho, etc.), some like P224 are vulnerable to fault attacks [23] because the twist
rho order is below 259. However the complexity remains high and requires a physical
access to the cryptographic device. There is still a possibility that the community
is missing a kind of attack relying on either a new theoretic advance or different
assumptions. In [14] the authors analyse this possibility of a manipulation of the
standards assuming the theoretic existence of an unknown class of attacks. We provide
such a class making different assumptions rather than mathematical breakthrough:

– the saboteur may introduce a secret bug in a cryptographic hardware or library,
– the saboteur is able to specify the public elliptic curve E(Fp) used.

Under those assumptions, we describe how a saboteur can design a specific elliptic
curve such that an attacker can forge a valid ECKCDSA signature for any victim
using the trapped device/library and curve. The model is strong, but let’s adopt the
most paranoid point of view. Snowden revealed that intentional hardware modifica-
tions of security products sent to targeted organizations was used by NSA. Largest
hardware corporations are American companies. As for the software, the debian [5]
and heartbleed bug [21] illustrated the possibility to introduce an error in an open
source library.



1.2 Prior art

Kleptography In [29], the authors introduced the first description of a cryptographic
sabotage, and referred this concept as kleptography. They presented a backdoor on
RSA key generation such that the saboteur may recover any private key generated
by the trapped device. A series of works by Young gave descriptions of backdoored
cryptosystems for Diffie-Hellman Key exchange, DSA, ElGamal and Schnorr (see [30],
[31], [32]). In [13], a similar work is done over symmetric encryption.

(Un)security model. In [25], the authors introduced a taxonomy to characterize
the cryptographic sabotages with different properties :

– secrecy including undetectability, conspiracy and deniability,
– utility including easiness, severity, durability and moniterability,
– scope including scale, precision, and control.

We will discuss the characterization of the constructed trapped system with respect
to these properties later on. They also introduce four roles : the saboteur, the victim,
the defender and the attacker. In the article the design of cryptosystems is supposed
to be done by the defender. Unfortunately history shows that the saboteur himself
can be part of the design.

Fault attacks and bug attacks. A fault attack [18] is an invasive attack that uses
a physical perturbation (heat, laser, etc.) to perturb the execution of a cryptographic
device to extract its secret material. This kind of attack requires having physical access
to the cryptographic hardware. In [16] the authors introduce the idea of trapping
material with a secret bug to transform fault attacks into possibly remote attack.
They then exhibit how some versions of RSA may be broken if a secret bug in a
multiplier for a single couple of values known by the attacker exists. Later they give
some attacks over simple Pohlig-Hellman cryptosystems. Currently ECC is more and
more deployed and the attack is not straightforward.

The bug attack could be exploited to lever the fault attack over Elliptic curve
cryptosystems described in [15] into a remote attack, for example over Static Diffie
Hellman protocol. But an obvious way to circumvent the attack is to check that the
result of computation is still over the curve. Moreover static Diffie Hellman is known
to be insecure for many reasons (perfect forward secrecy, etc.) and should not be
implemented.

Trapped elliptic curve. In [28], Teske describes a method to insert a backdoor in
the design of a public curve. First a very specific weak curve is constructed over the
binary field F 161

2 . Then a public curve related to the weak one by a secret hidden
isogeny is published. With the knowledge of the secret isogeny, the ECDLP can be
broken, while it cannot on the public curve. Only a few binary fields are suitable for
the construction (namely F 161

2 , F 154
2 , F 182

2 , F 189
2 and F 196

2 ) .They then conclude that
any curve over those fields constructed without verifiable randomness may be trapped
by the given algorithm. Surprisingly there is not much echo on this devastating result
for the credibility of binary curves. Long before Joux’s breakthrough on binary field
DLP, some decided to avoid those curves due to the suspicions this article inspired.

2



Our Contribution. In this paper, we describe how to insert a tradpoor in a public
curve using a secret arithmetical bug instead of a hidden isogeny. The construction
works over any finite field. Then we describe a bug attack over the ECKCDSA verifi-
cation scheme. The way to mount a bug attack on ECKCDSA is not straightforward.
Because of the use of a nonce, we need to break the protocol with a single message. We
stress that even if the victim performs sanity checks, that the attack is undetectable
by a point testing.

2 Sabotage security

In the following we will consider the following roles :

– the saboteur S : the designer of the trapped device,
– the victim V : the user of the trapped device,
– the attacker A : the entity trying to take advantage of the trap to break the

security of the device,
– the defender D : the entity trying to find a trap in a device.

In classical cryptography, the security level τ is defined by the effort required by
an attacker to break the system. In symmetric cryptography, the size of the key is
equal to the security level, i.e the best attack for an attacker should require as much
effort as an exhaustive seach over the key. We define the sabotage security σ as
the computational effort required by D to detect a trap.

The sabotage security is directly related to the concept of security level mentioned
above but by exchanging the classical role of A against D by D against S. As the
security level has impact on the easiness for the user (the higher the security level,
the higher the computational cost to compute a protocol), sabotage security level
has impact on the easiness for the attacker : the higher sabotage security, the lower
detectability but probably the higher computational cost.

The scenario described in this article is as follow:

– S designs a trapdoored elliptic curve using Algorithm 1,
– A computes a malicious message in σ2

σ
2 steps using algorithm 3,

– V computes ECKCDSA verification of M as true using Algorithm 2,
– D tries to detect the presence of a bug/trapdoor by blackbox inspection in O(2σ)

steps.

