
On the Impact of Memory Allocation
on High-PerformanceQuery Processing

Dominik Durner
Technische Universität München

dominik.durner@tum.de

Viktor Leis
Friedrich-Schiller-Universität Jena

viktor.leis@uni-jena.de

Thomas Neumann
Technische Universität München

thomas.neumann@tum.de

ABSTRACT
Somewhat surprisingly, the behavior of analytical query engines
is crucially affected by the dynamic memory allocator used. Mem-
ory allocators highly influence performance, scalability, memory
efficiency and memory fairness to other processes. In this work,
we provide the first comprehensive experimental analysis on the
impact of memory allocation for high-performance query engines.
We test five state-of-the-art dynamic memory allocators and dis-
cuss their strengths and weaknesses within our DBMS. The right
allocator can increase the performance of TPC-DS (SF 100) by 2.7x
on a 4-socket Intel Xeon server.

1 INTRODUCTION
Modern high-performance query engines are orders of magnitude
faster than traditional database systems. As a result, components
that hitherto were not crucial for performance may become a per-
formance bottleneck. One such component is memory allocation.
Most modern query engines are highly parallel and heavily rely on
temporary hash-tables for query processing which results in a large
number of short living memory allocations of varying size. Mem-
ory allocators therefore need to be scalable and be able to handle
myriads of small and medium sized allocations as well as several
huge allocations simultaneously. As we show in this paper, memory
allocation has become a large factor in overall query processing
performance.

New hardware trends exacerbate the allocation issues. The de-
velopment of multi- and many-core server architectures with up
to hundred general purpose cores is a distinct challenge for mem-
ory allocation strategies. Due to the increased number of pure
computation power, more active queries are possible. Furthermore,
multi-threaded data structure implementations lead to dense and
simultaneous access patterns. Because most multi-node machines
rely on a non-uniform memory access (NUMA) model, requesting
memory from a remote node is particularly expensive.

Therefore, the following goals should be accomplished by a
dynamic memory allocator:

Scalability Reduce overhead for multi-threaded allocations.
Performance Minimize the overhead for malloc and free.
Memory Fairness Give freed memory back to the OS.
Memory Efficiency Avoid memory fragmentation.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
arxiv, May 03, 2019, Munich
© 2019 Copyright held by the owner/author(s).

0

5

10

15

0 50 100 150 200

Execution time [s]
M

em
or

y 
co

ns
um

pt
io

n 
[G

B]

TCMalloc malloc 2.23 malloc 2.28 TBBmalloc jemalloc

Figure 1: Execution of a given query set on TPC-DS (SF 100)
with different allocators.

In this paper, we perform the first comprehensive study of mem-
ory allocation in modern database systems. We evaluate different
approaches to the aforementioned dynamic memory allocator re-
quirements. Although memory allocation is on the critical path of
query processing, no empirical study on different dynamic memory
allocators for in-memory database systems has been conducted [1].

Figure 1 shows the effects of different allocation strategies on
TPC-DS with scale factor 100. We measure memory consumption
and execution time with our multi-threaded database system on a 4-
socket Intel Xeon server. In this experiment, our DBMS executes the
query set sequentially using all available cores. Even this relatively
simple workload already results in significant performance and
memory usage differences. Our database linked with jemalloc can
reduce the execution time to 1

2 in comparison to linking it with the
standard malloc of glibc 2.23. On the other hand, jemalloc has
the highest memory consumption and does not release memory
directly after execution of the query. Although the resident memory
consumption seems high for TCMalloc, it already gives back the
memory to the operating system lazily. Consequently, the allocation
strategy is crucial to the performance and memory consumption
behavior of in-memory database systems.

The rest of this paper is structured as follows: After discussing
related work in Section 2, we describe the used allocators and
their most important design details in Section 3. Section 4 high-
lights important properties of our DBMS and analyzes the executed
workload according to its allocation pattern. Our comprehensive
experimental study is evaluated in Section 5. Section 6 summarizes
our findings.

ar
X

iv
:1

90
5.

01
13

5v
1 

 [
cs

.D
B

] 
 3

 M
ay

 2
01

9



2 RELATEDWORK
Although memory allocation is a major performance driver, no
empirical study on the impact on in-memory database systems
has been conducted. Ferreira et al. [7] analyzed dynamic memory
allocators for a variety of multi-threaded workloads. However, the
study considers only up to 4 cores. Therefore, it is hard to predict
the scalability for today’s many-core systems.

In-memory DBMS and analytical query processing engines, such
as HyPer [13], SAP HANA [18], and Quickstep [21] are built to
utilize as many cores as possible to speed up query processing.
Because these system rely on allocation-heavy operators (e.g., hash
joins, aggregations), a revised experimental analysis on the scala-
bility of the state-of-the-art allocators is needed. In-memory hash
joins and aggregations can be implemented in many different ways
which can influence the allocation pattern heavily [2, 3, 15, 24].

Some online transaction processing (OLTP) systems try to re-
duce the allocation overhead by managing their allocated mem-
ory in chunks to increase performance for small transactional
queries [4, 22, 23]. However, most database systems process both
transactional and analytical queries. Therefore, the wide variety of
memory allocation patterns for analytical queries needs to be con-
sidered as well. Custom chunk memory managers help to reduce
memory calls for small allocations but larger chunk sizes trademem-
ory efficiency in favor of performance. Thus, our database system
uses transaction-local chunks to speed up small allocations. Despite
these optimizations, allocations are still a performance issue. Hence,
the allocator choice is crucial to maximize throughput.

With the development of non-volatile memory (NVM), new al-
location requirements were introduced. Foremost, the defragmen-
tation and safe release of unused memory is important since all
changes are persistent. New dynamic memory allocators for these
novel persistent memory systems have been developed and ex-
perimentally studied [20]. However, regular allocators outperform
these NVM allocators in most workloads due to fewer memory
constraints.

3 MEMORY ALLOCATORS
In this section, we discuss the five different allocation strategies
used for our experimental study. We explain the basic properties
of these algorithms according to memory allocation and freeing.
The tested state-of-the-art allocators are available as Ubuntu 18.10
packages. Only the glibc malloc 2.23 implementation is part of a
previous Ubuntu package. Nevertheless, this version is still used in
many current distributions such as the stable Debian release.

Memory allocation is strongly connected with the operating
system (OS). The mapping between physical and virtual memory is
handled by the kernel. Allocators need to request virtual memory
from the OS. Traditionally, the user program asks for memory by
calling the malloc method of the allocator. The allocator either has
memory available that is unused and suitable or needs to request
new memory from the OS. For example, the Linux kernel has multi-
ple APIs for requesting and freeing memory. brk calls can increase
and decrease the amount of memory allocated to the data segment
by changing the program break. mmap maps files into memory and
implements demand paging such that physical pages are only allo-
cated if used. With anonymous mappings, virtual memory that is

not backed by a real file can be allocated within main memory as
well. The memory allocation process is visualized below.

DBMS Allocator OS
malloc
free

 mmap/brk
munmap/brk

Besides freeing memory directly with the aforementioned calls,
the memory allocator can opt to release memory with MADV_FREE
(since Linux Kernel 4.5). MADV_FREE indicates that the kernel is
allowed to reuse this memory region. However, the allocator can
still access the virtual memory address and either receives the
previous physical pages or the kernel provides new zeroed pages.
Only if the kernel reassigns the physical pages, new ones need to
be zeroed. Hence, MADV_FREE reduces the number of pages that
require zeroing since the old pages might be reused by the same
process.

3.1 malloc 2.23
The glibc malloc implementation is derived from ptmalloc2which
originated from dlmalloc [17]. It uses chunks of various sizes that
exist within a larger memory region known as the heap. malloc
uses multiple heaps that grow within their address space.

For handling multi-threaded applications, malloc uses arenas
that consist of multiple heaps. At program start the main arena
is created and additional arenas are chained with previous arena
pointers. The arena management is stored within the main heap
of that arena. Additional arenas are created with mmap and are
limited to eight times the number of CPU cores. For every allocation,
an arena-wide mutex needs to be acquired. Within arenas free
chunks are tracked with free-lists. Only if the top chunk (adjacent
unmapped memory) is large enough, memory will be returned to
the OS.

arena_ptr arena_ptr
previous_ptr previous_ptr

sizesize
arena

management

chunks

chunks

top chunk

main heap heap #2

malloc is aware ofmultiple threads but no furthermulti-threaded
optimizations, such as thread locality or NUMA awareness, is inte-
grated. It assumes that the kernel handles these issues.