Notations In this paper we will write the law over elliptic curve additively. We use
the short Weierstrass form y2 = x3 + ax+ b. The following constant will be used:

– p is the characteristic of the prime field Fp,
– E(Fp) is an elliptic curve over a prime field Fp,
– q is the order of E(Fp),
– the symbol ” ˜ ” is for a value that has been faulted by a bug at some previous

point of the computation,
– τ is the security level. It is usually set as 80, 128, 192 or 256 according to the

application (short or long term secret, civil or military),
– σ is the sabotage security level.

3



3 Invalid Curve Bug Attacks

3.1 Principle

Invalid Curve Attack was introduced in [15]. It relies on the fact that given the
Weierstrass equation y2 = x3 + ax + b of an elliptic curve over a prime field E(Fp)
with base point G, the doubling and addition formulas do not depend on the coeffi-
cient b. The following table illustrates this property by giving the formulas for affine
coordinates (but it is the case for all representation system).

Doubling Addition

if y = 0 then 2P = P∞, else

λ = 3x2+a
2y

λ = y1−y2
x1−x2

x2 = λ2 − 2x x3 = λ2 − x1 − x2

y2 = −λ3 + 3λx− y y3 = −λ3 + 2λx1 + λx2 − y1

Table 1. Doubling and Addition law over E(Fp)

Thus, if a point is not checked to be on the curve, V could be lead to compute
over a curve Ẽ(Fp) of equation y2 = x3 + ax+ c. S can select Ẽ(Fp) with some weak
security properties (for example a very smooth order). A simple way to circumvent
this attack is to check if a given point is on a curve. If we only count multiplications,
it has a negligible cost of 5 multiplications, compared to an average cost of C × 2τ?

for a scalar multiplication of a point, necessary in most of ECC protocols operation.
Recently, this attack was extended to several models of curves (including Edwards
and Hessian) [24]. Another kind of attack relying on the projection over a weaker
curve is described in [23]. Here a fault is injected at some point of the computation,
such that the faulted value results in jumping from a secure curve to its less secure
twist.

Invalid Curve Bug Attacks [ICBA] In [19], the authors exhibit how to mount an
invalid curve attack on the OpenSSL up to version 0.9.8g. Precisely, the implemen-
tation of the modular multiplication over the specific field has a bug which occurs
with probability ≈ 2−28. When the bug triggers, the faulted result of a modular mul-
tiplication r = xy mod p is r̃ = xy ± 2256 mod p. This gives the possibility to obtain
a result over one of the two faulty curves E+256 and E−256. However the ECDLP
remains difficult on this two curves (so the ICBA is qualified in the article as ”a first
attempt”), so the authors show how to break static Diffie Hellman protocol with an
adaptative attack requiring 633 queries.

The attack has the following limitations :

– the amount of work required by A is the same as the one required by D to detect
the bug by black box inspection. The error was found and corrected due to the
inspection of faulted execution traces.

– the bug can be prevented by testing if the point belongs to the curve after the
scalar multiplication, limiting its impact to ECDH only.

? The constant C depends on the coordinates system used ,C could be 18M for projective, the point
here is not to discuss which representation is the most efficient.

4



Note that this bug was present in OpenSSL and fixed, but was also found to be
present in Nettle (used for GNUTLS) only very recently (see table 2).

3.2 From genuine error to malicious design

Our thesis is that if S knows any Zero-Day bug in a cryptographic library prior to
the design of a curve, he can use it to break a protocol over this curve. As long as
the bug is not publicly revealed, only S can break the protocol. We show that it is
also possible for him to trap a curve for ECKCDSA to hide the occurrence of the bug
such that even if the bug is discovered, the curve will not be identified as willingly
weak.

First design : ICBA on OpenSSL P256 bug For example, knowing the OpenSSL
P256 bug, one could propose the following prime order P ′256 curve :

p = 2256 − 2224 + 2192 + 296 − 1, a = −3 mod p, b = 19086 mod p

| P ′256 |= 115792089210356248762697446949407573529928204550950567091257955015483879887733

Contrary to E+256 and E−256 which seem to behave like random curves, we chose
P ′256 such that ECDLP is easy in E′−256 :

p = 2256 − 2224 + 2192 + 296 − 1, a = −3 mod p, b = 19086− 2256 mod p

| E′−256 |= 115792089210356248762697446949407573530293404966142140267282850015878136948013

= 3.11.23.311.840841.5763663089.124818543833.66178631919259.429985282118939. 28497959920504661︸ ︷︷ ︸
≈255

The simple MAGMA code to generate this curve is given in Annex A.1. Note
that instead of just incrementing b, we could use the somewhat rigid process of NIST
curves (i.e use a Hash function) until a weak curve is found.