3.2 malloc 2.28
A thread-local cache (tcache) was introduced with glibc v2.26 [16].
This cache requires no locks and is therefore a fast path to allocate
and free memory. If there is a suitable chunk in the tcache for
allocation, it is directly returned to the caller bypassing the rest
of the malloc routine. The deletion of a chunk works similarly. If
the tcache has a free slot, the chunk is stored within it instead of
immediately freeing it.

3.3 jemalloc 5.1
jemalloc was originally developed as scalable and low fragmenta-
tion standard allocator for FreeBSD. Today, jemalloc is used for a



variety of applications such as Facebook, Cassandra and Android. It
differentiates between three size categories - small (< 16/textKB),
large (< 4MB) and huge. These categories are further split into dif-
ferent size classes. It uses arenas that act as completely independent
allocators. Arenas consist of chunks that allocate multiples of 1024
pages (4MB). jemalloc implements low address reusage for large
allocations to reduce fragmentation. Low address reusage, which
basically scans for the first large enough free memory region, has
similar theoretical properties as more expensive strategies such as
best-fit. jemalloc tries to reduce zeroing of pages by deallocating
pages with MADV_FREE instead of unmapping them. Most impor-
tantly, jemalloc purges dirty pages decay-based with a wall-clock
(since v4.1) which leads to a high reusage of recently used dirty
pages. Consequently, the unused memory will be purged if not
requested anymore to achieve memory fairness [5, 6].

time

re
si
de
nt

 m
em

or
y

real

decay-based

3.4 TBBmalloc 2017 U7
Intel’s Threading Building Blocks (TBB) allocator is based on the
scalable memory allocator McRT [10]. It differentiates between small,
quite large, and huge objects. Huge objects (≥ 4MB) are directly al-
located and freed from the OS. Small and large objects are organized
in thread-local heaps with chunks stored in memory blocks.

Memory blocks are memory mapped regions that are multiples
of the requested object size class and inserted into the global heap
of free blocks. Freed memory blocks are stored within a global
heap of abandoned blocks. If a thread-local heap needs additional
memory blocks, it requests thememory from one of the global heaps.
Memory regions are unmapped during coalescing of freed memory
allocations if no block of the region is used anymore [12, 14].

3.5 TCMalloc 2.5
TCMalloc is part of Google’s gperftools. Each thread has a local
cache that is used to satisfy small allocations (≤ 256KB). Large
objects are allocated in a central heap using 8KB pages.

TCMalloc uses different allocatable size classes for the small
objects and stores the thread cache as a singly linked list for each
of the size classes. Medium sized allocations (≤ 1MB) use multiple
pages and are handled by the central heap. If no space is available,
the medium sized allocation is treated as a large allocation. For
large allocations, spans of free memory pages are tracked within
a red-black tree. A new allocation just searches the tree for the
smallest fitting span. If no span is found the memory is allocated
from the kernel [8].

Unused memory is freed with the help of MADV_FREE calls. Small
allocations will be garbage collected if the thread-local cache ex-
ceeds a maximum size. Freed spans are immediately released since
the aggressive decommit option was enabled (starting with version
2.3) to reduce memory fragmentation [9].

0

200K

400K

600K

32KB 1MB 32MB 1GB

Allocation size (log scale)

Al
lo

ca
tio

n 
co

un
t

(a) By number of allocations.

0

10

20

30

40

32KB 1MB 32MB 1GB

Allocation size (log scale)

To
ta

l m
em

or
y 

[G
B]

(b) By memory consumption.

Figure 2: Allocations in TPC-DS (SF 100, serial execution).

4 DBMS ANDWORKLOAD ANALYSIS
Decision support systems rely on analytical queries (OLAP) that
gather information from a huge dataset by joining different re-
lations for example. In in-memory query engines joins are often
scheduled physically as hash joins resulting in a huge number of
smaller allocations. In the following, we use a database system
that uses pre-aggregation hash tables to perform multi-threaded
group bys and joins [15]. Our DBMS has a custom transaction-local
chunk allocator to speed up small allocations of less than 32KB. We
store small allocations in chunks of medium sized memory blocks.
Since only small allocations are stored within chunks, the memory
efficiency footprint of these small object chunks is marginal. Addi-
tionally, the memory needed for tuple materialization is acquired in
chunks. These chunks grow as more tuples are materialized. Thus,
we already reduce the stress on the allocator significantly while
preserving memory efficiency.

The TPC-H and TPC-DS benchmarks were developed to stan-
dardize common decision support workloads [19]. Because TPC-DS
contains a larger workload of more complex queries than TPC-H,
we focus on TPC-DS in the following. As a result, we expect to see a
more diverse and challenging allocation pattern. TPC-DS describes
a retail product supplier with different sales channels such as stores
and web sales.

In the following, we statistically analyze the allocation pattern for
TPC-DS executing all queries without rollup and window functions.
Note that the specific allocation pattern depends on the discussed
implementation choices of the join and group by operators.

Figure 2 shows the distribution of allocations in our system for
TPC-DS with scale factor 100. The most frequent allocations are
in the range of 32KB to 512KB. Larger memory regions are needed
to create the bucket arrays of the chaining hash tables. The huge
amount of medium sized allocations are requested to materialize
tuples using the aforementioned chunks.

Additionally, we measure which operators require the most allo-
cations. The two main consumer are group by and join operators.
The percentage of allocations per operator for a sequential execu-
tion of queries on TPC-DS (SF 100) is shown in the table below:

Group By Join Set Temp Other
By Size 61.2% 25.7% 4.3% 8.4% 0.4%
By Count 77.9% 11.7% 8.5% 1.8% 0.1%

To simulate a realistic workload, we use an exponentially dis-
tributed workload to determine query arrival times. We sample



from the exponential distribution to calculate the time between two
events. An independent constant average rate λ defines the waiting
time of the distribution. In comparison to a uniformly distributed
allocation pattern, the number of concurrently active transactions
varies. Thus, a more diverse and complex allocation pattern is cre-
ated. The events happen within an expected time interval value
of 1/λ and variance of 1/λ2. The executed queries of TPC-DS are
uniformly distributed among the start events. Hence, we are able
to test all allocators on the same real-world alike workloads.

Our main-memory query engine allows up to 10 transactions to
be active simultaneously. If more than 10 transactions are queried,
the transaction is delayed by the scheduler of our DBMS until the
active transaction count is decreased.

5 EVALUATION
In this section, we evaluate the five allocators on three hardware ar-
chitectures with different workloads. We show that the approaches
have significant performance and scalability differences. Addition-
ally, we compare the allocator implementations according to their
memory consumption and release strategies which shows memory
efficiency and memory fairness to other processes.

We test the allocators on a 4-socket Intel Xeon E7-4870 server (60
cores) with 1 TB of main memory, an AMD Threadripper 1950X (16
cores) with 64 GB main memory (32 GB connected to each die re-
gion), and a single-die Intel Core i9-7900X (10 cores) server with 128
GB main memory. All three systems support 2-way hyperthreading.
These three different architectures are used to analyze the behavior
in terms of the allocators’ ability to scale on complex multi-socket
NUMA systems.

This section begins with a detailed analysis of a realistic work-
load on the 4-socket server. We continue our evaluation by sched-
uling a reduced and increased number of transactions to test the
allocators’ performance in varying stress scenarios. An experimen-
tal analysis on the different architectures gives insights on the
scalability of the five malloc implementations. An evaluation of the
memory consumption and the memory fairness to other processes
concludes this section.

5.1 Memory Consumption and Query Latency
The first experiment measures an exponentially distributed work-
load to simulate a realistic query arrival pattern on the 4-socket Intel
Xeon server. Figure 3 shows the memory consumption over time for
TCP-DS (SF 100) and a constant query arrival rate of λ = 1.25 q/s. Al-
though the same workload is executed, very different memory con-
sumption patterns are measured. TBBmalloc and jemalloc release
most of their memory after query execution. Both malloc imple-
mentations hold a minimum level of memory which increases over
time. TCMalloc releases its memory accurately with MADV_FREE
which is not visible by tracking the system provided resident mem-
ory of the database process. Due to huge performance degradations
for tracking the lazy freeing of memory, we show the described
release behavior of TCMalloc in Section 5.4 separately. However,
the overall performance is reduced due to an increased number of
kernel calls.