Second design : Circumventing Point testing The idea of our Invalid Curve
Bug Attacks is to exploit a secret bug (except for S) such that a valid point at the
input of a function will ”jump” to a chosen invalid weak curve at some point of the
computation. We design the curve such that the result of a specific computation over
this curve is P∞, which belongs to every curve. Thus the point testing countermeasure
is ineficient as both input and output of the scalar multiplication are on E(Fp). We
now describe the principle of the attack with respect to affine representation for
simplicity sake, but it can be extended for any other representation. To do this we
assume that a faulted multiplier has a secret bug. This bug must have a probability of
random apparition lower than 2−σ to respect the sabotage security level. We assume
that the bug is such that the computation of the square of one specific value x gives
a wrong result x̃2. This bug is assumed to happen with an undectable probability
(e.g 2−128). With the knowledge of this bug, S can design a safe curve and an unsafe
curve linked to each other by this secret intermediate computation. More precisely

5



the S looks for a value of a such that the result of the doubling of a point (x, y) is a
point of order 2 (i.e ỹ2 = 0). This constraint leads to the following system :

ỹ2 = −λ̃3 + 3λ̃.x− y = 0 , with
λ̃ = 3x̃2+a

2y ,

x̃2 = λ̃2 − 2x.
Thus given x, x̃2 and a random y , S can compute one of the root of the degree 3
univariate polynomial over Fp of variable a

Px,x̃2,y(a) = −
(

3x̃2 + a

2y

)3

+ 3x
3x̃2 + a

2y
− y

to obtain the desired value of a. The parameters of the ”good” curve are p, a, b, x, y, q
and the parameters of the bad curve are p, a, c, x̃2, ỹ2, 2q′ with

a = Root(Px,x̃2,y)
b = y2 − x3 − ax
x̃2 = λ̃2 − 2x
c = y2 − x̃3

2 − ax̃2

Once found, S obtains two curves, a safe and unsafe one such that :

– E(Fp) has prime field Fp and with some luck (i.e iteration over y and SEA (Shoof-
Zlkies-Atkin algorithm [26] ) executions) prime order q,

– Ẽ(Fp) has order 2q′,
– The doubling of the E(Fp) point of coordinates (x, y) with the trapped material

projects the result over the point of Ẽ(Fp) (x̃2, 0) of order 2.

Note: Using a degree of freedom over the family of bugged square, one could set
coefficient a to a specific value, iterate over x and compute a roots of polynomial in
y : Px,x̃2,a(y). This provides more rigidity (however still less than NIST process).

3.3 Hiding the bug with chosen sabotage security

x’
y’

x
y

LSB MSB

Double&Add
Chain

(Subgroup of large order) (Subgroup of order2 ) 

G̃ 6= 2G
P∞

1
2

1
2

G̃
GG′

λ̃ = 3 x̃
2+a
2y

x̃2 6= x2

E(Fp)

Te

Ẽ(Fp)

2σ.R

Fig. 1. Trapping E(Fp) with the bug to jump over Ẽ(Fp).

In order for the bug to be undetectable, S needs to introduce some backdoor to avoid
its disclosure. To do so, he choses a secret value of trapped scalar Te over Fq and

6



compute T−1
e mod q and the scalar multiplication G′ = T−1

e .G. The length of Te is
set according to σ : σ = log2(Te). The probability to detect randomly the incidence of
the bug by random computation is O(2−σ). Then S publishes the public parameters
p, a, b, q,G′. This process is described in Algorithm 1. Now for a ”double and add”
multiplication implementation of the computation of a scalar multiplication λ.G′, if
λ = Te + 2s.r, then the computation of the first σ bits of the exponent leads to the
intermediate result G = TeG

′ as shown in Figure 1. Then the next doubling is the
faulted G̃ over the bad curve. Once over the ”bad curve” Ẽ(Fp), the rest of the scalar
multiplication is r.G̃ . One half (the even values) of the 2τ−σ possible values for r will
give P∞ as bugged result which representation is common for all curves.

Algorithm 1 Trapped elliptic curve generation
Require: σ, p prime, Bugged square x→ x̃2 6= x2

1: q = 0
2: while q is not prime?? do
3: Pick random y in Fp
4: Compute Px,x̃2,y(a) = ( 3x̃2+a

2y
)3 + 3x 3x̃2+a

2y
− y

5: Compute a = Root(P )
6: if a 6= ∅ then
7: b = y2 − x3 − a.x
8: q = SEA(p, a, b)
9: Pick a random Te in [0..2σ − 1]

10: Compute G′ = (x′, y′) = T−1
e .G

Ensure: Public=(p, a, b,G′, q) and Secret=Te, x, y

Remark : It is the same for a window method with fixed exponent if the length of
Te is multiple of the window size. The construction also works for the Montgomery
Ladder and a well chosen Te (for example with the three first bits of Te being ”101”
both chains will take value 2P and 4P successively).

Example of bug. A first example of such bug could be a hardware bug in the
multiplier for two secret values A and B. For a 64 bit architecture, the probability of
apparition is 2−128. This bug can be used to meet the requirement of a faulted square
by setting the multiprecision integer value to x = A + 264B + 2128.R (R being any
value), so that in the implementation of the squaring a multiplication of A and B will
occur. In most implementations, the Montgomery representation is used for efficiency
sake. If so x should be changed so that its representant includes the faulted values.
The error could also occurs at software level (in the Montgomery multiplication itself
for instance). With such trap, we show in Section 4 how A can forge an ECKCDSA
signature for any public key that any trapped verifier material will accept as valid.

3.4 Real word examples

Nasty Montgomery Multiplier. The bug may be introduced at hardware level as
suggested in [16], but the error may also occurs at software level. A multiple precision
library is a complex tool, and we provide an example of a bugged implementation
?? Other conditions like twist rho-order, Embedding degree may be added here

7



due to an error in the carry propagation at the Montgomery multiplication level. The
error is touchy and occurs with the multiplication of four words of 64 bits of value
0xFFFFFFFFFFFFFFFF occurs. This specific value seems easy to reach as special
moduli are used in most of NIST curves, leading to a detection of the bug, but the
use of the Montgomery Representation hides the particularity.