For an in-depth performance analysis, the query and wait laten-
cies of the individual queries are visualized in Figure 4. Although

0

20

40

60

0 200 400 600

Execution time [s]

M
em

or
y 

co
ns

um
pt

io
n 

[G
B]

TCMalloc malloc 2.23 malloc 2.28 TBBmalloc jemalloc

Figure 3: Memory consumption over time (4-socket Xeon,
λ = 1.25 q/s, SF 100).

Query latency Wait latency

TC
Mallo

c

mallo
c 2

.23

mallo
c 2

.28

TBBmallo
c

jem
allo

c

TC
Mallo

c

mallo
c 2

.23

mallo
c 2

.28

TBBmallo
c

jem
allo

c

1ms

100ms

10s

1000s

99th
75th
50th
25th
1st

Figure 4: Total query latency and wait time (4-socket Xeon,
λ = 1.25 q/s, SF 100).

Allocator Local Remote Total Page Fault
malloc 2.28 63B, 100% 172B, 100% 236B, 100% 41M, 100%
jemalloc 120% 97% 103% 400%
TBBmalloc 121% 97% 103% 516%
TCMalloc 106% 105% 104% 153%
malloc 2.23 103% 100% 101% 139%

Table 1: NUMA-local and NUMA-remote DRAM accesses
and OS page faults (4-socket Xeon, λ = 1.25 q/s, SF 100).

the overall runtime is similar between different allocators, the in-
dividual query statistics show that only jemalloc has minor wait
latencies. TBBmalloc and jemalloc are mostly bound by the actual
execution of the query. On the contrary, both glibc malloc im-
plementations and TCMalloc are dominated by the wait latencies.
Thus, the later allocators cannot process the queries fast enough
to prevent query congestion. Query congestion results from the
bound number (10) of concurrently scheduled transactions that our
scheduler allows to be executed simultaneously.



TCMalloc malloc 2.23 malloc 2.28 TBBmalloc jemalloc

0.6
3 q

/s

1.2
5 q

/s
2.5

 q/
s

0.6
3 q

/s

1.2
5 q

/s
2.5

 q/
s

0.6
3 q

/s

1.2
5 q

/s
2.5

 q/
s

0.6
3 q

/s

1.2
5 q

/s
2.5

 q/
s

0.6
3 q

/s

1.2
5 q

/s
2.5

 q/
s

1ms

100ms

10s

1000s

Figure 5: Query latency distributions for different query
rates (4-socket Xeon, SF 100).

Because of these huge performance differences, we measure
NUMA relevant properties to highlight advantages and disadvan-
tages of the algorithms. Table 1 shows page faults, local and remote
DRAM accesses. All measurements are normalized to the current
standard glibc malloc 2.28 implementation for an easier compari-
son. The two fastest allocators have more local DRAM accesses and
significantly more page faults, but have a reduced number of remote
accesses. Note that the system requires more remote DRAM ac-
cesses due to NUMA-interleavedmemory allocations of the TPC-DS
base relations. Thus, the highly increased number of local accesses
change the overall number of accesses only slightly. Minor page
faults are not crucially critical since both jemalloc and TBBmalloc
release and acquire their pages frequently. Consequently, remote
accesses for query processing are the major performance indicator.
Because TCMalloc reuses MADV_FREE pages, the number of minor
page faults remains small.

5.2 Performance with Varying Stress Levels
In the previousworkload, only two allocators were able to efficiently
handle the incoming queries. This section evaluates the effects for a
varying constant rate λ. We analyze two additional workloads that
use the rates λ = 0.63 and λ = 2.5 queries per second. Thus, we
respectively increase and decrease the average waiting time before
a new query is scheduled by a factor of 2.

Figure 5 shows the query latencies of the three workloads. The
results for the reduced and increased waiting times confirm the
previous observations. The allocators have the same respective
latency order in all three experiments. jemalloc performs best
again for all workloads, followed by TBBmalloc.