This bug is a misimplementation, hard to detect by a simple inspection and it
would be easy to pledge so for the trapper. The probability to reach such a case is
negligible. In fact it was detected using the same algorithm on smaller machine words
(8 bits) where the probability of occurrence is high.

Open Source Cryptographic library bugs. Recently, bugs have been identified
using coverage tools by the security researcher Böck [17]. Table 2 summarizes those
bugs. They perfectly fit our description : they concern modular computations, with
a very low probability of black box detection. Any of these bugs could have been
used with one of the trapping design we introduced in this paper. The fact that
the discovery of those bugs are very recent (while the library are old, popular and
commonly used) highlights how hard it is to debug a cryptographic library, and how
easy it would be to deny a bad intention by a saboteur. The security analysis of those
bugs only describe the vulnerability of fixed ECDH. This paper shows that signatures
may also be a concern.

Library Reference Function Date Severity Description

OpenSLL [CVE-2014-3570] Squaring 11/2014 Low Bug with probability 2−128

(resp 2−64) on X86 X64 archi-
tecture (resp MIPS 32 bits)

OpenSLL [CVE-2015-3193] Montgomery
Squaring

10/2015 Moderate Bug with probability 2−128 on
X86 X64 architecture

NSS (Firefox,
Mozilla)

[CVE-2016-1938] Montgomery
exponentiation

01/2016 Medium Bug with probability 2−128 on
X86 X64 architecture

Nettle
(GNUTLS)

[CVE-2015-8805] ecc256 modq 02/2016 Critical Carry error propagation for
P256 curve over all architec-
tures

Table 2. Open Source Recent Known Bugs

3.5 Trapped Parameters.

Using the nasty Montgomery multiplier bug, we demonstrate the trapping and con-
struct an example using the same prime field as the curve P384. The Magma code
used to generate the tricky curve ˜E(Fp) and its result is given in annex A.2.

4 Trapped ECKCSA

The ECKCDSA is one of the three elliptic curve signature protocol described in the
ISO 15946-2[4]. In this section we describe how A can exploit the previous trapped
curve to forge an ECKCDSA signature for any trapped device. The attack requires
a kind of time memory tradeoff such that the computational effort for A is O(σ.2

σ
2 ),

where (σ = log2(Te)). Its memory requirement is O(2
σ
2 ). In the real life, an attacker

8



could set σ = 80, leading to a probability of detection of the trap of 2−80, for an
attack cost of O(246). The computations are done offline and the attacker only need
to submit a single message to the victim device.

4.1 ECKCDSA Description

ECKCDSA is a Korean Signature Standard which doesn’t require modular inversion
for signing and verifying.It is commonly used as a replacement of ECDSA . To check
the validity of a signature (r, s) of message M concateneted to constant certificate
information z by a signer with associated public key Q, the verifier process the fol-
lowing algorithm. For more security, it is safer to check that points Q and R are on
the curve.

Algorithm 2 ECKCDSA Signature Verification
Require: E(Fp) : p, a, b,G(x, y), q, M ,z, Q, (r, s).
Ensure: Flag sigvalid

1: Set Flag sigvalid=FALSE

2: if (r, s) 6∈ [1..q − 1]2 then
3: Exit.
4: e = r ⊕ h(z ||M)
5: R = sQ+ eG
6: if R = P∞ then
7: Exit.
8: if r 6= h(bRcx) then
9: Exit.

10: Set Flag sigvalid=TRUE

4.2 Forging message using the secret trap

Algorithm 3 ECKCDSA Message Forge
Require: E(Fp) : p, a, b,G(x, y), q, z,Te

1: P0 = Q, s0 = 1, finished=FALSE
2: for i ∈ [1..2

s
2 ] do

3: si = i+ 1
4: Pi = Pi−1 +Q
5: ri = h(bPicx)
6: Sort ri according to its σ LSB bits
7: repeat
8: Select a message mj and compute h(z || mj)
9: if ∃i, ri = Te ⊕ h(z || mj) mod 2σ then

10: (M, r, s, finished) = (mj , ri, si, TRUE)
11: until finished=TRUE
Ensure: Forged signature(M, r, s).

Discussion. The aim of this forge is to find a couple (ri,mj) such that during the
Step 4 of the verification the exponent e will include the trapped exponent Te. In
order to do so we set (ri, si) = (bi.Qcx, i), mi’s are random. As e is the xor of the
result of a scalar multiplication r and a hash h, it can be seen as the result of two
requests to a random oracle. Finding a specific value of the σ LSB (or MSB) bits

9



can be done by an average of 2
σ
2 requests of r and h. This is what means the stop

condition (finished) of the algorithm. The convergence of the algorithm relies on
the birthday paradox, that ensures that for 2

σ
2 messages a valid couple (ri,mj) exists.

The asymptotic complexity is given by the sort of the 2
σ
2 elements of the list of ri’s.

In practice the most time consuming computation is given by the point addition over
Z/qZ. The choice of si’s as successive elements is motivated to compute efficiently
by point addition. A random choice of si’s would require a far more expensive scalar
multiplication. To speed-up the computation it is also possible to choose the mj ’s such
that only the last block of the message vary, so the hash computation only require
one call to the hash update and hash final functions of the hash primitive. Note
that the probability of success is 1

2 because the result of a faulted point multiplication
gives P∞ with probability 1

2 . A just iterates Algorithm 3.