All query latencies are dominated by the wait latencies in the
λ = 2.5 workload due to frequent congestions. With an increased
waiting time (λ = 0.63) between queries, the glibc malloc 2.28
implementation is able to reduce the median latency to a similar
level as TBBmalloc. However, the query latencies within the third
quantile vary vastly. TCMalloc and malloc 2.23 are still not able
to process the queries without introducing long waiting periods.

4-socket Intel Xeon
Intel Skylake X

0 50 100

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

M
em

or
y 

co
ns

um
pt

io
n 

[G
B]

TCMalloc malloc 2.23 malloc 2.28 TBBmalloc jemalloc

continues until 178s

Execution time [s]

Figure 6: Memory consumption over time (λ = 6 q/s, SF 10).

5.3 Scalability
After analyzing the allocators’ perfromance on the 4-socket Intel
Xeon architecture, this section focuses on the scalability of the five
dynamic memory allocators. Therefore, we execute an exponen-
tially distributed workload with TPC-DS (SF 10) on the NUMA-scale
60 core Intel Xeon server, the 16 core AMD Threadripper (two die
regions), and the single-socket 10 core Intel Skylake X.

Figure 6 shows the memory consumption during the workload
execution. Since the AMD Threadripper has a very similar memory
consumption pattern to the Intel Skylake X, we only show the 4-
socket Intel Xeon and the single-socket Intel Skylake. Most notable
are the differences of both glibc malloc implementations. These
two allocators have a very long initialization phase on the 4-socket
system, but are able to allocate their initial memory as fast as the
other ones on the single-socket system. Due to more cores and
the resulting different access pattern, the decay-based deallocation
pattern of jemalloc differs slightly in the beginning. However,
jemalloc’s decay-based purging reduces the memory consumption
on both architectures considerably. TCMalloc cannot process all
queries in the same time frame as the other allocators on the 4-
socket system whereas it finishes at the same time on Skylake.

Especially the query latencies differ vastly between the architec-
tures. In Figure 7, we show the latencies for the λ = 6 q/s workload.
The more cores are utilized, the larger are the latency differences
between the allocators. On the single-socket Skylake X, all the allo-
cators have very similar performance. Besides having more cores,
AMD’s Threadripper uses two memory regions which requires a
more advanced placement strategy to obtain fast accesses. In par-
ticular, TCMalloc and malloc 2.23 without a thread-local cache
have a reduced performance. The latency variances are reduced on
the Threadripper but the overall latencies are worse in comparison
to the Skylake architecture.



4-socket Intel Xeon AMD Threadripper Intel Skylake X

TC
Mallo

c

mallo
c 2

.23

mallo
c 2

.28

TBBmallo
c

jem
allo

c

TC
Mallo

c

mallo
c 2

.23

mallo
c 2

.28

TBBmallo
c

jem
allo

c

TC
Mallo

c

mallo
c 2

.23

mallo
c 2

.28

TBBmallo
c

jem
allo

c

100ms

300ms

1s

3s

10s

30s

Figure 7: Query latencies (λ = 6 q/s, SF 10).

peak total average total
Allocator requested measured1 requested measured
TCMalloc 55.7 GB 58.1 GB 17.8 GB 53.7 GB
malloc 2.23 61.4 GB 61.0 GB 26.2 GB 41.3 GB
malloc 2.28 61.5 GB 62.6 GB 20.2 GB 42.5 GB
TBBmalloc 55.7 GB 55.7 GB 15.9 GB 27.9 GB
jemalloc 58.6 GB 59.4 GB 11.1 GB 24.7 GB

Table 2: Memory usage (4-socket Xeon, λ = 1.25 q/s, SF 100).

Yet, the most interesting behavior is introduced by the multi-
socket Intel Xeon. It has both the best and worst overall query
performance. jemalloc and TBBmalloc execute the queries with
the overall lowest latencies and smallest variance. On the other
hand, TCMalloc is worse by more than 10x in comparison to any
other allocator. Both glibc implementations have a similar median
performance but incur high variance such that a reliable query time
prediction is impossible.