4.3 Verification by the victim

Now under the previous assumptions, when V computes the value eG, as e = Te
mod 2σ, during the double and add computation, after the σ first steps, the interme-
diate result is equal to G′, then the rest of the computation are over the bad curve,
so with probability one half the result is P∞. In affine coordinates a simple field may
be use to indicate that the point is P∞, in projective its representation will be such
that the (x, y, z) coordinates of G′ are such that z = 0. In both case the infinity
point has the same representation for any curve. This means that at step 5
of algorithm 2, we have R̃ = sQ ∈ E(Fp). Then by construction h(bR̃cx) = r and V
accepts the signature as valid.

5 Characterization of the sabotage

We characterize the described sabotage with respect to the criteria defined in [25]. We
add a column for the rigidity, which should now be considered as mandatory criteria
when designing an elliptic curve. We define it as medium for our ECKCDSA ICBA
because only the prime field Fp is an input of our construction.

5.1 Rigidity and degrees of freedom of the curve generation

The rigidity is a property defined in [3] as the amount of degree of freedom in the
generation of the parameter of a curve. A curve is defined either as

– ”trivially manipulatable” if no pseudorandom proof is given for the curve at all,
– ”somewhat rigid” if some of the parameters are fixed by pseudorandom generation

and verifiable,
– ”fully rigid” if there is no degree of freedom in the generation.

Currently in the FIPS186 [1], the base point may be chosen by users ”to ensure
cryptographic separation of networks”. Also the ANSX9.62 describe the rigidity as
not mandatory, the value SEED being optional. All the curves defined in those norms
are only ”somewhat rigid” as there is no explanation about the mysterious value of
the seed. If a property we ignore lies with not negligible probability, it is possible to
pick values of SEED until the required property is reached.

Our first design works even with ”Somewhat rigidity” (like NIST[1] generation),
as one can pick a random curve until the order of |E′±256| is smooth. For the second

10



design ( Algorithm 1) of curve generation, there is only a limited amount of rigidity
(p can be the output of a cryptographic hash function). It also needs to choose the
value of the base point to hide the bug. Example of trivially manipulatable curves are
the FRP256V1[7] standard published in 2011, and the curve published by the Office
of State Commercial Cryptography Administration (OSCCA) [6] in 2010.

The trapping of the curve wouldn’t be possible with ”full rigidity”. A possibility
is to used curves like Curve25519 [3]. However this curve uses a very specific field and
it may appear safer to have alternatives. Michael Scott already suggested a natural
way to do it starting from decimal values of π [27]. A fully rigid original construction
is proposed in [12] to generate generic curves from lottery results.

5.2 Attacker and Defender effort

The following table give the rigidity of the curves and the related complexities required
by S and D. The first design requires the same effort for both, while in the second
the bug is computationnaly undetectable. If S is a large organization, it could be
assumed that he has a greater computational power than D but sooner or later the
first design bug will be revealed.

Bug&Design Attacker comp. Defender comp. Max. Rigidity

First design O(2σ) O(2σ) Somewhat R.

OpenSSL-P256 O(228) O(228)
OpenSSL-square, OpenSSL-ModExp,Nasty-Montg O(2128) O(2128)

Second design O(2
σ
2 ) O(2σ) Trivially M.

OpenSSL-P256 O(214) O(228)
OpenSSL-square, OpenSSL-ModExp,Nasty-Montg O(264) O(2128)

Table 3. Characterization of both designs

5.3 Comparison of the taxonomy with various historical backdoors

We give a comparison of this work with historical backdoored systems as done [25].
We insist with ECC systems to highlight the difference and similarity.

U
nd

et
ec

ta
bi

lit
y

La
ck

of
Con

sp
ira

cy

D
en

ia
bi

lit
y

ea
sin

es
s

M
on

ite
ra

bi
lit

y

Se
ve

rit
y

Sc
al
e
Pre

cis
io
n

Con
tr
ol

R
ig
id

ity

Debian PRNG [5] H H H M M H H M L -

Dual EC [2] M L L M L M L L H L

Trapdoor ECC [28] H L L L H H H L H L

ECKCDSA ICBA H H L M M H H L H M

Static DH ICBA H H L M M L H L H H

Table 4. Taxonomy of various cryptosystems

11



5.4 Defender Toolbox

Fault Resistant Implementation. An important fact is that the result of the
faulted computation is the infinity point. Therefore if the fault verification consists in
checking that the point is on the curve, the result is true as it belongs to any curve.
Moreover, at this step, most implementation won’t test that the result is not the
point at infinity because the input condition (e being different from q) guarantees this
property in a faultless code. A simple countermeasure is to use any of the Coron [20]
countermeasures. One of them is to use a projective equivalent by choosing x′, y′, z′ =
λ.x, λ.y, λ.z. As the original value x is replaced, the square of x′ is computed correctly.
For an attacker with no physical access to the device, usually this countermeasure is
not necessary. As it has a computational cost, one could be tempted to ignore the
threat of faults. The point testing step is enough to prevent remote attack. This work
stresses that this countermeasure should be used anyway to prevent unknown trap.

Black box testing. If D doesn’t have access to the code, it should test intensively
each set of parameters. The asymmetric cryptography give a rare opportunity to assess
the correctness of implementation. For the P256 bug, a toughness test, consisting
in signing/verifying on random input would have spotted the P256 bug.

Code coverage and Scalability. This work shows that with black box inspection
only, S wins the game against D. A way to increase trust would be to require formally
verified implementation of elliptic curve cryptography [22], but it is a very difficult
task to obtain and not compatible with high throughput. A tradeoff is to use code
coverage or scalability. Code coverage consists in providing test vectors to test each
branch of a program. However as stated in [17], the branch free implementation of
cryptographic libraries (related to side-channel attacks) makes the inspection of code
more difficult. Some of the bugs discovered in Table 2 has been found by using the
special vectors of a branched implementation in a non branched one. The scalability
of a library consists in having a generic implementation over machine words chosen
from 8 bit to 64 bit architectures. On a 8 bit architecture, the special cases will appear
more frequently and carry errors should be detected.

6 Conclusion

This work is a proof of concept of the design of a hardly detectable trapped cryp-
tosystems. There are easy countermeasures, but the important point is that it is easy
for a manufacturer to design a white box malicious implementation and nevertheless
obtain certification of its products.

The attack implies a very strong model : the bug on the modular multiplication
is common, but the elliptic implementation is not. The Montgomery ladder, Coron’s
countermeasures, Shamir’s trick (Strauss ladder) are not compatible with it, thus
minimal state of the art implementations. However despite bad implementation, it
would pass all FIPS tests. All of this wouldn’t be possible with verifiable randomness.
The main point is that it is not clear what kind of vulnerabilities we may be missing by
using non rigid curve. The mathematical tools required are very basic, but the overall
complexity for a defender comes from the assembly of bug, trapped curve, propice

12



protocol. To answer the initial question ”is there some trap we ignore in the widely
used standardized elliptic curve ?”, this preliminary work stresses that it is plausible
that some flaw with the combination of several assumptions hard to relate to each
other might exist in our standard. We definitely recommend to avoid the use of the
P-series NIST curve [1] except for the validation of code. As for ANSSI and OSCCA,
an interesting (and a bit provoking) fact is that knowing the exact specification of
this sabotage, it is not possible to say if they are trapped for ECKCDSA or not.

The described method is only one from many possibilities, we are still looking to
way to trap more rigid curve (i.e switching from choice of x, y, a, b related to each other
to more degrees of freedom). In the next years, the development of Post Quantum
protocols will certainly requires constants which will have to be verifiable as well (see
[11] for a PQ-trap). An extension of this work is to extend the concept to other kinds
of protocols.

Acknowledgement The author wish to thank Olivier Bernard for helpful comments
and discussion.

References

1. Digital signature standard. Federal Information Processing Standards Publication 186-2. 2000.
2. Recommandation for random number generation. Special Publication 800-90, 2012.
3. Safecurves: Choosing safe curves for elliptic-curve cryptography.

http://safecurves.cr.yp.to/index.html.
4. Information technology - security techniques - cryptographic techniques based on elliptic curves-

part 2 : Digital signatures. Technical Report 15946-2, 2002.
5. Debian security advisor : Openssl predictable random number generator. 2008.
6. Public key cryptographic algorithm sm2 based on elliptic curves. State Commercial Cryptography

Administration (OSCCA), China, page 6 and 13, 2010.
7. Publication d’un paramtrage de courbe elliptique visant des applications de passeport lectron-

ique et de l’administration lectronique franaise. Agence Nationale de la scurit des systmes
d’information., pages 2–6, 2011.

8. Awacs 2016. a workshop about cryptographic standards. 2016.
9. Government annouces steps to restore confidence on encryption standards. The New York Times,

September 10, 2013.
10. Revealed : how us and uk spy agencies defeat internet privacy and security. The Guardian,

September 5, 2013.
11. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post quantum key exchange - a new hope.

eprint 2015, report1092., 2015.
12. T. Baignières, C. Délerablée, M. Finiasz, L. Goubin, T. Lepoint, and M. Rivain. Trap me if you

can - million dollar curve. eprint 2015, report1249. https://eprint.iacr.org/2015/1249.
13. M. Bellare and Z. Brakerski. Security of symmetric encryption against mass surveillance. In

Crypto 2014, volume 8616 of LNCS, pages 1–19, 2014.
14. D. Bernstein, T. Chou, C. Chuengsatiansup, A. Hulsing, E. Lambooij, T. Lanje, R. Niederhagen,

and C. Vredendaal. How to manipulate curve standards : a white paper for the black hat.
Cryptology eprint Archive. report0571., 2014.

15. I. Biehl, B. Meyer, and V. Mller. Differential fault attacks on elliptic curve cryptosystems.
Springer, Advances in Cryptology, CRYPTO 2000, pages 131–146, 2000.

16. E. Biham, Y. Carmeli, and A. Shamir. Bug attacks. Journal of Cryptology, 29:1–31, 2015.
17. H. Böck. Fuzzing project report december 2015. 2015.
18. D. Boneh, R.A. DeMillo, and R.Lipton. On the importance of eliminating errors in Cryptographic

Computations. In Journal of Cryptology, volume 14, pages 101–120, 2001.
19. B.B. Brumley, M. Barbosa, D. Page, and F. Vercauteren. Practical realisation and elimination of

an ecc-related software bug attack. Springer, Advances in Cryptology, CT-RSA 2012, 7178:171–
186, 2012.