The experiments show that both jemalloc and TBBmalloc are
able to scale to large systems with many cores. TCMalloc, on the
other hand, has significant performance loss on larger servers.

To validate our findings, we evaluate a subset of the queries
on MonetDB 11.31.13 [11]. We observe a performance boost by
using jemalloc on MonetDB; however, the differences are smaller
because our DBMS parallelizes better and thus utilizes more cores.

5.4 Memory Fairness
ManyDBMS run alongside other processes on a single server. There-
fore, it is necessary that the query engines are fair to other processes.
In particular, the memory consumption and the memory release
pattern are good indicators of the allocators’ memory fairness.

Our DBMS is able to track the allocated memory regions with
almost no overhead. Hence, we can compare the measured process
memory consumption with the requested one. The used memory
differs between the allocators due to the performance and scalabil-
ity properties although we execute the same set of queries. Table 2
shows the peak and average memory consumption for the λ = 1.25
q/s workload (SF 100) on the 4-socket Intel Xeon. The peak memory
1Due to chunk-wise allocation with unfaulted pages and measurement delays the
measured amount of memory can be slightly smaller than the requested one.

0.0

2.5

5.0

7.5

0 40 80 120

M
em

or
y 

co
ns

um
pt

io
n 

[G
B]

without MADV_FREE
jemalloc TCMalloc

Execution time [s]

Figure 8: Memory consumption over time with subtracted
MADV_FREE pages (λ = 6 q/s, SF 10).

consumption is similar for all tested allocators. On the contrary,
the average consumption is highly dependant on the used alloca-
tor. Both glibc malloc implementations demand a large amount
of average memory. jemalloc requires less average memory than
TBBmalloc. However, the DBMS requested average memory is also
higher for the allocators with increased memory usage. Although
the consumption of TCMalloc seems to be higher, it actually uses
less memory than the other allocators. This results from the direct
memory release with MADV_FREE. The tracking of MADV_FREE calls
on the 4-socket Intel Xeon is very expensive and would introduce
many anomalies for both performance and memory consumption.
Therefore, we analyze the madvise behavior on the single-socket
Skylake X that is only affected slightly by the MADV_FREE tracking.
The memory consumption with the λ = 6 q/s workload (SF 10) is
shown in Figure 8. The only two allocators that use MADV_FREE to
release memory are jemalloc and TCMalloc. The measured aver-
age memory curve of TCMalloc follows the DBMS required curve
almost perfectly. jemalloc has a 15% reduced consumption if the
MADV_FREE pages are subtracted from the memory consumption.

6 CONCLUSIONS
In this work, we provided a thorough experimental analysis and
discussion on the impact of dynamic memory allocators for high-
performance query processing. We highlighted the strength and
weaknesses of the different state-of-the-art allocators according to
scalability, performance, memory efficiency, and fairness to other
processes. For our allocation pattern, which is probably not unlike
to that of most high-performance query engines, we can summarize
our findings as follows:

scalable fast mem. fair mem. efficient
TCMalloc −− ∼ ++ +
malloc 2.23 − ∼ + ∼
malloc 2.28 ∼ + − ∼
TBBmalloc + ∼ ++ +
jemalloc ++ + + +

As a result of this work, we use jemalloc as the standard allo-
cator for our DBMS.



This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286).

REFERENCES
[1] Raja Appuswamy, Angelos Anadiotis, Danica Porobic, Mustafa Iman, and Anasta-

sia Ailamaki. 2017. Analyzing the Impact of SystemArchitecture on the Scalability
of OLTP Engines for High-Contention Workloads. PVLDB 11, 2 (2017), 121–134.

[2] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In
ICDE. 362–373.

[3] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and evaluation of
main memory hash join algorithms for multi-core CPUs. In SIGMOD. 37–48.

[4] Dominik Durner and Thomas Neumann. 2019. No False Negatives: Accepting
All Useful Schedules in a Fast Serializable Many-Core System. In ICDE.

[5] Jason Evans. 2015. Tick Tock, Malloc Needs a Clock [Talk]. https://dl.acm.org/
citation.cfm?id=2742807. In ACM Applicative.

[6] Jason Evans. 2018. jemalloc ChangeLog. https://github.com/jemalloc/jemalloc/
blob/dev/ChangeLog. (2018).