20. J.S. Coron. Resistance against differential power analysis for elliptic curve cryptosystems.
Springer, CHES 1999, pages 292–302, 1999.

13



21. Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael Bailey, Frank Li,
Nicholas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, , and al. The matter of
heartbleed. In ACM Internet Measurement ConferenceIMC, 2014.

22. S. Fischer. Formal verification of a big integer library. Workshop on Depandable Software Systems
at DATE’08, 2008.

23. P.A. Fouque, Reynald Lercier, Denis Réal, and Frédéric Valette. Fault attack on elliptic curve
with Montgomery Ladder. FDTC’08, pages 92–98, 2008.

24. S. Neves and M. Tibouchi. Degenerate curve attacks - extending invalid curve attacks to edwards
curves and other models. Springer, Advances in Cryptology, Public Key Cryptography 2016,
PKC2016, 2016.

25. B. Schneier, M. Fredrikson, T. Kohno, and T. Ristenpart. Surreptitiously weakening crypto-
graphic systems. eprint 2015, report097. https://eprint.iacr.org/2015/097.

26. R. Schoof. Counting Points on elliptic curves over finite fields. In J. Theorie des nombres
Bordeaux 7, Les dix huitiemes journees arithmetiques, pages 219–254, 1995.

27. Mickael Scott. Re: Nist announces set of elliptic curves. 1999.
28. E. Teske. An elliptic curve trapdoor system. J. Cryptology, 19:115–133, 2006.
29. A. Young and M. Yung. The Dark Side of ”Black-Box” Cryptography, or: Should We Trust

Capstone? In Crypto 1996, volume 1109 of LNCS, pages 89–, 1996.
30. A. Young and M. Yung. The prevalence of kleptographic attacks on discrete-log based cryptosys-

tems. In Crypto 1997, volume 1294 of LNCS, pages 264–276, 1997.
31. Adam Young and Moti Yung. Kleptography: Using cryptography against cryptography. In

Eurocrypt 1997, volume 1233 of LNCS, pages 62–, 1997.
32. Adam Young and Moti Yung. Monkey: Black-Box Symmetric Ciphers Designed for MONopoliz-

ing KEYs. In FSE 1998, volume 1372 of LNCS, pages 122–, 1998.

A Annex : Magma

A.1 Design weak curve for P256 OpenSLL 0.9.8g bug

/* Generating a weak curve for the OpenSSL 0.9.8g bug*/

function RhoSecurity(q) /*return the greatest divisor binary size*/
res:=Factorization(q);
/*largest divisor */
largest_divisor:=res[#res][1];
return Log(largest_divisor)/Log(2);
end function;

/*modulus of original P256*/
p:=(2^256-2^224+2^192+2^96-1);

a:=p-3;
b:=5;
b:=19086;//starting value with already weak curve
min:=512;
Fp:=GF(2^256-2^224+2^192+2^96-1);

while(true) do
/*print "b=",b;*/
E_Fp := EllipticCurve([Fp!a, Fp ! b]);
q:=SEA(E_Fp: MaxSmooth := 1);

if IsPrime(q) then

14



print "SEA completed with prime q=",q;
cp256:= Fp!(b+2^256);

E_Fp := EllipticCurve([Fp!a, Fp ! cp256]);
q:=SEA(E_Fp);

min:=Min(min,RhoSecurity(q));
print "min for E+=",min, "b=",b, "cp256=",cp256,"q=",q;

cm256:= Fp!(b-2^256);
E_Fp := EllipticCurve([Fp!a, Fp ! cm256]);

q:=SEA(E_Fp);
min:=Min(min,RhoSecurity(q));
print "min for E-=",min, "b=",b, "cm256=",cm256,"q=",q;
end if;

b:=b+1;
end while;

Note : Short magma computations may be executed at magma.maths.usyd.edu.au/
calc. Copy Paste the previous code to obtain the weak curve E′−256 described in the
article (use command print to display). A timeout will occur but the first iteration
to compute P’,E′−256 and E′+256 is performed. The largest prime subgroup order of
E′−256 is displayed. Let the code run on a full magma version to compute weaker and
weaker curves. We stop the code at iteration b=71575 after 18 hours of computation.
Weakest curve was found for b=19086.

A.2 Design a weak curve for any input bug

Example on the Nasty Montgomery Multiplier

– We took the prime field of curve P384

p=3940200619639447921227904010014361380507973927046544666
7948293404245721771496870329047266088258938001861606973112319.

– We set the value of the base point to the value that fault when squared

x=369393805889439570816090072194361646623430082671918417
46057407161665255995602848623852264500109031981271513875611635.

The underlying reason of the bug is that the Montgomery representant hex-
adecimal value in base 264 of x is 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF,
0xFFFFFFFFFFFFFFFF, 0, 1, 0xF000000000000000. A carry propagation error
leads to the fact that x2 is (wrongly) equal to x̃2 =

198549103319280409870596578564863768173241930473338755541170
78071393609726399361869177048581233064225222407112096178$.

– We implemented Algorithm 1 in magma and simply choosed succesive values of
y until stop condition is true. The value of the trapped exponent Te is set to the
80-bit value ’666666666666666666666666’ (to show how chosen and evil it could
be).