[7] Tais B Ferreira, Rivalino Matias, Autran Macedo, and Lucio B Araujo. 2011.
An experimental study on memory allocators in multicore and multithreaded
applications. In 2011 12th International Conference on Parallel and Distributed
Computing, Applications and Technologies. IEEE, 92–98.

[8] Google. 2007. TCMalloc Documentation. https://gperftools.github.io/gperftools/
tcmalloc.html. (2007).

[9] Google. 2017. gperftools Repository. https://github.com/gperftools/gperftools/
tree/gperftools-2.5.93. (2017).

[10] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Ben Hertzberg. 2006.
McRT-Malloc: a scalable transactional memory allocator. In ISMM. 74–83.

[11] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender,
and Martin L. Kersten. 2012. MonetDB: Two Decades of Research in Column-
oriented Database Architectures. IEEE Data Eng. Bull. 35, 1 (2012), 40–45.

[12] Intel. 2017. Threading Building Blocks Repository. https://github.com/01org/tbb/
tree/tbb_2017. (2017).

[13] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In ICDE.
195–206.

[14] Alexey Kukanov and Michael J Voss. 2007. The Foundations for Scalable Multi-
core Software in Intel Threading Building Blocks. Intel Technology Journal 11, 4
(2007).

[15] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In SIGMOD. 743–754.

[16] GNU C Library. 2017. The GNU C Library version 2.26 is now available. https:
//sourceware.org/ml/libc-alpha/2017-08/msg00010.html. (2017).

[17] GNU C Library. 2018. Malloc Internals: Overview of Malloc. https://sourceware.
org/glibc/wiki/MallocInternals. (2018).

[18] Norman May, Alexander Böhm, and Wolfgang Lehner. 2017. SAP HANA - The
Evolution of an In-Memory DBMS from Pure OLAP Processing Towards Mixed
Workloads. In BTW. 545–563.

[19] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS.
In VLDB. 1049–1058.

[20] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Will-
halm, and Grégoire Gomes. 2017. Memory Management Techniques for Large-
Scale Persistent-Main-Memory Systems. PVLDB 10, 11 (2017), 1166–1177.

[21] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,
Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. 2018. Quickstep: A
Data Platform Based on the Scaling-Up Approach. PVLDB 11, 6 (2018), 663–676.

[22] Radu Stoica and Anastasia Ailamaki. 2013. Enabling efficient OS paging for
main-memory OLTP databases. In DaMoN. 7.

[23] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In SOSP. 18–32.

[24] Zuyu Zhang, Harshad Deshmukh, and Jignesh M. Patel. 2019. Data Partitioning
for In-Memory Systems: Myths, Challenges, and Opportunities. In CIDR.

https://dl.acm.org/citation.cfm?id=2742807
https://dl.acm.org/citation.cfm?id=2742807
https://github.com/jemalloc/jemalloc/blob/dev/ChangeLog
https://github.com/jemalloc/jemalloc/blob/dev/ChangeLog
https://gperftools.github.io/gperftools/tcmalloc.html
https://gperftools.github.io/gperftools/tcmalloc.html
https://github.com/gperftools/gperftools/tree/gperftools-2.5.93
https://github.com/gperftools/gperftools/tree/gperftools-2.5.93
https://github.com/01org/tbb/tree/tbb_2017
https://github.com/01org/tbb/tree/tbb_2017
https://sourceware.org/ml/libc-alpha/2017-08/msg00010.html
https://sourceware.org/ml/libc-alpha/2017-08/msg00010.html
https://sourceware.org/glibc/wiki/MallocInternals
https://sourceware.org/glibc/wiki/MallocInternals

	Abstract
	1 Introduction
	2 Related Work
	3 Memory Allocators
	3.1 malloc 2.23
	3.2 malloc 2.28
	3.3 jemalloc 5.1
	3.4 TBBmalloc 2017 U7
	3.5 TCMalloc 2.5

	4 DBMS and Workload Analysis
	5 Evaluation
	5.1 Memory Consumption and Query Latency
	5.2 Performance with Varying Stress Levels
	5.3 Scalability
	5.4 Memory Fairness

	6 Conclusions
	References