15

magma.maths.usyd.edu.au/calc
magma.maths.usyd.edu.au/calc


Magma Code

/* Original P384 curve modulus */
p:=39402006196394479212279040100143613805079739270465446667948\
293404245721771496870329047266088258938001861606973112319;
/*starting value for y*/
y:=0;
/*to speed up the iteration over y for demonstration : first iteration is success*/
y:=1287;

q:=0;
Fp:=GF(p);
PolFp<X>:=PolynomialRing(Fp);
rac:=[];
/************************************************/
/*Search for a prime order elliptic curve over Fp
/************************************************/
/* INPUT BUG*/
x:= 3693938058894395708160900721943616466234300826719184174605740\
7161665255995602848623852264500109031981271513875611635;
/*the faulty square, result of x^2 (see hexadecimal value of x upper)*/
x2bar:=Fp!1985491033192804098705965785648637681732419304733387555\
4117078071393609726399361869177048581233064225222407112096178;

flag_primecurve:=false;
while flag_primecurve eq false do
flag_root:=false;
Y:=Fp!y;
print "\n y=",y ;
y:=y+1;

while flag_root eq false do
y:=y+1;

Lamdabar:=(3*x2bar+X)/y;
x3:=Lamdabar^2-2*x;
y3:=-Lamdabar*(x3-x)-y;
rac:=Roots(y3,Fp);
Y:=Fp!y;
print "rac=",rac;
if #rac ne 0 then
flag_root:=true;
anew:=rac[1][1];
bnew:= Y^2-(Fp!x)^3-anew*(Fp!x);
end if;
end while;

E_Fp2 := EllipticCurve([Fp!anew, Fp ! bnew]);
print("\n SEA");

16



q2:=SEA(E_Fp2 :MaxSmooth :=1);

flag_primecurve:=IsPrime(q2);
end while;

/****************************************************************************/
/* value of c for the faulty curve with base point (X3,Y3) and coefficient a*/
/****************************************************************************/
Lamda:=(3*x2bar+anew)/y;
X3:=Lamda^2-2*x;
Y3:=-Lamda*(X3-x)-y;
cnew:= Y3^2-(Fp!X3)^3-anew*(X3);

G:=E_Fp2![x,y];/*Generating point before faulted square*/
evil_backdoor:=666666666666666666666666; /*The backdoor exponent T_e*/
Fq2:=GF(q2);

inv:=Integers()!((Fq2!evil_backdoor)^-1); /*T_e^-1*/
Trapped_G:=inv*G; /* The public base point G’=Te^-1.G*/

E_broken := EllipticCurve([Fp!anew, Fp ! cnew]);/*Curve with base point of order 2*/
G_broken :=E_broken![X3,Y3];
qbroken:=SEA(E_broken);

print "first coefficient of good curve a=",anew;
print "second coefficient of good curve b=",bnew;
print "second coefficient of bad curve c=", cnew;

A.3 Result of computations

Copy Paste the previous code at magma.maths.usyd.edu.au/calc to obtain the fol-
lowing results. We only displayed a, b and c coefficients. (Other prints may be added
in the code).

Cryptographically ”Good” Curve E(Fp) Magma Version : 2.15 14

Prime order of Good curve
q2=39402006196394479212279040100143613805079739270465446667
946201705329262751545450690436602728229344419988978707511011

Base point of Good curve that fault at doubling
x=36939380588943957081609007219436164662343008267191841
746057407161665255995602848623852264500109031981271513875611635
y=1289;

Another generating point hidden by evil_backdoor prefix multiplication
x=3459056496007017001238081948147613345555997390124558589455
1979837137651731090499752986443421844032732144882136542032

17

magma.maths.usyd.edu.au/calc


y=114206713525978474709882504211423428570111721926405016017830
15817240197488780304566818140102790811520129494239806085

First and second coefficients of good curve
anew:=14367930229711479883350915186118982860188203847075728
760652649533264083000146742134994819780135817207484978476863149
bnew:=10949099633199464204054053090307503387451471250123433943970
335552311196600853667982397191983077615908540675639062341

Cryptographically ”Weak” Curve Ẽ(Fp)

Abscisse of point of order 2 over bad curve (y=0)
Composite order of bad curve
qbroken:= 3940200619639447921227904010014361380507973927046544666794538835
8682949421610061618883560664457439931110312462430016

Second coefficient of bad curve (first is anew)
cnew:=9630758124364902188515814209121086097780002504541
283739820173683903437007877626060407889575660525081223936226670927

Abscisse of point of order 2 over bad curve (result of faulted doubling : y=0)
Gxbroken:=374617639268522203913859892981863079758235466144455604388560101
28397790251332596471463988150536996670668060106280716

B Annex : ECKCDSA Signature and Key Generation

We provide here the description of ECKCDSA Verification and Key Generation func-
tions for completeness.

Algorithm 4 ECKCDSA Key Generation
Require: curve (E,P )
1: Pick random d in (Z/qZ)∗

2: Q = d−1.P
Ensure: Private key d and Public Key Q

Algorithm 5 ECKCDSA Signature Generation
Require: private key d, certificate information z, message M , curve (E,P )
1: Pick random k in (Z/qZ)∗

2: (xR, yR) = k.P
3: r = H(xR)
4: e = H(M, z)
5: ω = r ⊕ e mod q
6: s = d(k − ω)
7: if s=0 then
8: Goto Step 1.

Ensure: Signature (r, s)

18


	Trapping ECC with Invalid Curve Bug Attacks
	Renaud Dubois

